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EXISTENCE AND STABILITY OF NONMONOTONE HYDRAULIC SHOCKS

FOR THE SAINT VENANT EQUATIONS OF INCLINED THIN-FILM FLOW

GRÉGORY FAYE⋆, L. MIGUEL RODRIGUES, ZHAO YANG, AND KEVIN ZUMBRUN

Abstract. Extending work of Yang-Zumbrun for the hydrodynamically stable case of Froude
number F < 2, we categorize completely the existence and convective stability of hydraulic shock
profiles of the Saint Venant equations of inclined thin-film flow. Moreover, we confirm by numerical
experiment that asymptotic dynamics for general Riemann data is given in the hydrodynamic
instability regime by either stable hydraulic shock waves, or a pattern consisting of an invading
roll wave front separated by a finite terminating Lax shock from a constant state at plus infinity.
Notably, profiles, and existence and stability diagrams are all rigorously obtained by mathematical
analysis and explicit calculation.
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1. Introduction

In [YZ20, SYZ20], there was carried out a comprehensive study of existence and nonlinear stabil-
ity of hydraulic shock profiles for the Saint Venant equations (SV) of inclined thin film flow, under
the assumption of hydrodynamic stability (or stability of constant solutions) of their endstates, a
necessary condition for stability of shock profiles in standard Sobolev norms. It was shown un-
der this condition that all profiles are monotone decreasing and nonlinearly stable. Notably, this
conclusion includes both smooth and discontinuous (“subshock” containing) profiles.

In this paper, motivated by studies [RYZ23, RYZss] of the closely related Richard–Gavrilyuk
model (RG) for inclined thin film flow, in which nonmonotone profiles, and profiles with hydrody-
namically unstable endstates, play a prominent role in asymptotic behavior, we revisit this prob-
lem in more detail, seeking nonmonotone profiles in the hydrodynamically unstable case. These of
course cannot be stable in standard Sobolev norms, but as seen in [RYZ23], they can nonetheless
be convectively stable, or stable in an appropriately exponentially-weighted norm, hence relevant
to time-asymptotic behavior. Interestingly, we do find such waves, in a case that was neglected1 in
[YZ20], and they appear to be convectively stable over a certain, computable regime.

The above observations have motivated the development of convective counterparts [GRss, FRss]
to general results converting spectral stablity into linear and nonlinear stability results [DR20,
FRar]. Specializing [FRss] to the present case, we are able to supplement our complete spectral
classification with corresponding nonlinear stability results.

The inviscid Saint-Venant equations in Eulerian, nondimensionalized form appear as

(1.1)

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

h2

2F 2

)
= h− |q|q

h2
,

where h is fluid height; q = hu is total flow, with u fluid velocity; and F > 0 is the Froude number,
a nondimensional parameter depending on reference height/velocity and inclination.

These form a 2× 2 relaxation system, with associated formal equilibrium equation

(1.2) ∂th+ ∂xq∗(h) = 0, q∗(h) := h3/2,

where q∗ is determined by the equilibrium condition that the second component of the righthand
side of (1.1) vanish. The first-order, principal part of (1.1), meanwhile, coincides with the equations
of isentropic γ-law gas dynamics with γ = 2 [Bre00]. System (1.1) admits constant solutions in the
form of equilibria (h, q) = (h0, q∗(h0)). Stability of constant solutions, known as hydrodynamic sta-
bility, is equivalent for 2×2 relaxation sytems to the subcharacteristic condition that the equlibrium
characteristic q′∗(h0) of (1.2) lies between the characteristic speeds of (1.1), yielding the classical
condition of Jeffreys [Jef25],

(1.3) F < 2.

Note the very special property that the condition does not depend on the particular value of h0.
For further discussion, see [JNR+19, YZ20] on (1.1) and [BJRZ11, RZ16, BJN+17b, BJN+17a] on
its viscous counterpart.

In the hydrodynamically stable regime F < 2, one does expect persistent asymptotically-constant
traveling wave solutions

(1.4) (h, q)(t, x) = (H,Q)(x− ct), lim
z→−∞

(H,Q)(z) = (HL, QL), lim
z→−∞

(H,Q)(z) = (HR, QR),

analogous to shock waves of (1.2), known as relaxation shocks, or relaxation profiles, as verified
in [YZ20]. However, the hydrodynamically unstable regime F > 2 is also of interest, in both
the convectively stable regime, since this is compatible with the description of large-time dynamics

1It was incorrectly stated there, as a side remark, that for hydrodynamically unstable endstates, the only hydraulic
shock profiles were smooth, “reverse”-direction shocks not connected to equilibrium dynamics.
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arising from compactly supported perturbations of Riemann data, and, in any case, as a scenario for
complex behavior and pattern formation [BJRZ11, RYZ23], with profiles (1.4) serving as potential
building blocks for more complicated patterns. Here, we carry out an exhaustive study of existence
and convective stability of hydraulic (SV) shocks for general F , including both cases F ≷ 2.

1.1. Results. We now briefly state our main results, to be expanded in the remainder of the paper.

1.1.1. Existence. (Section 2) Expanding on the results of [YZ20] for F < 2, we categorize in Propo-
sition 2.1 all possible types of possible hydraulic shocks: namely, the three monotone types (i), (iv),
and (v) noted in [YZ20], together with two new nonmonotone types (ii) and (iii) arising for F > 2.
These are displayed graphically in the left and right panels of Figure 2, the left one organized
by the parameter HR/HL used in [YZ20] and the right one by a new, more convenient parameter

ν0 :=
√
Hmax/Hmin in which the figures are more clear. Here HL and HR refer to the left and right

limiting heights of the traveling wave, and Hmax and Hmin to the maximum and minimum heights.
We note that type (ii)-(v) waves connect equilibria (HL,HR) corresponding to shocks of the scalar
equilibrium system (1.2), whereas type (i) waves are smooth, monotone increasing in height, and
connect (HL,HR) in the direction of a “reverse shock” of (1.2). The former, “forward-equilibrium
shocks” exist precisely for

(1.5) ν :=
√
HL/HR > 1, F < ν(ν + 1).

1.1.2. Spectral stability. (Sections 3 and 4) In Section 3, we investigate stability of essential spectra
in the class of scalar weighted norms, or, equivalently here, stability of absolute spectra. We show
that this fails for type (i) waves, corresponding to “reverse” equilibrium shocks, but is satisfied for
type (ii)-(v) waves under condition

(1.6) F <
√

2ν(ν + 1)

(always satisfied for cases (iii)-(v)) slightly stronger than the existence condition (1.5). Indeed, as
noted in Remark 3.4, essential stability fails for type (i) waves and for type (ii) waves failing to
satisfy (1.6) in any type of weighted norm, yielding a conclusive result of convective instability for
these types.

In Section 4, we study stability of point spectrum for the remaining cases (ii), (1.6) and (iii)-(v),
extending the generalized Sturm-Liouville argument introduced in [YZ20, SYZ20] for the treatment
of cases (iv)-(v). Remarkably, we are able to rigorously verify stability of point spectrum whenever
the essential stability condition (1.6) is satisfied. Taken together, these results completely charac-
terize spectral stability of hydraulic shocks of all types. The results are displayed graphically in
the panels of Figure 3.

1.1.3. Linear and Nonlinear stability. (Section 5) In Section 5, we investigate for spectrally stable
waves the questions of linear and nonlinear stability, providing a result of convective asymptotic
time-exponential orbital stability, or convergence to a translate of the original traveling wave.
This implies in particular, time-exponential stability under localized (e.g., Gaussian- or compact-
support) perturbations, a result that is new even for the F < 2 case considered in [YZ20]. We have
chosen here to derive these results by specializing to (1.1) the general theory from [FRss]. Despite
the fact that analyzing directly (1.1) would come with significant simplifications due to the special
structure of systems of two equations compared to general systems, a detailed analysis would still
be rather technical and long, without conveying much specific insight about the dynamics at hand.
We stress moreover that, though the results of [YZ20] do not apply to the present case, their proof
does contain all the main ingredients to yield the nonlinear stability of interest. Again, though
a simpler form of the arguments of [YZ20] would be sufficient here, since time-exponential decay
is simpler to handle than time-algebraic decay, a self-contained exposition of such an adaptation
would still be rather long and technical.
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1.1.4. Global time-asymptotic dynamics. (Section 6) Finally, in Section 6, we carry out using
CLAWPACK [MAB+16, Cla17] numerical experiments with (perturbed and unperturbed) “Rie-
mann” or “dambreak” data consisting of constant equilibrium states to either side of an initial
jump discontinuity, testing the “real life” validity of our rigorous existence/stability conclusions, in
the sense of large-amplitude perturbations and resulting time-asymptotic behavior, or “generalized
Riemann solution”. We see that our analytically derived stability conditions indeed predict not only
small-perturbation stability or instability, but large-scale asymptotic behavior. Specifically, when
stability holds, the asymptotic response to even large-scale localized perturbations is convergence
to a hydraulic shock, monotone or nonmonotone as the case may be.

When stability fails, on the other hand- recall, through instability of essential spectrum, having
to do with convective stability of the constant left endstate of the shock- we see bifurcation to an
“invading front” connecting roll wave patterns on the left to a constant state on the right: that is,
an “essential bifurcation” such has been studied for smooth waves of reaction-diffusion systems in
[SS01]. That is, our (local) stability conditions indeed successfully predict large-scale asymptotic
behavior. Interestingly enough, in all our experiments the expanding speed of the instability pattern
is well-predicted by the heuritics of [FHSS22].

1.2. Discussion and open problems. The Saint Venant model has proven remarkably amenable
to analysis, admitting complete solutions to both existence and stability questions now in a variety
of settings. The present analysis fits among this list, giving complete and definitive answers to the
questions of existence and convective stability of hydraulic shock solutions. In particular, the fact
that absolute and point spectral stability could be completely characterized is quite remarkable and
apparently special to (SV). It is a very interesting open problem to what extent the Sturm Liouville
arguments used here might extend to large-amplitude traveling waves of general 2 × 2 relaxation
systems under a condition of convectively stable essential spectrum, generalizing the treatment by
Liu [Liu87] of small-amplitude waves in the hydrodynamically stable case.

The analyses of linear and nonlinear stability in [YZ20] also rely in places on specific compu-
tations for (SV). However, different from the situation as regards spectral stability, the strategies
for converting spectral to nonlinear stability are rather general, and could be expected under
appropriate structural conditions to carry over to the general case of relaxation models. These
considerations motivate a more general and systematic study of such problems, as done by the first
two authors for exponentially spectrally stable Riemann shocks [FRar], and will be the object of a
future publication [FRss] from which we already borrow some results.

Jointly with [JNR+19, SYZ20, YZ20], the present contribution provides for (SV) an almost com-
plete classification of traveling waves from the point of view of existence and spectral stability.
Nevertheless we would like to point out that even in (SV), at the spectral level, a stability classifi-
cation of waves that have characteristic points but are not periodic is still missing. Likewise one of
the outstanding remaining puzzle in the nonlinear stability of relaxation waves, either smooth or
discontinuous, is the treatment of waves with characteristic points, generalizing to the system case
the scalar analysis of [DR22]. At the nonlinear level, the corresponding difficulties are expected
to occur also in the analysis of the dynamics near roll waves, which has not been touched even
for (SV); see for example the discussions of [JNR+19]. Indeed, there are some additional difficul-
ties for (SV) due to an infinite-dimensional center manifold coming from degeneracy of the model
[JNR+19]. We find this to be the main open problem in the theory of general (including periodic)
traveling waves.

Finally, we mention as an interesting direction for further investigation, the rigorous treatment
of the phenomenon of essential bifurcation/invading roll wave fronts that we see in our numerical
experiments, the lack of smoothness and parabolic smoothing making this a nonstandard problem
not covered by the methods of [SS01] and related references.
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2. Existence of traveling waves

In this section, we recover the basic existence theory from [YZ20, Prop. 1.1], in the process un-
raveling the nonmonotone case omitted there. We focus on traveling waves with piecewise smooth
profiles without characteristic point, neither on profiles nor at infinity. The presence of character-
istic points is expected to have dramatic effects on the existence, spectral stability and nonlinear
dynamics; see the related analyses in [JNR+19, DR22]. We also restrict to waves with nonnegative
velocities so that absolute values may be dropped, but one may be careful to check as a consistency
condition that indeed Q ≥ 0.

To expect some form of uniqueness when dealing with discontinuous solutions we need to im-
pose some form of entropy conditions. Combined with the non-characteristic assumption, even the
weaker forms of the latter imply that the traveling wave profiles exhibit at most one discontinu-
ity. We again refer to [JNR+19, DR22] for a detailed discussion. Without loss of generality, by
translational invariance, the discontinuity of wave profiles may be fixed at x = 0. When restricting
further to asymptotically constant profiles, they also yield that limiting endstates are distinct.

Here and elsewhere, let [h]x := h(x+) − h(x−) of a quantity h across a discontinuity located at
x, and [h] := [h]0. In smooth regions, traveling-wave solutions (1.4) satisfy

−cH ′ +Q′ = 0, −cQ′ +

(
Q2

H
+
H2

2F 2

)′
= H − |Q|Q

H2
,(2.1)

whereas at discontinuities, we have the Rankine-Hugoniot conditions

−c [H] + [Q] = 0, −c [Q] +

[
Q2

H
+
H2

2F 2

]
= 0.(2.2)

A simple observation is that the end states (HR, QR) and (HL, QL) of the traveling wave profiles

(1.4) must be equilibria, that is QL,R = q∗(HL,R) = H
3/2
L,R (since we are working in the physical

range H > 0). Combined together the first halves of (2.1) and (2.2) are equivalent to the existence
of a constant q0 such that

(2.3) cH −Q ≡ q0 .

With such a q0 fixed, the second equation of (2.1) leads to the scalar ODE

(2.4)

(
− q20
H2

+
H

F 2

)
H ′ =

H3 − (cH − q0)
2

H2
,

while the second Rankine-Hugoniot condition in (2.2) reads

(2.5)

[
q20
H

+
H2

2F 2

]
= 0.

Equation (2.4) is a scalar first-order ODE, so that it cannot connect smoothly an endstate to
itself (in a non stationary way). We have already discussed that when instead a discontinuity is
indeed present, we must have (HR, QR) 6= (HL, QL) so that in any case HL 6= HR. Therefore from
(2.3) stems that (HL,HR, c, q0) must satisfy

c =
q∗(HL)− q∗(HR)

HL −HR
=
HL +

√
HLHR +HR√

HL +
√
HR

, q0 =
HLHR√
HL +

√
HR

,

and necessarily c > 0, q0 > 0. Note that then the condition Q ≥ 0 becomes H ≥ q0/c with

q0
c

=
HLHR

HL +
√
HLHR +HR

< min({HL,HR}) .

Moreover, from the sign of q0 and entropy conditions stem, when a discontinuity is present,

− q0
HL

+

√
HL

F 2
> 0 > − q0

HR
+

√
HR

F 2
,
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which is equivalently written as

HL > Hs > HR , Hs := (q0 F )
2
3 .

The scalar ODE (2.4) may be factorized as

(2.6) H ′ =
F 2 (H −HL) (H −HR) (H −Hout)

(H −Hs)(H2 +HHs +H2
s )

,

where

Hout :=
HLHR

(
√
HL +

√
HR)2

=
HLHR

HL + 2
√
HLHR +HR

.

Note that in any case Hout < q0/c < min({HL,HR}) and recall that solutions to (2.6) taking values
below q0/c have no significance for the original traveling wave profile problem. Therefore for the
discontinuous profiles, one needs Hout < HR < Hs < HL and a simple one-dimensional phase-
portrait analysis shows that the piece converging to HR must be constant. As a consequence, in
terms of H∗ = H(0−), (2.5) is reduced to

q20
H∗

+
H2

∗
2F 2

=
q20
HR

+
H2
R

2F 2

which possesses a unique positive solution distinct from HR

H∗ :=

√

2
H3
s

HR
+
H2
R

4
− HR

2
.

Note that Hs > HR implies H∗ > HR.
For the sake of comparison with [YZ20], let us introduce the scaling parameter

ν :=

√
HL

HR

and express the above quantities as

c =
ν2 + ν + 1

ν + 1

√
HR , q0 =

ν2

ν + 1
H

3
2
R , Hs =

(
Fν2

ν + 1

) 2
3

HR ,

and

Hout =
ν2

ν2 + 2ν + 1
HR , H∗ =

−(ν + 1) +
√
8F 2ν4 + ν2 + 2ν + 1

2 (ν + 1)
HR .

We have the following extension/correction of [YZ20, Prop. 1.1]. Cases (ii) and (iii) were
mistakenly omitted there.

Proposition 2.1. Let (HL,HR) be a couple of positive heights.
When HL < HR, that is when ν < 1, there exists only one kind of non-characteristic wave profiles
connecting HL to HR,

(i) increasing smooth profiles, that do exist if and only if HL < HR < Hs, that is, if and only
if

(2.7) ν < 1 ,
ν + 1

ν2
< F.

When HR < HL, that is when ν > 1, there exist four kinds of non-characteristic waves connecting
HL to HR,

6



(ii) nonmonotone discontinuous profiles, consisting of a smooth portion increasing from HL to
H∗, connected by an entropy-admissible Lax shock to a portion constant equal to HR, that
do exist if and only if HR < Hs < HL < H∗, that is, if and only if

(2.8) ν > 1 ,
(ν + 1)

√
2(ν2 + 1)

2ν
< F < ν(ν + 1);

(iii) Riemann profiles, consisting of a portion equal to HL, connected by an entropy-admissible
Lax shock to a portion constant equal to HR, that do exist if and only if HR < Hs < H∗ =
HL, that is, if and only if

(2.9) ν > 1 , F =
(ν + 1)

√
2(ν2 + 1)

2ν
;

(iv) decreasing discontinuous profiles, consisting of a smooth portion decreasing from HL to H∗,
connected by an entropy-admissible Lax shock to a portion constant equal to HR, that do
exist if and only if HR < Hs < H∗ < HL, that is, if and only if

(2.10) ν > 1 ,
ν + 1

ν2
< F <

(ν + 1)
√

2(ν2 + 1)

2ν
;

(v) smooth decreasing profiles, that do exist if and only if Hs < HR < HL, that is, if and only
if

(2.11) ν > 1 , F <
ν + 1

ν2
.

Proof. Simple one-dimensional phase-portrait considerations provide the classification in terms of
respective positions of HL, HR, Hs and H∗, that may be readily translated as conditions on ν and
F . There only remains to point out that, in case (ii), we have used that when ν > 1,

ν + 1

ν2
<

(ν + 1)
√

2(ν2 + 1)

2ν
to discard as redundant one of the inequalities. Incidentally we also point out that when ν > 1

(ν + 1)
√

2(ν2 + 1)

2ν
< ν(ν + 1) ,

so that case (ii) is indeed non empty. This completes the proof. �

Figure 1. Examples of cases (i)–(v) of hydraulic shock profiles prescribed in Propo-
sition 2.1. (i) an increasing smooth profile with HL = 1, HR = 1.3, F = 3; (ii) a
nonmonotone discontinuous profile with HL = 1, HR = 0.4, F = 3; (iii) a Riemann

profile with HL = 1, HR = 0.4, F =
√
7
2 +

√
7
10 ; (iv) a decreasing discontinuous pro-

file with HL = 1, HR = 0.2, F = 1.5; (v) a smooth decreasing profile with HL = 1,
HR = 0.8, F = 1.5.

Remark 2.2. With hydrodynamical stability in mind, let us compare different ν-dependent Froude
thresholds to the critical value 2. For any ν < 1,

ν + 1

ν2
=

1

ν
+

1

ν2
> 2

7



so that case (i) is always hydrodynamically unstable. When ν > 1,

ν + 1

ν2
=

1

ν
+

1

ν2
< 2 ,

(ν + 1)
√

2(ν2 + 1)

2ν
> 2 ,

the latter inequality following from the fact that its left-hand side is increasing with ν and takes
the value 2 at ν = 1. Thus cases (ii) and (iii) are always hydrodynamically unstable, case (v) is
always hydrodynamically stable and case (iv) may or may not be hydrodynamically unstable. Case
(v), and case (iv) when F < 2 have been thoroughly analyzed in [SYZ20, YZ20].

Remark 2.3. In the above discussion, we have decided in advance that we were looking for non-
characteristic traveling waves connecting HL to HR. For the convenience of the reader, we now
provide a more systematic treatment of non constant waves in terms of

Hmin := min({HL,HR}) , Hmax := max({HL,HR}) , ν0 :=

√
Hmax

Hmin
,

with (Hmin,Hmax) now merely playing the role of wave parameters (replacing (c, q0)).

(1) When F > ν0(ν0 + 1), only waves of case (i) exist, with HL = Hmin and HR = Hmax.
(2) When F = ν0(ν0 + 1), Hs = Hmax and there exist two families of traveling waves, one

family with each member beginning by a smooth infinite portion arising from HL = Hmin,
connected by a Lax shock to an infinite array of increasing portions passing though Hs, con-
nected by Lax shocks, the family being parameterized by an arbitrary sequence of lengths
taken in (0,+∞)N, the other family with each member consisting in an infinite2 array of
increasing portions passing though Hs, connected by Lax shocks, the family being param-
eterized by an arbitrary sequence of lengths taken in (0,+∞)Z. The latter family includes
periodic “roll wave” solutions of the type discovered by Dressler [Dre49], that is, periodic
traveling-wave solutions with exactly one discontinuity and one characteristic point by pe-
riod. A comprehensive study of their spectral stability may be found in [JNR+19].

(3) When
ν0 + 1

ν20
< F < ν0(ν0 + 1)

only waves of cases (ii)-(iii) and (iv) exist, with HR = Hmin and HL = Hmax.
(4) When

F =
ν0 + 1

ν20
,

there exists no wave.
(5) When

F <
ν0 + 1

ν20
,

only waves of case (v) exist, with HR = Hmin and HL = Hmax.

We summarize the existence results in Figure 2.

3. Spectral framework and essential spectrum

We now turn to an examination of the spectral stability of waves listed in Proposition 2.1.
When doing so, we use extensively standard elements of spectral theory specialized to nonlinear
wave stability. We give little detail on those but rather refer the reader to the already classical
[ZH98, Zum01, MZ02, San02, KP13] for detailed comprehensive exposition and to the recent [BRar]
for a self-contained worked-out case that could hopefully be used as a gentle entering gate. For dis-
continuous waves, this involves, at least implicitly, Evans-Lopatinskĭı determinants, that interpolate
between pure Evans functions used in smooth wave analysis and pure Lopatinskĭı determinants used

2In both directions.
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Figure 2. Left panel: domains of cases (i)-(v) from Proposition 2.1, extending the
scope of [YZ20, Fig. 3. (b)] beyond the box 0 < HR/HL < 1, 0 < F < 2 (note that,
by re-scaling, HL is fixed to be 1 in [YZ20]); Right panel: visualization of domains
of cases (i)-(v) (2) (4) by incorporating ν0 from Remark 2.3.

to analyze local-in-time persistence near shocks. On the latter we refer for instance to [BGS07,
Section 4.6]. Evans-Lopatinskĭı determinants are commonly encountered in the literature about
spectral and linear stability of shocks; see for instance [God01, GL03, TZ15, JNR+19].

3.1. Linearization and spectrum. To introduce the relevant spectral problem in a concise way,
let us write (1.1) in standard abstract form

(3.1) ∂tw + ∂x(f(w)) = r(w) ,

with

w :=

(
h
q

)
, f(w) :=

(
q

q2

h + h2

2F 2

)
, r(w) :=

(
0

h− |q|q
h2

)
.

System (3.1) must be satisfied at least in weak sense, thus, for piecewise smooth solutions we impose
(3.1) to hold in a strong sense on domains corresponding to smooth parts and along a jump whose
location at time t is at ϕ(t) we impose Rankine-Hugoniot jump conditions

(3.2)
dϕ

dt
[w]ϕ = [f(w)]ϕ .

Pick a non-characteristic traveling wave of profileW := (H,Q) and speed c. WhenW is smooth,
writing equations in terms of v, with w(t, x) = W (x − ct) + v(t, x − ct), and replacing nonlinear
terms with a source term, lead to

(3.3) ∂tv + ∂x(Av) = E v + F, on R+ × R

where the source term F depends on space and time but the matrix-valued coefficients A and E
depend only on x and are explicitly given by

A(x) :=

(
−c 1

−Q(x)2

H(x)2 + H(x)
F 2 −c+ 2Q(x)

H(x)

)
, E(x) :=

(
0 0

1 + 2Q(x)2

H(x)3 −2 Q(x)
H(x)2

)
.

In turn, when W possesses a discontinuity at 0, proceeding in the same way but in terms of (v, ψ),
with w(t, x) =W (x− (ct+ ψ(t))) + w̃(t, x− (ct+ ψ(t))), v = w̃ − ψW ′, yields

(3.4)

{
∂tv + ∂x(Av) = E v + F, on R+ × R

∗,
dψ
dt [W ]− ψ [r(W )] = [Av] +G, on R+,

where (A,E,F ) are as above and G is a time-dependent source term.

Remark 3.1. It is customary in smooth wave analysis to directly discard source terms. This is
justified by the fact that when considering initial value problems one may recover the general
source-term case through Duhamel’s formula. However, for discontinuous waves, the linearized
problem is a mixed initial boundary value problem and the arguments fails. The source terms
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G that may be recovered by the Duhamel formula are those that are pointwise in time colinear
with [W ]. On a directly related note, let us observe that whereas (3.3) directly fits in standard
semigroup theory, (3.4) does not but it does belong to the class of problems that can be analyzed
through the more general, infinite-dimensional Laplace transform theory, as covered in [ABHN11],
and we shall extrapolate standard spectral terminology to this case.

Applying the Laplace transform to the above linearized problems yields respectively

(3.5) λv + (Av)′ = E v + F, on R

and

(3.6)

{
λv + (Av)′ = E v + F, on R

∗,
ψ [λW − r(W )] = [Av] +G,

with a different meaning for (v, ψ, F,G), and λ ∈ C a spectral parameter. For the sake of concision,
let us set

Lλ(v) := λv + (Av)′ − E v ,

Lλ((v, ψ)) := (λv + (Av)′ − E v,ψ [λW − r(W )]− [Av]) ,

in respective cases.
For some choice of functional spaces (X,Y ), we say that λ does not belong to the (X,Y )-spectrum

of either (3.3) or (3.4) if and only Lλ is invertible as a bounded operator from Y to X. In the
smooth case, this matches the classical definition of the spectrum of the generator of the dynamics
on X, when Y is chosen to be the corresponding domain.

Consistently we say that the wave under consideration is spectrally (X,Y )-stable if the cor-
responding (X,Y )-spectrum is included in {λ ∈ C; Re(λ) ≤ 0} and that it is spectrally (X,Y )-
unstable otherwise. We say that it is exponentially spectrally (X,Y )-stable if there exists θ > 0
such that the (X,Y )-spectrum is included in {λ ∈ C; Re(λ) ≤ −θ} ∪ {0} and 0 has multiplicity 0
if the wave is smooth and W ′ /∈ Y , 1 otherwise.

When stability/instability is considered with respect to (X,Y ) = (L2(R;C2),H1(R;C2)) in the
smooth case, or (X,Y ) = (L2(R∗;C2) × C,H1(R∗;C2) × C) in the discontinuous case, we drop
any mention to the functional pair (X,Y ). This particular choice of functional spaces takes into
account that our profiles are non-characteristic. From this property also stems that the spectrum
is not really affected by the level of regularity encoded by functional spaces provided that they are
chosen consistently. However it is strongly impacted by the level of localization.

To take this into account, we introduce for (ηL, ηR) ∈ R
2, the weighted spaces

XηL,ηR(R;C
2)

:=
{
v ∈ Xloc(R;C

2) | (e−ηL ·v)|R−
∈ X (R−;C

2) and (e−ηR ·v)|R+
∈ X (R+;C

2)
}

XηL,ηR(R
∗;C2)

:=
{
v ∈ Xloc(R

∗;C2) | (e−ηL ·v)|R∗

−

∈ X (R∗
−;C

2) and (e−ηR ·v)|R∗

+
∈ X (R∗

+;C
2)
}
,

with X = L2 or X = H1. Consistently, when talking about stability, we replace any mention
to a pair (X,Y ) with the adverb convectively if it can be achieved respectively with (X,Y ) =
(L2

ηL,ηR(R;C
2),H1

ηL,ηR(R;C
2)) or (X,Y ) = (L2

ηL,ηR(R
∗;C2) × C,H1

ηL,ηR(R
∗;C2) × C) for some

(ηL, ηR) such that ηL ≥ 0 and ηR ≤ 0. Correspondingly convective instability refers to the failure of
convective stability. When it will be convenient to keep track of the chosen weights we will replace
the general term “convectively” with the more specific term “(ηL, ηR)-weightedly”.

Remark 3.2. The constraint (ηL ≥ 0 and ηR ≤ 0) imposed in the definition of convective stability is
motivated by the will to pave the way for nonlinear analysis. At a semi-abstract level, a functional
space Z appearing at the spectral level (for scalar components) is thought as a good space for
nonlinear analysis if Z ∩ L∞ is an algebra. This leads to the above requirements on weights. In
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the discontinuous case, another obstruction to a nonlinear analysis may be anticipated. Indeed in
a Duhamel formulation source terms would contain terms that decay spatially like the square of
components of ψW ′, which may belong to a (ηL, ηR)-weighted space only if3 W ′ ≡ 0 or

ηL < 2η∞L ,

where

η∞L :=
F 2 (HL −HR) (HL −Hout)

(HL −Hs)(H2
L +HLHs +H2

s )
.

The situation is dramatically different in the smooth case since there one needs to introduce a phase
shift (which would also appear in nonlinear terms) only if W ′ does belong to the kernel of L0, that
is, only if ηL < η∞L and ηR > η∞R where η∞L is as above and

η∞R :=
F 2 (HR −HL) (HR −Hout)

(HR −Hs)(H2
R +HRHs +H2

s )
,

which do imply ηL < 2η∞L and ηR > 2η∞R . In the discontinuous case, a phase shift is required no
matter what; in the foregoing derivation of (3.4) we have partially hidden it when we have moved
from w̃ to v. In our definition, for the sake of simplicity, we have chosen not to include the extra
constraint ηL < 2η∞L of the discontinuous case but as we check in Remark 3.7 it turns out that in
the present case extra constraints already enforce ηL < η∞L .

Remark 3.3. Our current definition of convective stability/instability uses scalar exponential weights.
Though this choice is the most usual one, it is also somewhat arbitrary. However, as we shall detail
in Remark 3.4, in the present case, no substantial further gain in stabilization may be expected
from the use of more complex weights.

3.2. Essential spectrum, consistent splitting and absolute instability. A subset of the
(X,Y )-spectrum is constituted of the λ such that Lλ is not Fredholm of index 0 as a bounded
operator from Y to X. By analogy with the standard case, we call this part the (X,Y )-essential
spectrum. The essential spectrum is therefore the set of λ such that the codimension of the range
of Lλ and the dimension of its kernel are not equal, a clear obstruction to invertibility, which occurs
when both are zero.

By using that being Fredholm of index 0 is invariant by compact perturbations and that the
problem at hand is non characteristic with coefficients converging exponentially fast to their limits,
one may derive a characterization of the essential spectrum. We do not provide details on the proof
of the latter but we refer the reader to the Appendix to [Hen81, Chapter 5] for a worked out version
in a closely related context.

To discuss the outcome, we introduce

Ah :=

( −c 1

h
(
−1 + 1

F 2

)
−c+ 2

√
h

)
, Eh :=

(
0 0
3 − 2√

h

)
,

Gh(λ) := A−1
h (Eh − λ) =

1
(
c−

√
h
)2

− h
F 2

(−λ (−c+ 2
√
h)− 3 2√

h
+ λ

−λh
(
1− 1

F 2

)
− 3 c c

(
2√
h
+ λ

)
)
,

and recall that

c−
√
h =

q0
h

=
1

F

H
3
2
s

h
, when h = HL, HR .

Then λ does not belong to the (ηL, ηR)-weighted essential spectrum if and only if GHL
(λ) has

no eigenvalue with real part ηL, GHR
(λ) has no eigenvalue with real part ηR and the sum of the

3The first part corresponds to the Riemann shock case.
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number of eigenvalues of GHL
(λ) with real part greater than ηL and of the number of eigenvalues

of GHR
(λ) with real part lesser than ηR equals 2 in the smooth case, 1 in the discontinuous case.

By continuity in λ, (ηL, ηR)-weighted stability requires that each of the above-mentioned numbers
is constant in λ on {λ ; Re(λ) > 0 }, a property referred to as consistent splitting in part of the
literature. Now, note that when |λ| → ∞, eigenvalues of Gh(λ) expand as

λ

c−
√
h∓

√
h
F

+ O(1)

which when specialized to h = HL or HR is equivalently written as

λ
q0
h ∓

√
h
F

+ O(1) =
λhF

H
3
2
s ∓ h

3
2

+ O(1) .

The leading order part of these spatial eigenvalues is given by the eigenvalues of −λA−1
h and thus

is directly connected to the characteristic velocities of ∂t + Ah ∂x. As a consequence, for h = HL

or HR, for any η > 0 there exists Cη > 0 such that when |λ| ≥ Cη and Re(λ) ≥ η, GHL
(λ) has two

eigenvalues with positive real parts when h < Hs and eigenvalues with real parts of opposite sign
when h > Hs.

As a consequence, a specific way in which failure of convective stability (resp. absolute convective
instability) may occur in the present case is when for h = HL or HR such that h > Hs, there exists
λ with positive real part (resp. nonzero with nonnegative real part) such that the eigenvalues
of Gh(λ) have the same real part. This scenario matches what is commonly designated in the
literature as failure of extended consistent splitting or absolute instability. To decide whether an
absolute instability may indeed occur, let us first make explicit that the eigenvalues of Gh(λ) are
given as

γ±,h(λ) :=
1

(
c−

√
h
)2

− h
F 2

(
λ (c−

√
h)−

(
3

2
− c√

h

)
±
√

Qh(λ)

)
(3.7)

where

Qh(λ) := λ2
h

F 2
+ λ

(
−(c−

√
h) +

2
√
h

F 2

)
+

(
3

2
− c√

h

)2

,

for some determination of
√

Qh(λ). Note that γ±,h(λ) share the same real part exactly when Qh(λ)
is a nonpositive real number. Since

Re(Qh(λ)) = −Im(λ)2
h

F 2
+ Qh(Re(λ)) ,

Im(Qh(λ)) = Im(λ)

(
2Re(λ)

h

F 2
− (c−

√
h) +

2
√
h

F 2

)
.

one readily deduces that the latter does occur for some λ with positive real part (resp. nonzero
with nonnegative real part) if and only if

c−
√
h >

2
√
h

F 2
,

(
resp. c−

√
h ≥ 2

√
h

F 2

)
.

Remark 3.4. In the present case, when convective stability (resp. exponential convective stability)
fails in the foregoing way, there also exists a λ with positive real part (resp. nonzero with nonnega-
tive real part) such that γ±,h(λ) are equal. At this λ, the resolvent operator cannot be continuously
extended even as an operator from the space of test functions to distributions. This shows that, in
the present case, such absolute instabilities cannot be cured in any sensible sense, in particular not
by replacing exponential weights by a more general class of reasonable weights.
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In order to elucidate further a possible absolute instability, we compute that when h = HL or
h = HR,

c−
√
h− 2

√
h

F 2
=

√
h


 1

F

H
3
2
s

h
3
2

− 2

F 2


 =





√
h
(
ν2

ν+1 − 2
F 2

)
h = HR ,

√
h
(

1
ν(ν+1) − 2

F 2

)
h = HL .

Recalling that the scenario also requires h > Hs and observing that when ν > 1,

(ν + 1)
√

2(ν2 + 1)

2ν
<
√

2ν(ν + 1) < ν(ν + 1)

one deduces that absolute instability may only occur in case (ii) of Proposition 2.1 and does occur
when √

2ν(ν + 1) < F < ν(ν + 1) .

3.3. Smooth fronts. We temporarily restrict the discussion to smooth profiles, that is, to cases
(i) and (v) of Proposition 2.1.

Case (v) has already been studied in [SYZ20, Section 3] with conclusion that all profiles of case (v)
are spectrally stable but not exponentially spectrally stable. With a few more simple computations
one may even check that this spectral stability is of diffusive type in a sense compatible with the
application of general results from [MZ05] and conclude to nonlinear asymptotic stability with
algebraic decay rates.

The only question left concerning case (v) is whether also holds convective exponential spectral
stability. In this case the only obstacle to exponential spectral stability without weight is the
presence of two curves of essential spectrum passing through λ = 0 tangentially to the imaginary
axis, one for each spatial infinity. Recall that since, in case (v), HR > Hs and HL > Hs, there
holds for h = HL, HR,

Re(γ−,h(λ)) > 0 > Re(γ+,h(λ)) , when Re(λ) ≫ 1 .

Therefore, to conclude convective exponential spectral stability, one needs only to check that curves
of essential spectrum near λ = 0 are due to changes of sign of Re(γ+,HL

(λ)) and Re(γ−,HR
(λ)).

Since

γ±,h(0) :=
1

(
c−

√
h
)2

− h
F 2

(
−
(
3

2
− c√

h

)
±
∣∣∣∣
3

2
− c√

h

∣∣∣∣
)

one concludes convective exponential spectral stability in case (v) from the fact that when ν > 1

3

2
− c√

HR
< 0 ,

3

2
− c√

HL
> 0 .

In turn, in case (i), HR < Hs and HL < Hs so that for h = HL, HR,

Re(γ±,h(λ)) > 0 , when Re(λ) ≫ 1 .

Therefore to prove that convective spectral stability fails it is sufficient to prove that a spectral
instability is caused by what happens near −∞, thus with h = HL. This follows from the fact that
in case (i), F > 2 hence both endstates generate an essential spectrum instability.

3.4. Discontinuous fronts. We now specialize to discontinuous fronts, as in cases (ii), (iii) and
(iv) of Proposition 2.1. Our goal in the present section is to completely elucidate the effect of
essential spectrum on stability/instability of any type so as to reduce the issues to the examination
of unstable eigenvalues, carried out in the next section.

For all the cases under consideration here, HR < Hs < HL thus

Re(γ−,HL
(λ)) > 0 > Re(γ+,HL

(λ)) , Re(γ±,HR
(λ)) > 0 , when Re(λ) ≫ 1 .

This readily implies that instabilities due to the behavior near +∞ may always be convectively
stabilized whereas the convective stabilization of instabilities due to the behavior near −∞ require
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that those occur through a change of sign in Re(γ+,HL
(λ)). Note that at this stage it is not clear

whether the latter necessary condition is also sufficient.
In order to decide this necessary condition, we compute that

γ±,h(λ)
|λ|→∞
=

λ+ 1√
h

(
1∓ F

2

)

c−
√
h∓

√
h
F

+ O(|λ|−1) .

As a consequence,

lim inf
|λ|→∞
Re(λ)≥0

Re(γ−,HL
(λ)) =

1

HL

1 + F
2

c√
HL

− 1 + 1
F

, lim sup
|λ|→∞
Re(λ)≥0

Re(γ+,HL
(λ)) =

1

HL

1− F
2

c√
HL

− 1− 1
F

.

In particular, the condition is at least met in the high-frequency regime. Another necessary condi-
tion is that Re(λ) > 0 implies Re(γ+,HL

(λ)) < Re(γ−,HL
(λ)). We have already examined the latter

condition when discussing absolute instability and proved that it fails only in case (ii) when
√

2ν(ν + 1) < F < ν(ν + 1) .

Moreover when F <
√

2ν(ν + 1), Re(λ) ≥ 0 also implies Re(γ+,HL
(λ)) < Re(γ−,HL

(λ)).
The full condition we want to elucidate is

inf
Re(λ)≥0

Re(γ−,HL
(λ)) > 0 and sup

Re(λ)≥0
Re(γ+,HL

(λ)) < inf
Re(λ)≥0

Re(γ−,HL
(λ)) .

With explicit expressions (3.7) in mind, we first recall that

Qh(λ) = −Im(λ)2
h

F 2
+ Qh(Re(λ)) + iIm(λ)

(
2Re(λ)

h

F 2
− (c−

√
h) +

2
√
h

F 2

)

and observe that in present cases, when Re(λ) ≥ 0,

2Re(λ)
HL

F 2
− (c−

√
HL) +

2
√
HL

F 2
≥ −(c−

√
HL) +

2
√
HL

F 2
> 0 ,

QHL
(Re(λ)) ≥

(
3

2
− c√

h

)2

> 0 .

This motivates the following lemma.

Lemma 3.5. For any positive α, γ,

inf
y∈R

Re(
√

−y2 α+ i y β + γ) = min

({√
γ ;

|β|
2
√
α

})
,

sup
y∈R

Re(
√

−y2 α+ i y β + γ) = max

({√
γ ;

|β|
2
√
α

})
.

Proof. From the classical formula (Re(
√
z))2 = (Re(z) + |z|)/2, we deduce

(
Re(
√

−y2 α+ i y β + γ)
)2

=
1

2

(
γ − y2 α+

√
(γ − y2 α)2 + y2β2

)
=: Γ(y2) .

Direct computations yield that

Γ(0) = γ , lim
+∞

Γ =
β2

4α

and that either Γ′ is constantly zero, which happens when β2 = 4αγ, or that it never vanishes,
when β2 6= 4αγ. Hence the result by monotony. �
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Figure 3. Stability regimes on the domain of existence Figure 2. In region Rstab

waves are stable in the unweighted space, while in Rconv waves are convectively
stable in the (ηL, ηR)-weighted. Finally, in region Rabs waves are absolutely unsta-
ble. The boundary of the regions Rstab and Rconv delimited by the dash-dotted line
corresponds to F = 2 while the boundary of the regions Rconv and Rabs delimited
by the dashed line corresponds to F =

√
2ν(ν + 1) with ν =

√
HL/HR > 1.

When applying the lemma to an estimate of Re(Qh(λ)), we want to determine what is the
minimum obtained from the lemma. This stems from the following computation

4
HL

F 2
QHL

(Re(λ)) −
(
2Re(λ)

HL

F 2
− (c−

√
HL) +

2
√
HL

F 2

)2

= 4
HL

F 2

(
3

2
− c√

HL

)2

−
(
−(c−

√
HL) +

2
√
HL

F 2

)2

=
F − 2

F

(√
HL

F
+ c−

√
HL

)(
2
√
HL

F

(
3

2
− c√

HL

)
− (c−

√
HL) +

2
√
HL

F 2

)
.

Note that the latter expression does not depend on λ and that its sign is determined by the sign
of F − 2. All together we deduce that, to determine the convective stabilitization of the essential
spectrum, when F ≥ 2 it is sufficient to discuss what happens at the limit Im(λ) → ∞ whereas
when F < 2 it is sufficient to look at the case when λ ∈ R.

As for the smooth profiles, the case F < 2 has been thoroughly analyzed in [SYZ20] and the
only thing left is to check that one may also obtain exponential convective stability in this case.
This follows from the same computation as for smooth profiles.

From now on we focus on discontinuous profiles when F ≥ 2. In this context it follows from the
previous lemma and the above |λ| → ∞ asymptotics that failure of convective stability by essential
spectrum is equivalent to

γ∞− :=
1

HL

1 + F
2

c√
HL

− 1 + 1
F

<
1

HL

F
2 − 1

− c√
HL

+ 1 + 1
F

=: γ∞+ .

This coincides with the condition for absolute instability

F >
√

2ν(ν + 1) .

Remark 3.6. Let us emphasize that the coincidence of the boundary of absolute instability with the
boundary of convective stability4 defined through scalar exponential weights is not a general fact
but a specific property of the present problem. It comes with the strong consequence that there is
no need to consider more general weights. One may obtain a simple (but artificial) counterexample
to a more general claim in this direction by simply considering as a single system two uncoupled
systems requiring incompatible weights.

4For the moment we have only proved stabilization of the essential spectrum but we do prove full stability in the
end.
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3.5. Summary. The preceding analysis motivates the definition of the following regions in param-
eters space. We set

Rstab :=

{
ν > 1 and 0 < F < 2 with F 6= ν + 1

ν2

}
, Rconv :=

{
ν > 1 and 2 ≤ F <

√
2ν(ν + 1)

}
,

together with

Rabs :=
{
ν > 1 and

√
2ν(ν + 1) < F < ν(ν + 1)

}
∪
{
0 < ν < 1 and

ν + 1

ν2
< F

}
.

We refer to Figure 3 for a visualization of these regions in parameters space. So far, our results can
be summarized as:

• In region Rstab, waves of cases (iv)-(v) have marginally stable essential spectrum and con-
vective exponential stabilization of the essential spectrum can always be achieved.

• In region Rconv, waves of cases (ii)-(iii)-(iv) have unstable essential spectrum but they have
convectively exponentially stable essential spectrum in some (ηL, ηR)-weighted spaces with
ηL ≥ 0 and ηR ≤ 0.

• In region Rabs, waves of cases (i)-(ii) have unstable essential spectrum with absolute insta-
bility in the sense that the essential spectrum can not be stabilized in any (ηL, ηR)-weighted
spaces with, in case (ii), the presence of unstable branch points for the resolvent operator.

Using the results of [SYZ20], in region Rstab, waves of cases (iv)-(v) are marginally spectrally
stable in the sense that the spectrum is included in {λ ∈ C; Re(λ) < 0} ∪ {0} with an embedded
eigenvalue at λ = 0, of multiplicity one in a generalized sense. As a consequence, there remains to
study whether when 2 ≤ F <

√
2ν(ν + 1) and ν > 1, that is in region Rconv, there is a choice of

ηL ∈ (γ∞+ , γ
∞
− ) such that when ηR is sufficiently negative there is no λ with Re(λ) ≥ 0 possessing an

eigenfunction in a (ηL, ηR)-weighted space. This is the object of the next section. As a preliminary
we observe that by taking ηR sufficiently negative we may readily discard eigenfunctions that are
not zero on R+.

3.6. Maximal decay rate: another view. Before moving on with the rest of the program, we
would like to halt and offer a different perspective on the former computations so as to address
the following question: what is the maximal essential spectral gap that may be opened by tuning
our weights appropriately ? Since the boundaries of the essential spectrum due to what happens
near +∞ may be pushed arbitrarily to the left of the compex plane, we may again focus on the
contribution from the left. The same computation we have carried out to determine absolute
instability yields as an upper bound for the essential spectral gap

θopt :=
F 2

2HL

(
−(c−

√
HL) +

2
√
HL

F 2

)
,

and that it is reached with spatial decay rate

ηopt :=
1

(
c−

√
HL

)2 − HL

F 2

(
−θopt (c−

√
HL)−

(
3

2
− c√

HL

))
=

F 2

2HL
.

Reciprocally one may check with arguments similar to the ones used above (mostly relying on
Lemma 3.5) that choosing ηL = ηopt and ηR sufficiently negative provides the optimal spectral gap.

The effect of moving ηL is illustrated in Figure 4. There the curves are obtained by solving in
λ ∈ C the equations

ηL + iξ = γ±,HL
(λ)

with parameter ξ ∈ R as

λ = (ηL + iξ)
(
c−

√
HL

)
− 1√

HL
±
√

(ηL + iξ)2
HL

F 2
− (ηL + iξ) +

1

HL
16



(a) No weight (ηL = 0). (b) ηL ∈

(

0, ηmin
L

)

. (c) ηL = ηmin
L .

(d) ηL ∈

(

ηmin
L , ηmax

L

)

. (e) ηL = ηmax
L . (f) ηL > ηmax

L .

Figure 4. Visualization of some of the boundaries of the weighted essential spec-
trum as ηL is varied. In all figures, the blue curves represent the computed bound-
aries while the red half-lines represent the absolute spectrum which terminates at
branch points marked by black crosses. Without weight, the essential spectrum
is always unstable, while it is strictly stabilized with a gap for ηL ∈

(
ηmin
L , ηmax

L

)
.

At the critical weights ηL = ηmin
L or ηL = ηmax

L , the weighted essential spectrum
is only marginally stabilized with no spectral gap. The parameters are fixed to
(HL,HR, F ) = (1, 1/4, 3) so that (ηmin

L , ηmax
L ) = (3, 5).

and we have introduced

ηmin
L := γ∞+ =

1

HL

F
2 − 1

− c√
HL

+ 1 + 1
F

, ηmax
L := γ∞− =

1

HL

1 + F
2

c√
HL

− 1 + 1
F

.

Remark 3.7. To prove the last claim in Remark 3.2, we observe that

η∞L − ηmax
L =

(F − 2)
(

c√
HL

− 1 + 1
F

)

2
(
HL

F 2 −
(
c−

√
HL

)2)

is indeed positive in the cases under consideration. To carry out the above computation, we have
used that

(HL −HR) (HL −Hout) = 3H2
L − 2c (cHL − q0) = 3H2

L − 2cH
3
2
L .

4. Sturm–Liouville analysis

Throughout this section, we consider a discontinuous profile and assume that F satisfies

2 ≤ F <
√

2ν(ν + 1) with ν > 1.
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We also fix some ηL ∈
(
ηmin
L , ηmax

L

)
where ηmin

L and ηmax
L are as above.

Here, as announced, we study possible unstable eigenvalues and, to do so, adapt the arguments
from [SYZ20].

4.1. The reduced eigenvalue problem. By imposing a vanishing on R+, as we can for our
purposes, we reduce the eigenfuction problem to finding a nonzero (v, ψ) in5 H1

ηL(R
∗
−;C

2) × C

solving {
λv + (Av)′ = E v, on R

∗
−,

ψ [λW − r(W )] = [Av] .

We begin by inspecting the special case when v is zero (but ψ is not). A direct inspection shows
that it only happens when [λW − r(W )] is zero, which is equivalent to λ and [r(W )] both being
zero (since the first component of [r(W )] is zero and the first of [W ] is nonzero). The latter occurs
exactly when we are in the Riemann shock case, case (iii) of Proposition 2.1. Actually the vanishing
of [λW − r(W )] when λ = 0 alter many of the considerations to come. For this reason we postpone
the treatment of the Riemann shock case to the end of the present section.

Since we are now excluding the Riemann shock case, [λW − r(W )] is non zero and one may
eliminate ψ to reduce the discussion further to the existence of a nonzero v = (v1, v2) inH

1
ηL
(R∗

−;C
2)

such that on R
∗
−

{
λ v1 + (−cv1 + v2)

′ = 0,

λ v2 +
((

−Q2

H2 + H
F 2

)
v1 +

(
−c+ 2QH

)
v2

)′
=
(
1 + 2Q

2

H3

)
v1 − 2 Q

H2 v2 ,

and

(−cv1+ v2)(0−)×
[
λQ−

(
H − Q2

H2

)]
−
((

−Q2

H2
+
H

F 2

)
v1 +

(
−c+ 2

Q

H

)
v2

)
(0−)× [λH] = 0 .

For the sake of writing simplification we introduce one flux coordinate and replace v with u =
(u1, u2) := (v1,−cv1 + v2). With this change, we turn the problem into finding a nonzero u in
H1
ηL(R

∗
−;C

2) such that on R
∗
−





λu1 + u′2 = 0,

(au1)
′ =

(
1− 2

(
c− Q

H

)
Q
H2 − 2λ

(
c− Q

H

))
u1 −

(
λ+ 2 Q

H2 + 2
(
Q
H

)′)
u2 ,

and

u2(0
−)×

[
λQ−

(
H − Q2

H2

)]
−
(
a u1 +

(
−c+ 2

Q

H

)
u2

)
(0−)× [λH] = 0 .

In the foregoing we have denoted by a the characteristic determinant

a :=
H

F 2
−
(
c− Q

H

)2

.

Let us now examine the possibility to have a nonzero solution u with zero component u2. A
direct inspection shows that this may happen only when λ = 0 and that the corresponding u
is necessarily a multiple of (H ′, 0). Note that reciprocally one checks readily that when λ = 0
necessarily u2 ≡ 0. Thus this situation corresponds exactly to the possibility of 0 being in the
spectrum due to translational invariance.

We now focus on the case when u2 is not zero. Then the eigenvalue problem may be recasted
into the problem of finding a nonzero u2 in H2

ηL(R
∗
−;C) solving

(a u′2)
′ =

(
1− 2

(
c− Q

H

)
Q

H2
− 2λ

(
c− Q

H

))
u′2 +

(
λ+ 2

Q

H2
+ 2

(
Q

H

)′)
λu2 ,

5With obvious notational adaptation for weighted spaces.
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on R
∗
− and

u2(0
−)×

[
λQ−

(
H − Q2

H2

)]
−
(
−a u′2 +

(
−c+ 2

Q

H

)
λu2

)
(0−)× [H] = 0 .

In order to match notation from [SYZ20] we introduce

f1 :=
2

a

(
c− Q

H

)
, f2 := −1

a

(
1− 2

(
c− Q

H

)
Q

H2
− a′

)
,

f3 := −1

a
, f4 := −2

a

(
Q

H2
+

(
Q

H

)′)
,

so that the equation on R
∗
− becomes

u′′2 + (f1λ+ f2) u
′
2 + λ (f3λ+ f4) u2 = 0 .

We point out for later use that from the fact that (H ′, 0) solves the interior ODE problem for
(u1, u2) when λ = 0, one deduces that H ′′ = −f2H ′.

At last, in order to symmetrize the interior equation, we perform a Liouville-type transformation
and replace u2 with w defined by6

w(x) := exp

(
1

2

∫ x

0
(f1λ+ f2)

)
u2(x) .

This replaces the equation on R
∗
− with

w′′ +

(
λ (f3λ+ f4)−

1

4
(f1λ+ f2)

2 − 1

2
(f1λ+ f2)

′
)
w = 0,

also written as

(4.1) w′′ +

((
f3 −

1

4
f21

)
λ2 +

(
f4 −

1

2
f1f2 −

1

2
f ′1

)
λ− 1

4
f22 − 1

2
f ′2

)
w = 0,

which is exactly [SYZ20, Equation (2.14)], whereas the boundary condition becomes

(4.2) w′(0−) = (c1λ+ c2)w(0
−) ,

where

c1 :=
1

2
f1(0

−)− [Q]

a(0−)[H]
+

1

a(0−)

(
−c+ 2

Q(0−)
H(0−)

)
=

1

a(0−)

(
−c+ Q(0−)

H(0−)

)
= − 1

a(0−)
q0

H(0−)

c2 :=
1

2
f2(0

−) +

[
H − Q2

H2

]

a(0−)[H]
.

Before going on we need to check that u2 ∈ H2
ηL
(R∗

−;C) implies w ∈ H2(R∗
−;C). From the

analysis of the previous section we know that, when u2 ∈ H2
ηL(R

∗
−;C), its spatial decay rate is

precisely Re(γ−,HL
(λ)). Therefore this amounts to proving that

Re(γ−,HL
(λ)) > −1

2

(
Re(λ) lim

−∞
(f1) + lim

−∞
(f2)

)
.

A direct computation shows that this is equivalent to

Re

(√
QHL

(λ)

)
> 0 ,

thus to the fact that λ does not belong to the absolute spectrum.
Therefore it is indeed sufficient to discard the possibility of a nonzero w in H2(R∗

−;C) solving
(4.1)–(4.2).

6It should not be confused with the w used in the initial introduction of the spectral problem.
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4.2. Non real growth rates. We stress that whereas the interior part, (4.1), is symmetric on
functions compactly supported in R

∗
−, completing it with boundary condition (4.2) does not yield

a symmetric operator. An argument, specialized to the case at hand, is thus needed to show that
necessarily λ ∈ R if such a w exists. We provide such a concrete argument now.

To begin with, we observe that, combined with (4.2), multiplying (4.1) with w and integrating
yield

(c1λ+ c2)
∣∣w(0−)

∣∣2 −
∫

R∗

−

∣∣w′∣∣2

+

∫

R∗

−

|w|2
((

f3 −
1

4
f21

)
λ2 +

(
f4 −

1

2
f1f2 −

1

2
f ′1

)
λ− 1

4
f22 − 1

2
f ′2

)
= 0.

(4.3)

When Im(λ) 6= 0, the imaginary part of (4.3) gives

c1
∣∣w(0−)

∣∣2 +
∫

R∗

−

|w|2
((

f3 −
1

4
f21

)
2Re(λ) +

(
f4 −

1

2
f1f2 −

1

2
f ′1

))
= 0.

Since c1 < 0 and f3 < 0, the last equality implies

Re(λ) < −
infR∗

−

(
−f4 + 1

2f1f2 +
1
2f

′
1

)

infR∗

−

(
|f3|+ 1

4f
2
1

) .

As a consequence, we need to study the sign of f4 − 1
2f1f2 − 1

2f
′
1. To determine this sign we

observe that

a2H4

(
f4 −

1

2
f1f2 −

1

2
f ′1

)
= − 2c

F 2
H4 +

2q20
F 2

H3 + c2q0H
2 − 2cq20H + q30 = −2Q

F 2
Z (H) .

with

Z (h) := h3 − 1

2
F 2cq0h+

1

2
F 2q20 .

Let us denote Hc the positive root of Z ′, that is,

Hc :=
F
√
c q0√
6

=
F HR ν

√
ν2 + ν + 1√

6(ν + 1)
.

On [Hc,+∞), Z is increasing.
We directly borrow from [SYZ20, Section 4.1] that when F > (ν + 1)/ν2, one has H∗ > Hc

and, when moreover H∗ ≤ HL, Z (H∗) > 0. This directly implies that in cases (iii) and (iv) of
Proposition 2.1, indeed infR∗

−

(
−f4 + 1

2f1f2 +
1
2f

′
1

)
> 0.

To complete the analysis of non real eigenvalues, we only need to show that in case (ii), HL > Hc

and Z (HL) > 0. It is straightforward to check that when F ≤
√

2ν(ν + 1) indeed HL > Hc,

whereas Z (HL) > 0 is exactly equivalent to F <
√

2ν(ν + 1).
This achieves the proof that a spectral gap is present for non real eigenvalues.

4.3. Real growth rates. We now turn our attention to the case of real eigenvalues. Throughout
the present subsection, we assume that λ ∈ R+ and our goal is again to rule out the possibility of
a nonzero w in H2(R∗

−;C) solving (4.1)–(4.2).
Our starting point is again Equation (4.3), that we write now as

B(w,w) = −λAλ(w,w)
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where Aλ and B are the symmetric sesquilinear7 forms on H1(R∗
−;C) defined through their qua-

dratic forms

Aλ(v, v) := −c1
∣∣v(0−)

∣∣2 +
∫

R∗

−

|v|2
((

−f3 +
1

4
f21

)
λ+

(
−f4 +

1

2
f1f2 +

1

2
f ′1

))
,

B(v, v) := −c2
∣∣v(0−)

∣∣2 +
∫

R∗

−

|v′|2 +
∫

R∗

−

|v|2
(
1

4
f22 +

1

2
f ′2

)
.

Note that since λ ∈ R+, the analysis of the former subsection yields that Aλ is positive definite

when F <
√

2ν(ν + 1). In order to conclude it is therefore sufficient to prove that B is also positive
definite, that is,

0 < inf
v∈H1

v 6≡0

B(v, v)

‖v‖2
H1

, or equivalently 0 < inf
v∈H1

v 6≡0

B(v, v)

‖v‖2
L2

.

The equivalence between the two conditions follows from the following G̊arding-type inequality:
there exist positive c and C such that, for any v ∈ H1, B(v, v) ≥ c‖v‖2H1 − C‖v‖2L2 . A refined
version of the latter is proved below.

As in [SYZ20], we prove the latter by a continuity/homotopy argument. To set it, we introduce,
for x0 ∈ R−, Bx0 the symmetric sesquilinear form on H1(R∗

−;C) defined through its quadratic form

Bx0(v, v) := −c[x0]2

∣∣v(0−)
∣∣2 +

∫

R∗

−

|v′|2 +
∫

R∗

−

|v|2
(
1

4
f22 +

1

2
f ′2

)
(·+ x0) .

The explicit definition of c
[x0]
2 is given below but let us already anticipate that our choice ensures

that c
[x0]
2 depends smoothly on x0 and converges as x0 → −∞ to a negative value. Note moreover

that

lim
−∞

f2 = − lim
−∞

H ′′

H ′ < 0 .

This implies that when x0 is sufficiently close to −∞, Bx0 is positive definite. To motivate the

expression for c
[x0]
2 , we first observe that

c2 =
1

2
f2(0

−) +
(H(0−)−HL)(H(0−)−Hout)

a(0−)H(0−)2
.

then, consistently we set

c
[x0]
2 :=

1

2
f2(x0) +

(H(x0)−HL)(H(x0)−Hout)

a(x0)H(x0)2
.

Note that as announced

lim
x0→−∞

c
[x0]
2 =

1

2
lim
−∞

f2 < 0 .

The continuity argument is applied to the continuous function

R− → R , x0 7→ inf
v∈H1

v 6≡0

Bx0(v, v)

‖v‖2
L2

.

The fact that the foregoing function is indeed defined follows again from the G̊arding inequality
mentioned above. To complete our study of cases (ii) and (iv), it is sufficient to prove that this
function cannot vanish. This follows in a straightforward way from the series of two lemmas stated
and proved below.

To prepare the lemmas, we first quantify the possible failure of coercivity. For any

0 < κ <
1

4
(lim
−∞

f2)
2

7Consistently with our convention for scalar products, they are linear in their second factors.
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there exist positive ηκ, cκ and Cκ such that for any x0 ∈ R− and v ∈ H1,

Bx0(v, v) + Cκ ‖v‖2L2((−ηκ,0)) ≥ cκ ‖v‖2H1(R∗

−
) + κ ‖v‖2L2((−∞,−ηκ)) .

Indeed ηκ may be chosen by imposing

inf
(−∞,−ηκ)

(
1

4
f22 +

1

2
f ′2

)
>

1

2

(
κ+

1

4
(lim
−∞

f2)
2

)

and the existence of cκ and Cκ is a consequence of rough bounds on coefficients and the following
Sobolev inequality,

(4.4) |v(0−)|2 ≤ ‖v‖2L∞((−η,0)) . ‖v‖L2((−η,0)) ‖v‖H1((−η,0)) ,

that holds for any η > 0 (with an implicit constant depending on η).
As a second and last preliminary to lemmas, we find it convenient to explicitly introduce the

self-adjoint operator on L2(R∗
−;C), Lx0 , of domain denoted Dx0 , associated with Bx0 . Explicitly

Dx0 :=
{
v ∈ H1(R∗

−;C) |Bx0(v, ·) is continuous on L2(R∗
−;C)

}

=
{
v ∈ H2(R∗

−;C) | v′(0−) = c
[x0]
2 v(0−)

}

and for v ∈ Dx0 ,

Lx0v = −v′′ + v

(
1

4
f22 +

1

2
f ′2

)
(·+ x0) .

Lemma 4.1. If

0 = inf
v∈H1

v 6≡0

Bx0(v, v)

‖v‖2
L2

then there exists v ∈ Dx0 , v 6≡ 0, such that Lx0v = 0.

Proof. Let us consider (vk)k∈N a minimizing sequence, normalized by ‖vk‖L2 = 1. From the G̊arding
estimate, we know that (vk)k∈N is bounded in H1 and thus, up to extracting a subsequence, we
may assume that (vk)k∈N converges weakly in H1 to some v∞ ∈ H1. As a direct consequence of
the Hahn-Banach theorem, we deduce that

∫

R∗

−

|v′∞|2 +
∫

R∗

−

|v∞|2
(
1

4
f22 +

1

2
f ′2

)

+

(·+ x0)

≤ lim inf
k→∞

(∫

R∗

−

|v′k|2 +
∫

R∗

−

|vk|2
(
1

4
f22 +

1

2
f ′2

)

+

(·+ x0)

)
.

Now pick η > 0 such that f22 + 2f ′2 is positive outside (−η, 0) and note that since H1((−η, 0))
is compactly embedded in L2((−η, 0)) we may assume that (vk)k converges strongly to v∞ in
L2((−η, 0)). Combined with (4.4), this is sufficient to take the limit k → ∞ in the remaining part
of Bx0(vk, vk). As a result

Bx0(v∞, v∞) ≤ lim
k→∞

Bx0(vk, vk) = 0 .

We now prove that v∞ is nonzero. This is the place where we use the refined version of the
G̊arding estimate. Indeed it implies that there exist positive η′ andK such that when k is sufficiently
large so as to force that Bx0(vk, vk) is sufficiently small

‖vk‖2L2((−η′,0)) ≥ K ‖vk‖2L2((−∞,−η′)) .

Since ‖vk‖L2 = 1, we deduce that

0 < lim inf
k→∞

‖vk‖L2((−η′,0)) .
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Then, since we may assume that (vk)k converges strongly to v∞ in L2((−η′, 0)), we conclude that
v∞ is nonzero.

Let us set v := v∞/‖v∞‖L2 . The vector v is nonzero and satisfies Bx0(v, v) ≤ 0, thus Bx0(v, v) =
0. Since v minimizes the quadratic form associated with Bx0 among vectors of H1 with unit L2

norm, there exists µ ∈ C such that Bx0(v, ·) = µ 〈v, ·〉L2 . In particular v ∈ Dx0 and Lx0v = µv.
Since v is nonzero, evaluating the relation at v shows that µ = 0 and concludes the proof of the
lemma. �

The foregoing lemma is very close to many standard results but, unfortunately, we have not
found a directly applicable version in the literature. Hence the above proof.

Lemma 4.2. If v ∈ Dx0 is such that Lx0v = 0 then v ≡ 0.

Proof. Note that the set of v ∈ H2(R−) such that

−v′′ + v

(
1

4
f22 +

1

2
f ′2

)
(·+ x0) = 0

is one-dimensional. Moreover from the fact that (H ′, Q′) solves the interior spectral ODE system
in original formulation, we deduce that (H −HL)

′′ = −f2 (H −HL)
′, and thus that

v[x0] :R− → R, x 7→ e
− 1

2

∫ x0
x+x0

f2 (H(x+ x0)−HL) =

√
H ′(x0)

H ′(x+ x0)
(H(x+ x0)−HL)

spans the above set.
To conclude we just need to check that v[x0] /∈ Dx0 . This is indeed the case since

(v[x0])′

v[x0]
(0) = −1

2

H ′′(x0)
H ′(x0)

+
H ′(x0)

H(x0)−HL

=
1

2
f2(x0) +

(H(x0)−HR)(H(x0)−Hout)

a(x0)H(x0)2

6= 1

2
f2(x0) +

(H(x0)−HL)(H(x0)−Hout)

a(x0)H(x0)2
= c

[x0]
2 .

�

4.4. The Riemann shock case. We conclude our stability analysis by discussing how to adapt
the above arguments to the Riemann shock case. The overall strategy is identical but details should
be changed at various places.

We only indicate these modifications. To begin with, since [r(W )] = 0, it is convenient to replace

ψ with ψ̃ := λψ. This does not change the nature of the spectral problem when λ 6= 0 and simply
decreases by 1 the algebraic multiplicity of the eigenvalue λ = 0. Our task is thus to determine

when there exists a nonzero (v, ψ̃) ∈ H1
ηL
(R∗

−;C
2)× C solving

{
λv + (Av)′ = E v, on R

∗
−,

ψ̃ [W ] = [Av] .

Since [W ] is non zero, one may eliminate ψ̃ and reduce the discussion to the existence of a
nonzero u = (u1, u2) := (v1,−cv1 + v2) in H

1
ηL
(R∗

−;C
2) such that on R

∗
−




λu1 + u′2 = 0,

(au1)
′ =

(
1− 2

(
c− Q

H

)
Q
H2 − 2λ

(
c− Q

H

))
u1 −

(
λ+ 2 Q

H2 + 2
(
Q
H

)′)
u2 ,

and

u2(0
−)× [Q]−

(
a u1 +

(
−c+ 2

Q

H

)
u2

)
(0−)× [H] = 0 .
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There is no nonzero solution with either u2 vanishing identically or λ = 0, so that the problem is
equivalent to finding a nonzero u2 ∈ H2

ηL(R
∗
−;C) solving on R

∗
−

u′′2 + (f1λ+ f2) u
′
2 + λ (f3λ+ f4) u2 = 0 .

and

u2(0
−)× [λQ]−

(
−a u′2 +

(
−c+ 2

Q

H

)
λu2

)
(0−)× [H] = 0

where

f1 :=
2

a

(
c− Q

H

)
, f2 := −1

a

(
1− 2

(
c− Q

H

)
Q

H2

)
, f3 := −1

a
, f4 := −2

a

Q

H2
,

with H and Q constant equal to HL and H
3/2
L respectively.

From here no change is needed in the reduction from u2 to w, nor in Subsection 4.2. The core of
Subsection 4.3 is simply replaced with a direct check that B is positive definite. This follows from
the fact that f2 is a negatively-valued constant function and c2 is also negative since it is equal to
one half of this value. The sign observation stems from HL > Hs and F > 2 which imply

1− 2

(
c− QL

HL

)
QL
H2
L

= 1− 2
q0

H
3
2
L

> 1− 2

F
> 0 .

Summarizing the results of the present section with the ones of Section 3, we obtain the following
proposition.

Proposition 4.3 (Convective exponential spectral stability in Rconv). Discontinuous waves of
region Rconv are convectively exponentially spectrally stable. More precisely, when ν > 1 and
2 ≤ F <

√
2ν(1 + ν), there is a choice of ηL ∈ (γ∞+ , γ

∞
− ) and ηR < 0 sufficiently negative such that

the spectrum is included in {λ ∈ C; Re(λ) < −θ < 0} ∪ {0} in the (ηL, ηR)-weighted space for some
θ > 0. Furthermore, λ = 0 has multiplicity one.

The above result is sharp since for ν > 1 and F >
√

2ν(ν + 1), that is in region Rabs, the
corresponding waves are absolutely unstable as shown in Section 3.

5. Linear and nonlinear convective stability

At this point, we have shown that convective spectral stability holds (with scalar weight) for

F <
√

2ν(ν + 1), and fails (for any weight) for F >
√

2ν(ν + 1), We now complete our discussion
of convective stability by invoking a Lyapunov-type argument showing that convective spectral
stability implies linear and nonlinear convective orbital stability, at time-exponential rate.

Convective spectral stability in the semilinear parabolic case, with a smooth background trav-
eling wave, yields fairly immediately time-exponential asymptotic orbital stability, by well known
arguments of Sattinger [Sat76] and Henry [Hen81] similar to those for the finite-dimensional ODE
case. The present setting involving discontinuous background waves and quasilinear hyperbolic
equations requires a much more technical analysis, at the frontier of the current knowledge on
nonlinear wave stability theory.

The expository choice we make is to borrow results from the forthcoming [FRss] that carries out
a systematic development in a more general setting, in the spirit of [FRar]. We stress however that,
to a large extent, a relatively simple adaptation of the techniques used in [YZ20] for the neutrally
stable case8 would already be sufficient for the present case. Nevertheless a self-contained exposition
of this adequate version would essentially double the size of the present contribution. Even for the
smooth case, none of the results in the literature seems directly applicable but, likewise, a relatively
simple variation on [MZ02, MZ05] would yield the required result.

8See also the related discussion of [YZ20, p. 201].
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5.1. Linear estimates. We begin with estimates for the linearized problem (3.3)

(5.1) ∂tv + ∂x(Av) = E v + F, on R+ × R

with initial data v0(x) and interior source term F (t, x).

Proposition 5.1. Let W = (H,Q) be a traveling-wave solution of type (v) and consider (ηL, ηR)
spatial weight growths ensuring9 a spectral gap. Then there exist positive θ and C such that for any
1 ≤ p ≤ ∞, if

(v0, F ) ∈
{
LpηL,ηR(R)× C 0(R+;L

p
ηL,ηR(R)) 1 ≤ p <∞

BUC0
ηL,ηR(R)× C 0(R+;BUC

0
ηL,ηR(R)) p = ∞

then for v the unique mild solution to (5.1) (in C 0(R+;L
p
ηL,ηR(R)) if 1 ≤ p <∞, C 0(R+;BUC

0
ηL,ηR(R))

if p = ∞) with initial data v0, there exists a phase shift ϕ ∈ C 1(R+) vanishing initially such that
for any t ≥ 0

(5.2) ‖v(t, ·) + ϕ(t)W ′‖Lp
ηL,ηR

+ |ϕ′(t)| ≤ Ce−θt‖v0‖Lp
ηL,ηR

+ C

∫ t

0
e−θ(t−s)‖F (s, ·)‖Lp

ηL,ηR
ds .

In the foregoing statement BUC0(Ω) denotes the space of functions that are bounded on Ω, and
uniformly continuous on each connected component of Ω.

We recall that Duhamel formula enables one to reduce the previous statement to the sourceless
case. Moreover we point out that in the case p = 2 the statement follows from the Gearhart-Prüss
theorem and high-frequency bounds on resolvents.

Consider again the linearized problem (3.4):

(5.3)

{
∂tv + ∂x(Av) = E v + F, on R+ × R

∗,
dψ
dt [W ]− ψ [r(W )] = [Av] +G, on R+,

with initial data (v0(x), ψ0), interior source term F (t, x), and boundary source-term G(t). Recall
from the original derivation of (3.4) that here there is no freedom in the phase shift that may be
removed from v so as to obtain time decay. We need to prove that v − (−ψ)W ′ is decaying. In
contrast, in the smooth case, the phase shift ϕ is far from unique.

Proposition 5.2. Let W = (H,Q) be a traveling-wave solution of type (ii)-(iv) satisfying the sharp
convective spectral stability condition10

F <
√

2ν(ν + 1) , ν :=

√
HL

HR
,

and consider (ηL, ηR) spatial weight growths ensuring11 a spectral gap. Then there exist positive θ
and C such that for any 1 ≤ p ≤ ∞, if

(v0, ψ0, F,G) ∈
{
LpηL,ηR(R)× R× C 0(R+;L

p
ηL,ηR(R))× C 0(R+) 1 ≤ p <∞

BUC0
ηL,ηR(R

∗)× R× C 0(R+;BUC
0
ηL,ηR(R

∗))× C 0(R+) p = ∞

then (v, ψ), the unique mild solution to (5.3) with initial data (v0, ψ0), satisfies for any t ≥ 0

(5.4)

‖v(t, ·) + ψ(t)W ′‖Lp
ηL,ηR

+ |ψ′(t)|+ ‖
(
v(t, ·) + ψ(t)W ′) (0−)‖+ ‖

(
v(t, ·) + ψ(t)W ′) (0+)‖

≤ Ce−θt‖v0‖Lp
ηL,ηR

+ C

∫ t

0
e−θ(t−s)‖F (s, ·)‖Lp

ηL,ηR
ds+ C

∫ t

0
e−θ(t−s)‖G(s)‖ds .

9For instance, ηL positive and ηR negative both sufficiently small in absolute value.
10Automatically satisfied in cases (iii) and (iv).
11For instance, when F > 2, ηL ∈ (ηmin

L , ηmax
L ) and ηR sufficiently negative; when F < 2, ηL positive and ηR

negative both sufficiently small in absolute value.
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Note that the level of regularity of the previous statement is insufficient, alone, to define traces
at 0±. The existence of those is a consequence of the fact that (v, ψ) solves (5.3) and that the shock
is non characteristic.

5.2. Nonlinear stability. Using Propositions 5.1 and 5.2 in order to prove nonlinear stability
results induces a severe loss of derivatives due to the quasilinear character of the original system. A
by-now classical way to cure this loss is to combine the latter with nonlinear high-frequency damping
estimates, that show that as long as the Lipschitz norm of the solution remains under control, the
time decay of any Sobolev norm is slaved to the time decay of the L2 norm. Designing such
nonlinear high-frequency damping estimates is a significant part of the nonlinear stability analysis.
When proceeding in this way, it is actually sufficient to prove linear stability with derivative losses,
as accessible through what the fourth author has dubbed the “poor man’s Prüss construction”
[ZJL05]. On nonlinear high-frequency damping estimates, we refer to [Rod13, Appendix A] for an
introduction the classical Kawashima version for the stability of constant states [Kaw83, SK85] and
to [MZ05, RZ16, YZ20, FRar] for versions more directly related to the present analysis.

Theorem 5.3. Let W = (H,Q) be a traveling-wave solution of type (v) and consider (ηL, ηR)
spatial weight growths ensuring12 a spectral gap, with ηL postive and ηR negative. Then there exist
positive δ, θ and C such that if

δw0 := ‖w0 −W‖H2
ηL,ηR

(R) ≤ δ

then for w the unique mild solution to (1.1) (in C 0(R+;H
2
ηL,ηR(R))) with initial data w0, there

exists a phase shift ϕ ∈ C 1(R+) vanishing initially and an asymptotic shift ϕ∞ ∈ R such that for
any t ≥ 0

(5.5) ‖w(t, ·) − W (· − (ct+ ϕ(t)))‖H2
ηL,ηR

(R) + |ϕ′(t)|+ |ϕ(t)− ϕ∞| ≤ Ce−θtδw0 ,

and |ϕ∞| ≤ C δw0 .

Theorem 5.4. Let W = (H,Q) be a traveling-wave solution of type (ii)-(iv) satisfying the sharp
convective spectral stability condition13

F <
√

2ν(ν + 1) , ν :=

√
HL

HR
,

and consider (ηL, ηR) spatial weight growths ensuring14 a spectral gap, with ηL postive and ηR
negative. Then there exist positive δ, θ and C such that if

δw0 := ‖w0 −W‖H2
ηL,ηR

(R∗) ≤ δ

with w0 −W supported away from zero, then there exists a global solution to (1.1), w, with initial
data w0 having at each time t ≥ 0 a single shock, located at ct+ ψ(t), with ψ ∈ C 1(R+) vanishing
initially and an asymptotic shift ψ∞ ∈ R such that for any t ≥ 0

(5.6) ‖w(t, · + (ct+ ψ(t))) − W‖H2
ηL,ηR

(R∗) + |ψ′(t)|+ |ψ(t)− ψ∞| ≤ Ce−θtδw0 ,

and |ψ∞| ≤ C δw0 .

Note that none of the constants depend on how far the support of w0−W is from 0. The assump-
tion is simply made to assure that the initial data is compatible with the short-time persistence
of a single-shock piecewise-H2 solution. We could have instead assumed directly the optimal but
cumbersome compatibility conditions, as in [FRar, FRss]. On the related local-in-time propagation
of regularity we refer to [Mét01, BGS07].

12For instance, ηL positive and ηR negative both sufficiently small in absolute value.
13Automatically satisfied in cases (iii) and (iv).
14For instance, when F > 2, ηL ∈ (ηmin

L , ηmax
L ) and ηR sufficiently negative; when F < 2, ηL positive and ηR

negative both sufficiently small in absolute value.
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6. Numerical time-evolution experiments

We augment our analytic treatment by examples of numerical time evolution experiments using
CLAWPACK [MAB+16, Cla17]. More precisely, in a first set of numerical experiments, we test
the convective nonlinear (in)stability of nonmonotone discontinuous waves of type (ii) depending if
whether we are in region Rconv or Rabs ((F,HR/HL) = (2.28, 0.7) versus (F,HR/HL) = (2.30, 0.7)
as an example), and also demonstrate the convective nonlinear stability of Riemann profiles (iii)
((F,HR/HL) = (

√
85/10 +

√
238/14, 0.7) as an example). Finally, in a second set of numerical

experiments, we highlight the convective nonlinear instability of increasing smooth waves of type
(i) ((F,HR/HL) = (3, 1.3) as an example).

Figure 5. Left panel: Dambreak initial data (6.1); Right panel: Dambreak initial
data (6.2).

Figure 6. Space-time plots of simulations shown in Figures 7–10.
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6.1. Nonmonotone discontinuous waves and Riemann shock. Throughout this section we
set HL = 1 and HR = 0.7. We first note that profiles are of nonmonotone discontinuous type (ii) if

2.02390 . . . =

√
85

10
+

√
238

14
< F <

√
70

7
+

10

7
= 2.62380 . . .

and they are convectively exponentially stable given that

F <

√
2

0.7
+

2√
0.7

= 2.29076 . . . .

When F =
√
85
10 +

√
238
14 profiles are of Riemann shock type (iii) and convectively exponentially

stable. In all cases, speed of the waves is given by

c =
HL +

√
HLHR +HR√

HL +
√
HR

= 1.3811 . . . .

For our numerical experiments, we use a perturbed dambreak initial data given by

(6.1)




h0(x) = 1x≤0 + 0.7 × 10<x + 1(x+5)2<0.5e

− 1
0.5−(x+5)2 ,

q0(x) = 1x≤0 + 0.73/2 × 10<x,
x ∈ R.

See Figure 5 left panel for a plot of (6.1).
Convectively stable regime. For F = 2.28 ∈ Rconv, we present in Figure 7 several snapshots
at time 100, 500, and 2000 of the fluid height h in the comoving frame c showing convergence to
a nonmonotone hydraulic shock in the large-time asymptotic limit. We also refer to Figure 6 first
panel for a (comoving) space-time plot of the fluid height h. The latter space-time plot clearly
shows the speeds of shocks are faster than the comoving frame speed and shocks gradually merge
into a single subshock of the nomonotone hydraulic profile at t ≈ 1000. This numerical experiment
illustrates that our analytically derived convective stability condition predicts the asymptotic re-
sponse to large-scale localized perturbations: convergence to a nonmonotone hydraulic shock in our
case.

Figure 7. Numerical simulation of (1.1) with F = 2.28 and initial data (6.1).

Convectively unstable regime. On the other hand, for F = 2.30 ∈ Rabs in the convectively
unstable regime, we make a simulation with the former initial data, showing an “invading front”
connecting roll wave patterns on the left to a constant state on the right. See Figure 8 for plots at
time 100, 500, and 2000 of fluid heights in the comoving frame c and Figure 6 second panel for a
(comoving) space-time plot. The latter space-time plot clearly shows that although the speeds of
shocks are faster than that of the comoving frame, the location where new shocks emerge (marked
by a dash line in Figure 6 second panel) moves at a slower speed than the comoving frame speed,
resulting in more and more shocks between the location where new shocks emerge and the last
shock connecting to HR.

Note that the slower speed of the invading front can be heuristically predicted by tracking how
the absolute spectrum associated with HL depends on the speed of the moving frame in which it
is computed. To be more concrete, we revisit computations from Section 3.2 by allowing the speed
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of the moving frame s to vary (instead of being fixed to c, the wave speed of the traveling wave of
interest) and correspondingly mark with s different quantities introduced there. We are interested
in the absolute spectrum of HL at speed s, that is in the λ such that the real parts of the spatial
eigenvalues of GHL,s(λ) coincide, Re(γ−,HL,s(λ)) = Re(γ+,HL,s(λ)). Following [FHSS22], we may
define a so-called absolute spreading speed sabs as the infimum of wave speeds s for which the
absolute spectrum remains unstable in the moving frame s. Computations from Section 3.2 yield

sabs =
√
HL

(
1 +

2

F 2

)
.

In our case, with F = 2.30, HL = 1 and HR = 0.7, we have sabs − c = −0.00305 . . .. The dashed
line in the second panel of Figure 6 has precisely a slope given by sabs − c which matches the onset
of the invading roll waves quite accurately.

Figure 8. Numerical simulation of (1.1) with F = 2.30 and initial data (6.1).

Riemann case. Finally, for F =
√
85/10+

√
238/14 in domain (iii) of Riemann profiles which lies

within the convectively stable regime Rconv, we simulate (1.1) with the initial data (6.1), showing
convergence to the unperturbed Riemann shock in the large-time asymptotic limit. See Figure 9
for plots at time 10, 50, and 100 of fluid heights in the comoving frame c and Figure 6 third panel
for a (comoving) space-time plot. Both plots show emergence of a single shock caused by the initial
perturbation which quickly merges into the Riemann shock.

Figure 9. Numerical simulation of (1.1) with F =
√
85
10 +

√
238
14 and initial data (6.1).

6.2. Increasing smooth waves. Finally, we make HR > HL to test if the corresponding increas-
ing smooth “reverse shock” can be the large-time asymptotic limit. We fix HL = 1 and HR = 1.3
such that profiles are of increasing smooth type (i) if

F >

√
13

10
+

13

10
= 2.44017 . . . .

For F = 3 ∈ Rabs in domain (i) of increasing smooth profiles, we simulate with dambreak initial
data given by

(6.2)




h0(x) = 1x≤0 + 1.3 × 10<x + 1(x+5)2<0.5e

− 1
0.5−(x+5)2 ,

q0(x) = 1x≤0 + 1.33/2 × 10<x,
x ∈ R.
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See Figure 5 right panel for a plot of (6.2). We report an “invading back” connecting roll wave
patterns on the left to a constant state on the right. See Figure 10 for plots at time 5, 25, and 100

of fluid heights in the comoving frame c = HL+
√
HLHR+HR√

HL+
√
HR

∼ 1.6074 and Figure 6 last panel for a

space-time plot. This illustrates once again that our (local) stability conditions indeed successfully
predict large-scale asymptotic behavior.

We also tested the predictive feature of the absolute spreading speed introduced in the convec-
tively unstable case beyond its expected range of validity by computing sabs in the present case and
found sabs − c = −0.3852 . . .. Quite surprisingly and remarkably, this predicted speed compares
well with the speed of the primary invading front (see the dashed line in the forth panel of Figure 6)
for short time.

Figure 10. Numerical simulation of (1.1) with F = 3 and initial data (6.2).

Roll wave selection. So far we are lacking even a heuristic argument to predict which roll wave
is selected in the invading front pattern. Let us recall that, even when the translational invariance
is quotiented, roll waves form a two-parameter family.

By integrating over a large space-time box the conservation law of (SV), one may derive formally
a constraint equation

q0,shock = q0,roll + (croll − cshock)〈Hroll〉,
where 〈A〉 denotes the average of the quantity A over one period of the roll wave pattern. Yet
this is one equation short to fully identify the roll pattern, leaving a degree of freedom still to be
determined.

Looking toward the future, we would like to add two more comments on this question. First,
we point out that we have estimated numerically the wave period and wave speed of the observed
roll pattern (as approximately 1 and 1.4 respectively) and checked that the wave does lie in the
stability region of the roll-wave stability diagram [JNR+19, Fig. 3(c)].

Second, we mention that the oscillatory instability pattern between HL and the roll-wave seems
to be expanding linearly in time, preventing a direct connection from the roll-wave to HL. One can
not exclude that the identification of the missing roll parameter requires a deep understanding of
this pattern in a way reminiscent of the resolution of the Gurevich–Pitaevskii problem through the
analysis of dispersive shocks [BGMR21].

A complete, rigorous treatment of this bifurcation would be very interesting to carry out.

References

[ABHN11] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace transforms and Cauchy

problems, volume 96 ofMonographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition,
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