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Abstract
Signal decomposition method based on spectral criteria or more recently data-driven, are the basis of bearing
and gear fault diagnosis. In this work, a new signal decomposition method based on a Spectral combination
of Hjorth’s parameter is proposed. The effectiveness and sensitivity of such a signal decomposition to bearing
fault diagnostics has been investigated based on both synthetic and real bearing vibration signals. The results
show good performances in extracting the frequency band which carries the most useful diagnosis information,
and sensibility to the different fault severities.

1 Introduction

In the realm of gear and bearing diagnostics a plethora of condition indicators and signal decomposition
has been introduced since 1980s, with the aim of extracting useful information concerning the machine state
of health. Among the other, Sharma and Parey [1] proposed a review on several condition indicators for gear
faults, whilst Miao et al. [2] used sparsity indexes for fault diagnosis of rating machinery. Lately, Antoni
and Borghesani [3] proposed a statistical framework for designing condition indicators based on a generalized
likelihood ratio. Moreover, Wang et al. [4] prove that spectral version of the previously mentioned indexes can
be expressed as the sum of weighted normalized square envelope. The main difference among these metrics
is that different weights are respectively applied to normalized square envelope. Nowadays, new emphasis
has been given to signal decomposition methods that aims to return components which maximize a particular
criterion or signal properties such as kurtosis [5], negative entropy [6] or cyclostationarity [7]. Usually, this
information is given in a frequency/frequency resolution plane defining the well-known “kurtogram” [8] and
“infogram” [6]. The kurtogram, which is a combination of Spectral Kurtosis for different frequency bands,
can be seen as a signal decomposition into kurtic components. Such decomposition is a pivotal diagnosis tool
for impulsive faults in rotating machines. However, this kurtic decomposition suffers in case of impulsive
noise, which could drives the decomposition due to the highest kurtosis value. This shortcomings was fixed
by Antoni in [6], inspired by the concepts of thermodynamics in which a transient phenomena could be seen
as a departure from the system state of equilibrium. Therefore, by the analysis of the entropy of the squared
envelope he derives the well known infogram.

The aim of the present research is to propose a novel frequency decomposition called “detectogram”, based
on the maximization of a Detectivity redefinition. In [9] Cocconcelli et al. derived the Detectivity by a proper
combination of the Hjorth’s parameters, namely activity, mobility and complexity. They are statistical time-
domain parameters introduced by Hjorth and Elema-Schonander in 1970 [10], which are commonly used in
different area of signal processing i.e., in the analysis of electroencephalography signals and in robotic area.
Cocconcelli et al. derive the Detectivity with the aim of studying the evolution of a bearing fault during the full
life-cycle of a mechanical system. In that context, Hjorth’s parameter where mixed together and normalized by
their mean values evaluated when the system was in sound conditions. The drawback of this definition concerns
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the analysis of vibration signals in the absence of healthy historic data. In this work firstly, a redefinition
of the Detectivity parameter is proposed, and than a frequency signal decomposition is derived. This signal
decomposition is applied to bearing fault diagnostics. Both real and synthesized signals where taken into
account.

The paper is structured as follows: Section 2 introduces the definition of the Detectivty parameter as well as
its Spectral counterpart. Section 3 concerns the results on both synthesized and experimental data and Section
4 draws conclusions.

2 From Hjorth’s parameters to Spectral Detectivity

In 1970, Hjorth and Elema-Schonander [10] introduced three parameters to characterize the shape of an
ECG signal in medicine. Let x(t) be a vibration signal, Hjorth’s parameters are defined as:

• Activity (Act): variance of x(t);

• Mobility (Mob): square root of the ration between the Activity for the time-derivative of x(t) and the
Activity of x(t) itself;

• Complexity (Comp): ratio between the Mobility of the the time-derivative of x(t) and the Mobility of x(t)
itself.

Therefore:

Act(x(t)) = σ
2(x(t)); Mob(x(t)) =

√
Act(ẋ(t))
Act(x(t))

; Comp(x(t)) =
Mob(ẋ(t))
Mob(x(t))

(1)

The Detectivty parameters is defined by a proper combination of Hjorth’s parameters with the idea of creating
an indicator, which could span the entire life of a mechanical component highlighting the deterioration near the
end of its life-cycle as:

Detectivity(dB)(x(t)) = Act(dB)(x(t))−Mob(db)(x(t))+Comp(db)(x(t)) (2)

where the suffix (dB) means that the Horth’s parameters where scaled to their corresponding dB values with
respect to proper reference values. Such reference values correspond to the mean values of the parameters
themselves when the mechanical component under test is in sound conditions. In this way, the obtained param-
eter can be extremely useful in monitoring life trend, whilst is useless for a single signal investigation due to
the fact that the reference values are not defined. In order to overcome this limitation, a modified version of the
Detectivity parameter is hereafter proposed.

In this work, the Hjorth’s parameter are not scaled to their dB values, but a signal sampled from a Gaussian
distribution with zero mean and unitary variance is chosen as a reference. This approach is designed toward
the understanding of how information are carried inside signals [11]. Let x(t) be a vibration signal and s(t) a
sampled version from a Gaussian distribution with zero mean and unitary variance, the proposed Detectivity
parameter is defined as:

Detectivity(x(t)) =
Act(x(t))
Act(s(t))

· Mob(s(t))
Mob(x(t))

· Comp(x(t))
Comp(s(t))

(3)

This approach allows the Detectivity parameter to be used in analysing single vibration signal as well as in
extracting the fault trend for a complete life-cycle of the mechanical component under test. Moreover, by
following the path of informative decomposition, a Spectral Detectivity can be obtained by computing the
Detectivity at the output of a filter-bank at each frequency f [12]. As a matter of fact, a “detectogram” can be
obtained by evaluating the Spectral Detectivity values for different combinations of the ( f ,∆ f ) plane [12]. As
stated by Antoni in [8], the complete exploration of the whole ( f ,∆ f ) plane is a cumbersome task. Therefore,
the detectogram could be evaluated over a dyadic grind in the ( f ,∆ f ) plane, by using a Discrete Wavelet
Transform (DWT) or a Discrete Wavelet Packet Transform (DWPT). For a dyadic decomposition, a short
description of the algorithm is as follows:

2



1. Chose the decomposition level k, each levels will have 2k bands;

2. Filter the signal at each decomposition level with a central frequency fi = (i+ 2−1)2−k−1 with a band-
width ∆ fk = 2−k−1, with i = 0, . . . ,2k −1;

3. The detectogram is computed by evaluating the Detectivity of all sequences with Equation (3).

In this work, Authors preferred the use of the 1/3-binary tree estimator based on the Short-time Fourier trans-
form (STFT), more details can be found in [8].

3 Numerical examples and data analysis

In this section, the effectiveness and sensitivity of the proposed indicator is assessed on the basis of both
numerical and experimental data.

3.1 Numerical examples

Firstly, the ability of the proposed parameter to describe a cyclostationary signal with respect to a Gaussian
one is tested. In order to do that, a numerical example developed by Antoni and Borghesani in [3] is used. Two
sets of numerically generated signals are used, the first one concerns identically distributed Gaussian signals
(GS),

x(r) ∼ N (x;0,σ2I), r = 0, . . . ,R−1 (4)

whilst the second one regards a series of Gaussian Cyclostationary signals (GCS),

x(r) ∼ N (x;0,Diag{σ
2(n)}), r = 0, . . . ,R−1 (5)

with an increasing modulation depth mr:

σ
2
r (n) =

σ2(1+mr sin(2πn
N ))

1+mr
, r = 0, . . . ,R−1 (6)

The aforementioned numerical example is performed with L = 10000, N = 100 and σ2 = 3, see [3] for more
details. Figure 1 shows the evaluation of the Hjorth’s parameters on the GS and GCS signals as well as the
respectively Detectivity values computed via Equation (3). As expected the Activity parameter is strongly
related to the variation of the signal variance (Figure 1(a)), on the contrary both Mobility and Complexity still
remain constant regardless the signal cyclostationary content. However, due to the proposed combination of
Hjorth’s parameters, the Detectivity could tracks the cyclostationary signal content.

Lastly, the detectogram sensitivity to impulsive noise is investigated. For this purpose, a simulated signal
composed by a cyclostationary train of impulse responses buried in a Gaussian background noise and a single
impulsive event is generated. The synthesized signal is generated according to the model in [6, 13] via the
convolution of the impulse response of single-degree-of-freedom system with normalized resonance frequency
at 0.2 (Fs = 1) and damping ratio of 8.3% to a series of Dirac’s with mean spacing N = 120 and 5% random
jitter. The same model is applied for generating the impulsive noise, via the convolution of the impulse response
of a single-degree-of-freedom system, with normalized resonance frequency 0.35 and damping ratio of 1.6%
to a single Dirac located at time sample n = 1000. Such a signal is known to simulate rather realistically the
vibration signature of a faulted rolling element bearing. The generated data are depicted in Figure 2(a) and (b)
after the addition of white Gaussian noise with SNR= −12dB. Figure 2(c) plots the corresponding Spectral
Coherence which highlights the resonance that carries the series of cyclostationary transients at f = 0.2 and the
resonance of impulsive noise at f = 0.35.

Figure 3 shows the Spectral Hjorth’s parameter estimated with STFT over 9 level 1/3-binary tree. It is
possible to see that both Activity and Complexity can highlight the resonance frequency involving the cyclosta-
tionary content around f = 0.2 at level 9th. Moreover, they are insensitive to the impulsive noise at f = 0.35.

The combination of the previous spectral indicator via the use of Equation (3) gives the detectogram de-
picted in Figure 4(a). In this case, both Activity and Complexity combines together highlighting the presence
of the cyclostationary source, whilst the Mobility acts only as a scale parameter. Such result is pointed out
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Figure 1: GS and GCS simulated signals: (a) Activity, (b) Mobility, (c) Complexity and (d) Detectivity
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Figure 2: Numerically generated signal composed by a cyclostationary train of impulse responses and a single
impulsive event: (a) without noise, (b) with white Gaussian noise, (c) Spectral Coherence of the noisy signal
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Figure 3: Numerically generated signal with impulsive noise: (a) Spectral Activity, (b) Spectral Mobility and
(c) Spectral Complexity

in Figure 4(b), which shows the detectogram slice at level 9. As a matter of fact, the chosen combination of
Hjorth’s parameter are not indicative of the existence of the informative events with different structures i.e.
cyclostationary and impulsive noise, but such result could be pivotal in some diagnostic applications on which
the faulted signature is related to a cyclostationary content and the impulsive noise is not carrying any useful
information about the health state of the machine.

3.2 Experimental data

This section concerns the diagnostics of real bearing fault with the proposed Detectivity parameter. In this
work the bearing data of the Polytechnic of Turin (POLITO) test rig are taken into account [14]. In particular,
the POLITO data-set consist of two main subset. The first one concerns different localized bearing damages
running at different speed and loads, whilst the second one reports the behaviour of a single damaged bearing
undergoing a long test at a constant speed and load. In this work the last subset, which covers the lifetime
of a bearing (about 330h), is taken into account. A tested bearing is mounted on a high-speed spindle driven
at a nominal constant speed of 18000 rpm. During test a spring mechanism applied a nominal radial load of
1800N to the bearing. The lubrication is carried out through an oil circuit system that regulated the temperature
and flow ratio of the lubricant itself. Vibration signals where acquired every 30min for a time span of 8s via a
piezoelectric accelerometer mounted on the bearing housing. More details on the test can be found in [14]. In
the endurance test a pre-faulted bearing was used. In particular, the fault on the roller was made by a conical
indentation with a maximum diameter of 450µm and mounted on the test rig after a break-in period. That
means that there is no available healthy state data, but it possible to observe the evolution of fault severity in the
bearing. The fault evolution was visually inspected three times during test at 70, 144 and 332h, corresponding
to acquisition number 19, 34 and 66 respectively.

Figure 5 plots the Detectivity parameter evaluated with Equation (3). It is worth noting an abrupt change
of the Detectivity parameter at the first inspection time, this behaviour is probably related to disassembly and
reassembly operations of the bearing on the test rig. Notwithstanding, it is possible to see that Detectivity is
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Figure 4: Numerically generated signal with impulsive noise: (a) detectogram, (b) frequency slice at level 9

Figure 5: POLITO dataset: Detectivity trend
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constantly increasing during test, highlighting therefore the capabilities of such parameter in tracking the fault
evolution.

4 Concluding remarks

A redefinition of the Detectivity parameter proposed by Cocconcelli et al. [9] and a frequency signal
decomposition named detectogram is presented in this paper. The effectiveness and sensitivity of such a signal
decomposition to bearing fault diagnostics has been investigated based on both synthetic and real bearing
vibration signals. In particular, the POLITO data-set is taken into account, which deal with the evolution
of a bearing faults at constant speed and load. From the analysis of synthetic data it is possible to see that
the proposed indicator is not sensitive to informative events with different structures i.e., cyclostationary and
impulsive noise, but only to the cyclostationary ones. As a matter of fact, in bearing diagnostics this could
be an interesting result due to the cyclostationary nature of the fault itself. Moreover, the ability of proposed
Detectivity to track the fault evolution has been highlighted by the use of the POLITO data-set. The analysis of
other type of faults will be the subject of future works.
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