

22nd Computational Fluids Conference - CFC2023 CANNES -

Modeling and simulation of single and multiple drop impingement onto liquid surfaces

Syphax FEREKA

26/04/2023

Stéphane VINCENT, Benoit TROUETTE, Eric CHENIER

Introduction

[2]: https://www.progressivesurface.com/thermalspraying/process.htm

[3]: Monika Muhlbauer. Modelling wall interactions of a high-pressure hollow cone spray.Phd thesis, Darmstadt university (2009)

Numerical methods

FUGU multiphase solver

• Finite volume discretization

• MPI Parallel solving

Cartesian irregular staggered grid

Coupled P-v solving

1-fluid formulation Navier-Stokes equations

Coupled Pressure-velocity resolution [Elouafa et al]

$$\frac{\partial \rho(C)\mathbf{u}}{\partial t} + \nabla \cdot (\rho(C)\mathbf{u} \otimes \mathbf{u}) = -\rho \mathbf{g} - \nabla p + \nabla \cdot [\mu(C)(\nabla \mathbf{u} + \nabla \mathbf{u}^T)] + \sigma \kappa \mathbf{n} \delta_{\sigma}$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = 0$$

Surface tension modeling

FUGL

Computational fluid dynamics Library fo

• Continuum surface force model [Brackbill et al]

- Interface capturing
 - VOF method for interface capturing (1D split [Young], Conservative [Weymouth et al], Unsplit [Owkes & Desjardins]):

• Momentum conserving method [Nangia et al]

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \nabla \cdot (\rho^{n+1} \mathbf{u}^{*,n+1}) = 0 \qquad (a)$$

$$\frac{(\rho \mathbf{u})^{**} - \rho^n \mathbf{u}^n}{\Delta t} + \nabla \cdot ((\rho \mathbf{u})^{*,n+1} \otimes \mathbf{u}^{*,n+1})$$
 (b)

- third order upwind schemes,
- strong-stability preserving Runge-Kutta 3 (SSP-RK3).

$$\begin{cases} \frac{\rho^{n+1}\mathbf{u}^{n+1} - (\rho \mathbf{u})^{**}}{\Delta t} = -\rho^{n+1}\mathbf{g} - \nabla p^{n+1} + \nabla \cdot \left[\mu(\nabla \mathbf{u}^{n+1} + (\nabla \mathbf{u}^{n+1})^T)\right] + \sigma \kappa \mathbf{n} \delta_i \\ \nabla \cdot \mathbf{u}^{n+1} = 0 \end{cases}$$

* : extrapolated quantity** : intermediate quantity

Elouafa, M. et al. Navier-Stokes Solvers for Incompressible Single-and Two-Phase Flows. Communications in Computational Physics. 2021, 29, 1213-1245.

Owkes, M; Desjardins, O. A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the VOF, Journal of Computational Physics, 2014, 270, 587-612.

Nangia, N. et al. A robust incompressible Navier-Stokes solver for high density ratio multiphase flows. Journal of Computational Physics. 2019, 0021-9991.

1. Numerical configuration and studied regimes [Bisighini et al]

Crater depth and diameter evolutions over time for the different regimes : for a resolution Δ = 14 cells per drop diameter

Bisighini, A. et al. Single drop impact onto deep pool : experimental observations and theorical model for the crater evolution. 23rd Annual Conference on Liquid Atomization and Spray Systems, Czech Republic, 2010.

Evolution of crater shape over time: using resolution Δ = 28 cells per drop diameter

-	Case	$V_i(m/s)$	$D_d(mm)$	H^*	We	Re
	А	2.4	2.2	15	170	6 391
	В	3	1.8	15	226	$6\ 774$
	С	3.6	2.3	15	406	10 128
	D	4.2	2.8	15	<u>6</u> 83	14 638
	Е	4.4	2.9	15	2 190	12 687

Numerical configuration and studied regimes [Cossali et al]

$V_i(m/s)$	$D_d(mm)$	H^*	We	Re	K	K_l	
3.94	3.82	0.67	842	15 366	10 350	5 403	
$=\frac{D_d V_i^2 \rho_l}{\sigma},$	$Re = \frac{D_d V_i}{\mu_l}$	$\frac{\rho_l}{M}$, K	$T = W \epsilon$	$e^{0.8}Re^{0.4},$	$K_{l} = 21$	00 + 588	$0\delta^{1.44}$
•		•		• • •	••		
	Due	R	20	3~-	<u>23</u>	/ L _i	
D	te	2	200	2		-	

Crown diameter evolution over time : for a resolution of 32 and 64 cells per diameter

Xavier, T. et al. Toward direct numerical simulation of high speed droplet impact.Meccanica, Springer Verlag, 2019, pp.1-15. Cossali, G, et al. The role of time in single drop splash on thin film, Experiments in Fluids, 36, 888 -900, 2004.

III. multi drop impacts : simulation of crater interactions

Numerical configuration and studied regimes [Santini et al]

Case	D_d	V_i	L^*	H^*	We	Fr
A	2.29	1.4	2.0	10	$62.7~\pm~3.1~\%$	$87.2~\pm~4.2~\%$
В	2.32	2.0	2.2	10	$129.5~\pm~2.4~\%$	$175.8~\pm~4.2~\%$

 Z_{max} : is the lowest point of the crater interface under the deep pool surface. Z_c : is the depth of the crater interface in the transversal plane including the impact point.

III. multi drop impacts : simulation of crater interactions

Merging of the two craters of the CASE A: for a resolution of 32 cells per drop diameter [Santini et al]

Santini, M, et al. Experimental Study of Vortices and Cavities from Single and Double Drop Impacts onto Deep Pools. European Journal of Mechanics – B/Fluids, 2017. Guilizzoni, M, et al. Synchronized Multiple Drop Impacts into a Deep Pool, MDPI Fluids, 4, 2019.

III. multi drop impacts : simulation of crater interactions

Merging of the two craters of the CASE B: for a resolution of 32 cells per drop diameter [Santini et al]

Numerical configuration and studied regimes [Cossali et al]

$V_i(m/s)$	$V_i(m/s) = D_d(mm)$		We	Re	K
3.0	3.1	0.197	382	$9\ 262$	4 493

 $\underline{\mathbf{H}_{sh}}$: is the height of the rising lamella induced by the interaction of two crowns

III. multi drop impacts : simulation of crown interactions

Collision of two crowns : formation and growing of a liquid lamella for a resolution of 64 cells per diameter

Cossali, G, et al. Splashing Characteristics of Multiple and Single Drop Impacts onto a Thin Liquid Film, 6Th ICMF conference, Leipzig, Germany, 2007. Fest-Santini, S, et al. Multiple drops impact onto a liquid film: Direct numerical simulation and experimental validation, Computers & Fluids, 217, 2021.

Conclusions & perspectives

- Study bubble entrapment under the crater
- Study crown instabilities (influence the crow ejections)

Working cases

Cases that require numerical improvement

- Try different numerical methods for surface tension and interface capturing
- Use mesh refinement approaches for the smallest scales (dual grids)

Questions?

References

Elouafa, M. et al. Navier-Stokes Solvers for Incompressible Single-and Two-Phase Flows. Communications in Computational Physics. 2021, 29, 1213-1245.

Youngs, D. *Time-Dependent Multi-material Flow with Large Fluid Distortion*. Numerical Methods in Fluid Dynamics , 1982.

Weymouth, G. Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids. Journal of Computational Physics, 229, 2853-2865, 2010.

Owkes, M; Desjardins, O. A computational framework for conservative, three-dimensional. unsplit, geometric transport with application to the VOF, Journal of Computational Physics, 2014, 270, 587-612.

Nangia, N. et al. A robust incompressible Navier-Stokes solver for high density ratio multiphase flows. Journal of Computational Physics. 2019, 0021-9991.

Bisighini, A. et al. Single drop impact onto deep pool : experimental observations and theorical model for the crater evolution. 23rd Annual Conference on Liquid Atomization and Spray Systems, Czech Republic, 2010.

Xavier, T. et al. *Toward direct numerical simulation of high speed droplet impact*. Meccanica, Springer Verlag, 2019, pp.1-15.

Cossali, G, et al. The role of time in single drop splash on thin film. Experiments in Fluids, 36, 888 -900, 2004.

Santini, M, et al. *Experimental Study of Vortices and Cavities from Single and Double Drop Impacts onto Deep Pools*. European Journal of Mechanics – B/Fluids, 2017.

Guilizzoni, M, et al. Synchronized Multiple Drop Impacts into a Deep Pool. MDPI Fluids, 4, 2019.

Cossali, G, et al. Splashing Characteristics of Multiple and Single Drop Impacts onto a Thin Liquid Film. 6th ICMF conference, Leipzig, Germany, 2007.

Fest-Santini, S, et al. Multiple drops impact onto a liquid film: Direct numerical simulation and experimental validation. Computers & Fluids, 217, 2021.

Mesh convergence for case D : using a resolution Δ of 7, 14 and 28 cells per drop diameter D_d

	Case	$V_i(m/s)$	$D_d(mm)$	H^*	We	Re
-	А	2.4	2.2	15	170	6 391
	В	3	1.8	15	226	$6\ 774$
_	C	3.6	2.3	15	406	<u>10 128</u>
Ĺ	D	4.2	2.8	15	683	<u>14 638</u>
	Е	4.4	2.9	15	2 190	12 687

Bisighini, A. et al. Single drop impact onto deep pool : experimental observations and theorical model for the crater evolution. 23rd Annual Conference on Liquid Atomization and Spray Systems, Czech Republic, 2010

Parametric study of the crown ejection

We = 699, Oh = 0,01039, D = 3,03 mm, h = 0,198 D. V = 3 m/s - Spatial scheme mesh - John 1280 · Jack 32 m/d 64 m /d 128 m/d Cubic upwind **SMART** Time step t = 2,8 ms **CUBISTA** Resolution : 64 m/d **MUSCL** 1 see CFL = 0,04 CFL = 0,4Surface tension •• ** see I = 3 $L_i = 0,2$ $L_i = 2$