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Abstract—Optimal control of new grid elements, such as
electric vehicles, can ensure an efficient, and stable operation of
distribution networks. Decentralization can result in scalability,
higher reliability, and privacy (which may not be present in
centralized or hierarchical control solutions). A decentralized
multi-agent multi-armed combinatorial bandits system using
Thompson Sampling is presented for smart charging of electric
vehicles. The proposed system utilizes the concepts of bandits
reinforcement learning to manage the uncertainties in the choice
of other players’ actions, and in the intermittent photovoltaic
energy production. This proposed solution is fully decentralized,
real-time, scalable, model-free, and fair. Its performance is
evaluated through comparison with other charging strategies i.e.,
basic charging, and centralized optimization.

Index Terms—Electric vehicles, Active distribution networks,
Smart charging, Multi-agent reinforcement learning, Combina-
torial multi-armed bandits

I. INTRODUCTION

The increasing number of electric vehicles (EVs) and pho-
tovoltaics (PVs) can introduce new challenges, such as con-
gestion, and peak load demand, in the distribution networks.
Optimal control of these new grid elements, while satisfying
the local constraints of each EV prosumer, and the global con-
straints of the distribution system operator (DSO), can help in
mitigating the mentioned challenges. In [1], [2], the real-time
charging of EVs is controlled to assist the distribution network.
However, such systems may suffer from a lack of scalability, a
single point of failure, and data privacy concerns, as they are
centralized. Multi-agent systems for smart grid applications
are proposed in [3], [4] to tackle the challenges of centralized
systems. However, these systems are hierarchical, and may still
suffer from the drawbacks of centralization. Furthermore, an
accurate distribution network model is assumed to be known in
the majority of the mentioned systems, which is not always the
case in real life. Thus, a decentralized, and model-free control
algorithm can be useful for efficient smart grid operations.
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Reinforcement learning (RL) has also found its application
in active distribution networks in recent years, as it can help
in designing a decentralized multi-agent system. In [5], [6],
multi-agent systems combined with RL have been proposed to
control the functioning of a variety of elements in distribution
networks. In standard RL, an agent learns the optimal policy
through interactions with the environment. Each action of the
agent changes the state of the environment, and the agent
receives a reward from the environment. The agent’s goal is
to maximize the running sum of these observed rewards [7].
These RL algorithms can be useful to minimize the objective
function cost, but the inclusion of multi-level distribution
network constraints (local constraints of the EV prosumers,
and global constraints of the DSO) can still be a challenge [8].
More importantly, no known Oracle can evaluate each action’s
performance, thus the cost of such a system would be directly
linked to the learning time of the agent in real-life. Stability
problems, and limited theoretical convergence results are also
some of the challenges of commonly used RL algorithms with
function approximations (e.g., DQN learning).

Multi-armed bandits (MAB) is a simpler subclass of rein-
forcement learning [11]. Being a simpler subset of Markov
Decision Processes enables MAB algorithms to converge
relatively faster (compared to DQN or Q-learning). This is
a significant advantage for smart grid applications, as the
learning is purely online, and no perfect Oracle to evaluate
the performance of each action is available. The simpler
nature of MAB algorithms also results in well-defined the-
oretical guarantees. Bandit algorithms have been used for
smart charging [9], [10]. However, the mentioned systems are
not decentralized. Selfish bandits have also been utilized to
optimize modern communication networks in a decentralized
manner with excellent results [11]-[13].

This selfish MAB approach is extended here for the smart
charging of EVs. The goal of each EV agent is to minimize
its daily charging cost, in the presence of dynamic electricity



pricing, and uncertain PV energy production, while satisfying
a set of constraints. This optimization problem is modeled as a
combinatorial multi-armed bandits (CMAB) problem [14]. The
main contributions of this paper include a fully decentralized
smart charging MAS using CMAB, the selfish heuristic for
handling multi-player bandits, and Bayesian estimation of PV
energy production. We call our proposed system decentralized
because each network entity that encounters an issue (e.g., a
node with under-voltage or transformer with congestion) deals
with this issue by sending messages to the flexible entities
(EVs here), and each EV optimizes its charging strategy. It is
in contrast to centralized control by a DSO identifying itself
where the grid issues are and how to react. The presented
system is also scalable, and each agent can find the estimated
best arm to play in O(m). The proposed system is also
real-time, keeps fairness among all agents in check, and
is generic (adaptable to other smart grid applications). The
paper is organized as follows: optimization formulation is
described in section II, and section III will present the CMAB
formulation of the smart charging problem. A detailed case
study with results will be presented in section IV, and finally,
the conclusion will be made in section V.

IT. OPTIMIZATION FORMULATION

The objective of the smart charging problem is to minimize
the total charging cost of the EVs in the presence of daily dy-
namic electricity pricing, and uncertain PV energy production.
It is defined as:
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where J is the total number of EVs, m is the total number
of decision instants, Cj(d) is the total charging cost of the
j-th EV on day d, c(4) is the normalized electricity price at
i-th instant, P;(i) is the charging power of the EV agent j
at i-th instant of the day, and Ai¢ is the duration of each
charging instant. The decision variable of the problem is
P;(i) € [0, Ppqs). The first term in (1) minimizes the sum
of daily charging costs of all EVs, while the second term
ensures fairness by minimizing the differences among per-
unit charging costs (cost per energy unit) of all EVs. The
constraints of the optimization problem are described below.

Network’s Physical Constraints: These constraints satisfy
the network’s physical constraints and result in correct power
flow results. The active power of bus a at instant ¢ is:

Pu(z) = Pa,gen(i) - Pa,dem(i) 2)

where P, gen(7) is the generated power at bus a at instant i.
This term can include electrical generators (in the case of grid
bus), and PV energy generation as well. Term P gen (7) is
the power demand at bus a at instant ¢. This includes both
household loads as well as EVs demand. The reactive power
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equation can be written in a similar way. The power flow is
linked to the instantaneous bus voltages as:

Pap(i) + §Qap(1) = Va () (V7 (1) = V5" ()Ys  3)

where P,;(i), and Q(¢) are the active and reactive powers
respectively, flowing from bus a to b at instant ¢. Term V,,(7) is
the instantaneous voltage at bus a, and Y} is the admittance
of electrical line connecting bus a and bus b.

DSO’s Constraints: These constraints include no electrical
current congestion, and no voltage limit violation in the
system. These are defined as:

Iab(i) < Iab,mam (4)
Va,min < Va(‘) < Va,mam (5)

where I,;,(7) is the instantaneous current flowing from bus
a to bus b, Ip mae 1s the rated current value, Vi 4, 1S the
allowed minimum instantaneous voltage at bus a, and V; max
is the allowed maximum voltage at bus a.

Electric Vehicle’s Constraints: These are the local con-
straints of each EV prosumer, which include that the state
of charge (SoC) of the EV should always remain within the
specified range, and it should be greater than the specified
value at EV’s departure time. Furthermore, the state of health
(SoH) of all EVs should be positive. These constraints are
defined as:

SOC(L,min < SOCa(Z) < SOCu,ma:c 6)
SOC(L (idepwrt) > SOC’a,depwrt (7)
SOHu(i) >0 (8)

where SoCy min (i) is the instantaneous SoC of EV connected
to bus a, SoCq i is the minimum allowed SoC, SoCl maax
is the maximum allowed SoC, SoC,(igepqart) is the SoC at
the departure time of EV a, SoCq gepart is the desired SoC
at the departure time, and SoH,(7) is the instantaneous SoH
of EV. Both SoC, and SoH are defined in [15].

A. Linearization

The above-mentioned formulation is non-linear due to the
product of voltages in (3). To solve this formulation as a mixed
integer linear programming (MILP) optimization problem,
linearization of (3) is performed. Small angle approximation
(i.e., sin(V,—9p) = (¥, —13%)) is assumed here. Furthermore,
it is assumed that the magnitude of per-unit voltages is
sufficiently close to 1. After applying these approximations,
(3) is linearized and the following two equations are obtained
for active and reactive powers respectively:

Pab(i) = Ga,b(va(i) - %(Z)) + Bab(ﬁar(i) - 19(,(2)) (9)
Qab(i) = Bab(v;z(L) - V},(’L)) + Gab(ﬂb(i) - 19(1(1)) (10)

where G, and By, are the conductance, and the susceptance
of the electrical line between bus a and bus b respectively.
Term 9,(¢) is the instantaneous phase angle at bus a. A
lower bound can be obtained using the centralized MILP



formulation when PV energy production is assumed to be
accurately known for the day. This lower bound is used
to evaluate the performance of the proposed decentralized
CMAB system (which considers the uncertainty in daily PV
production). Also, this MILP formulation belongs to the NP
(non-deterministic polynomial time) complexity class, and
hence may not be scalable [16].

III. COMBINATORIAL MULTI-ARMED BANDITS
FORMULATION

In CMAB, a combination of base arms (defined as the
super arm) with unknown distributions is selected. Based on
this selection, a reward is observed. The estimated return of
each base arm is updated based on the observed reward. Each
agent tries to find the best super arm, i.e. the combination
that minimizes the cost of the agent, while satisfying the
constraints [14]. For smart charging, each day d is divided
into m € [m] equally spaced instants. Each instant i € [m]
acts as a base arm in this CMAB formulation, and is linked
to the instantaneous electricity cost ¢(i).

Congestion (Reward) Model: The transformer agent is
modeled to handle global electrical current congestions, while
each bus agent is responsible for managing local voltage con-
gestions (voltage limit violations) in the distribution network.
As the cause(s) of both types of congestions can be coupled,
a collaborative framework among the mentioned agents is
proposed, shown in Fig. 1, to tackle all congestions.

First, the transformer agent calculates the instantaneous
reward Rew; (i) for the set of EVs [E], present in the network
at instant 7. If there is no current congestion in the system
(instantaneous current I(z) through the transformer is lower
than the rated current I.q:eq), each charging EV gets a
positive reward based on the instantaneous electricity price
(i.e., 1 —¢(7)). In case of congestion (Cong(i) = 1), [X] (a set
of EV agents uniformly sampled from [E] to avoid congestion)
will receive a positive reward, and the remaining elements
in [E] will obtain a negative reward. The transformer agent
forwards this information to each local bus agent. This current
congestion management model is described in Algorithm 1.

(a) Distribution Network

w

(b) Agentified Model
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Fig. 1. (a) Sub-section of a distribution network (b) “Agentified model” of
the distribution network in (a).

Algorithm 1 Current Congestion Model (Transformer Agent)

Require: [,,:cq := rated line current
1: Observe electrical current I(7) from the sensor

2. Observe [E]

3: 4 := ¢—th instant of the day

4 if I(i) < Irqteq then

5 Rew; (i) := (1 —¢(i)) YV e € [E]
6: Cong(i) :==0

7: else

8: [X] U(O, E)

9: Rew; (i) :== (1 — (i) ¥ [X] N [E]
10: Rew; (i) :== (—1) ¥V [E] — [X]

11 Cong(i) :==1

12: end if

13: Forward (Rew; (i), Cong(i)) to each bus agent

The bus reward signal depends on the type of local voltage
congestion (over-voltage or under-voltage). This bus reward,
Rewy,(4) is calculated by the bus agent. Priority is given to the
global electrical current congestion by transferring the reward
generated by the current congestion management algorithm
directly to the connected EV in case of current congestion in
the system. Otherwise, if there is only local voltage congestion,
then the generated bus reward is forwarded to the connected
EV agent. The functioning of this voltage congestion model
for each bus agent is presented in Algorithm 2.

Action Space: The action space of each EV agent consists
of two actions A = {0, 1} for each base arm, i.e., an EV agent
makes a binary decision of picking (or not picking) each base
arm in [m], which corresponds to the EV agent deciding at
what instants it will charge from the grid (at rated power) and
at what instants it will not charge. It is assumed that super
arms follow a linear structure. Then, the expected reward for
super arm .S can be written as:

E[r(S)] = S*T6 (a1

where S* = argmaxS70, and § € R™ is an unknown
parameter. The optimal super arm S* is obtained when 6 is
completely known. This unknown vector is learned by each
agent using linear Thompson Sampling [17]. It is a Bayesian
learning approach, in which the estimation of each element in
6 is updated based on the observed reward.

Algorithm 2 Voltage Congestion Model (Bus Aget)
1: 2 := i-th instant of the day

Rew; (i) := Bus agent’s i-th instant reward
Observe (Rew; (i), Cong(i)) from Algorithm 1
Rewy (i) = 1 if over-voltage
Rewy (i) = -1 if under-voltage
if (Rewy (i) = 0 or Cong(i) = 1) then

Forward Rew; (i) to the connected EV agent
else

Forward Rewy(i) to the connected EV agent
: end if

—_
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The estimated best d-th day super arm S, (consisting of
best instants to charge from the grid), based on the d-th day
estimation of the unknown vector 6, is defined as:

Sy=arg max S04 (12)

Se{o0,1}m™

The pseudo-regret after D days of learning is defined as:

D D
ER(D) =50~ 510, (13)
d=1 d=1
Uncertainties: In the tackled problem, there are two sources
of uncertainties. First, in the choice of super arms of other
agents, which is addressed using selfish Thompson Sampling
[12]. Second, in the free energy available through PV produc-
tion plants connected to the grid side [18]. Here, it is assumed
that this PV energy can be utilized by the EVs in the network
without any cost. Thus, the EVs should be motivated to learn
about the uncertainties in this PV generation (to utilize this
free energy while also avoiding congestion in the system).
Let qu € R™ denote the instantaneous estimation of freely
available PV energy at day d. This unknown vector is also
learned by each agent through Thompson Sampling. Each EV
updates its estimation of daily PV production based on the
production data obtained from the PV sensors. At each instant
i, the EV agent updates the required number of charging
instants Ky to achieve the desired SoC SoC'y as follows:

thcpart Q?)
1=tstart 7

Pmaa:nchrg

By 2 60Ebat(SOCf = SOCS) .
&= AiPmaa:nchrg

—k, (14

where [.] is the ceiling function. Term SoC; is EV’s SoC
at the time of its connection, and K, is the number of
instants EV has already charged from the grid during the
day. Here, at each instant ¢, the EV agent is subtracting the
number of already charged instants from the total required grid
charging instants (which is the subtraction of the total charging
instants required and the estimated free PV charging instants).
This proposed linear combinatorial multi-armed bandits with
Thompson Sampling (D-LC2AB-TS) algorithm is presented in
Algorithm 3, where 1{.} is the indicator function, and ||.||;
gives the total number of selected base arms.

Remark 1. The proposed D-LC2AB-TS algorithm (Algo-
rithm 3) is fair and computationally scalable.

As uniform sampling is done in case of congestion, fairness
among all EV agents is maintained. Also, the linear structure
of the super arm allows evaluation of the best super arm in
O(m), which makes the algorithm computationally scalable.

IV. EVALUATION
A. Simulation Settings

To demonstrate the scalability of the proposed system, two
case studies are presented, i.e., a small-scale case study and
a large-scale case study. The topologies of both networks
are shown in Fig. 2. Each sub-district (SD), in the studied
distribution networks, is modeled as the IEEE low voltage test
feeder (LVTF) [19]. The small-scale network consists of 55

Algorithm 3 D-LC2AB-TS (EV Agent)
Require: a« € Ry,5 € Ry

12 AY =Iym, 0,0 = O, b,z = Oy

2: ford=1,2,3,... do

3: R =0y, P=0p, M = Op, kp =0

4 O~ N(@B,0?A7Y), ¢~ N (6, B2Y )

52 for i = 1, 2, 3, ey m A tstart < ) < tdepart do

6: Calculate ks using (14)

7: Play S using (12) s.t. >~ S;q=|[Sall1 = ky
I>i,d

8: R; is received from Alg?)rithm 2

9: P; is the PV sensor data of the i-th instant

10: M; = I[{’L S Sd}, kp = ||M1||1

11: end for

12: A::AJr]WJV[T;b::bJrR;Aé::A*lb
13: Y=Y+ ;2=24+P;:¢p=Y"12
14: end for

EVs, whereas there are 10,175 EVs in the large-scale network.
The arrival and departure times of the EVs are set based on
a real-life dataset [20]. Terms Pp,az, Nehrgs Ndischrg> Ebats
and SoCy are set to 7 kW, 0.95, 0.96, 52 kWh, and 0.8. The
irradiance data from the national renewable energy laboratory
database are used to calculate the instantaneous PV production
Ppy (i) as [21]:

Ppy (i) = Anpy Irr(i)

where Irr(i) is the instantaneous irradiance value, A is the
area of the PV panels, and npy is the efficiency of the PV
panels. In the presented studies, the duration of each instant is
1 minute i.e., m = 1 in the proposed CMAB formulation. A
higher value of m would decrease the system’s optimality. In
our studied problem, m < 5 is generally a good selection, as
the optimality gap starts saturating after that. For comparison,
the following charging strategies are studied:

15)

« Basic Charging Strategy: In this non-optimal charging
strategy, the EV starts charging at its rated power as soon
as it is plugged-in for charging.

o Centralized Charging Strategy: This strategy is pre-
sented in section II. In the presented case studies, a
perfect daily PV production profile is assumed to be

(a) Small-Scale Network (b) Large-Scale Network
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Fig. 2. Topology of the studied (a) Small-scale distribution network (b) Large-
scale distribution network.



known, and hence the obtained solution can be considered
as the lower bound while evaluating the performance of
the proposed decentralized algorithm. It should be noted
that due to the uncertainties and variability in the daily PV
irradiance, building a perfect forecaster is an extremely
challenging task [18]. Hence, the centralized optimal
solution would not be realistic for real-life scenarios or
for methodologies that consider PV uncertainties (such
as the proposed D-LC2AB-TS algorithm).

« CMAB (no PV estimation) Charging Strategy: It
is a variation of the proposed D-LC2AB-TS algorithm
with no PV production estimation i.e., ¢ = 0. This
would highlight the improvement in the performance of
the proposed D-LC2AB-TS algorithm, in which the PV
production is also learned.

o D-LC2AB-TS Charging Strategy: This is the proposed
CMAB algorithm, presented in section III.

To compare the fairness among all participating EVs, a set
consisting of per-unit charging costs of each EV [D], is calcu-
lated as: M The fairness index value of this set

domL Pi(i)Ad
is calculated using the following formula: F(D) = H(ﬁ)
Here,_the standard deviation of the set D is denoted byDU D,
and D represents the mean value of the set D. This fairness
index ranges from 0 (completely unfair i.e., op = c0) to 1

(completely fair i.e., op = 0).

B. Results

1) Small-Scale Study: The average learning rewards (mean
of the average rewards of all EV agents in the network) for the
D-LC2AB-TS, and the CMAB (no PV estimation) strategies
are shown in Fig. 3.

Convergence can be observed within 30 simulation days.
The next 30 days are considered as the evaluation period. The
daily transformer current and the voltage on the last bus of the
network, on the last day of the training, are shown in Fig. 4. In
the case of basic charging, both voltage and current constraints
are violated due to the peak load demand in the evening. In the
case of CMAB (no PV learning), no constraints are violated
but the EVs are charging during the early hours of the day (low
price instants) and not benefiting from the freely available PV
production during the day. The profiles of both the D-LC2AB-
TS and the optimal centralized optimization are very similar,

1.0 (a) D-LC2AB-TS 1.0 (b) CMAB (no PV estimation)
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Fig. 3. Average learning reward of the total network for (a) D-LC2AB-TS
strategy (b) CMAB (no PV estimation) strategy.
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Fig. 4. Profiles for one day (a) Grid transformer current (b) Last bus’ voltage.

as shown in Fig. 4. This confirms that the proposed algorithm
efficiently utilizes the freely available PV energy production.

The performance of each strategy during the evaluation
period is summarized in Table 1. Constraints violations are
observed in the basic charging strategy, and not in the opti-
mization strategies. All EVs attain the desired final SoC in the
studied charging strategies. The optimality gap (% increment
compared to the optimal centralized optimization lower bound)
is highest for the basic charging strategy. The CMAB (no
PV) strategy also remains far from optimal, as it does not
utilize the freely available PV production. The proposed D-
C2AB-TS strategy learns the available PV production trend
and significantly reduces the optimality gap. The fairness index
is close to 1 for all the studied optimization strategies.

2) Large-Scale Study: Centralized optimization cannot be
performed for the large-scale network due to a large number
of agents in the system. However, the D-LC2AB-TS and
the CMAB (no PV estimation) strategies work. The average
learning rewards of both strategies are shown in Fig. 5.

Similar to the small-scale study, 30 simulation days after the
training phase are used for evaluation. Voltage and transformer
electrical current violations can be observed in the basic
charging strategy in Fig. 6. Whereas, these violations are not
present in the proposed D-LC2AB-TS and the CMAB (no PV
estimation) strategies.

The D-LC2AB-TS outperforms other strategies in terms

TABLE I
SMALL-SCALE CASE STUDY PERFORMANCE EVALUATION

Optimality Current Voltage
Charging Ga Constraint | Constraint | Fairness
Strategy (% l)) Violation Violation Index
(%) (%)

Basic 187.035 5.417 1.528 -
Centralized 0 0 0 0.999
CMAB (no PV) 133.887 0 0 0.992
D-LC2AB-TS 12.218 0 0 0.994




(a) D-LC2AB-TS

(b) CMAB (no PV estimation)

-
=]
g
(=]

0.8-
2 2
So6- 3
[ @
o o
gn 0.4- g»
< <
0.2
0.0~ 4 v 0.0 v 5 |
10 20 30 10 20 30

Day of the month Day of the month

Fig. 5. Average learning reward of the total network for (a) D-LC2AB-TS
strategy (b) CMAB (no PV estimation) strategy.

(a)

06 Basic charging —— CMAB (no PV estimation) ===- Limit

5 D-LC2ABTS

€

£

3

5

©

-

]

2.

w

00 5 10 15 20
(b) Hour of the day
—— Basic charging —— CMAB (no PV estimation) ~ ---- Upper limit
1.06- D-LC2AB-TS ---- Lower limit

i e R
£

© 1.02-

o
8
So gswwwg#mmmw

_____ I 4
0.94- ) ) ) S
0 5 10 15 20

Hour of the day

Fig. 6. Profiles for one day (a) Grid transformer current (b) Last bus’ voltage.

of cost reduction (reduction compared to the basic charging
strategy), as presented in Table II. Fairness index values are
also close to 1 for both decentralized optimization strategies.
It should be noted that the proposed system is adaptable to
the topology of the distribution network. Also, the proposed
methodology can be used to manage the current congestion at
multiple locations by installing sensors at critical locations.

V. CONCLUSION

A multi-agent multi-armed bandits system is proposed in
this work for smart charging. The mathematical formulation,
and the proposed combinatorial multi-armed bandits frame-
work for smart charging are discussed. The experimental
evaluations show that the presented D-LC2AB-TS algorithm
efficiently manages the uncertainties in the studied problem

TABLE 11
LARGE-SCALE CASE STUDY PERFORMANCE EVALUATION
Cost Current Voltage
Charging R . Constraint | Constraint | Fairness
Strate educ?lon Violation Violation Index
(%) (%)

Basic 0 6.458 11.944 -
CMAB (no PV) 20.711 0 0 0.992
D-LC2AB-TS 77.901 0 0 0.993

2Considering basic charging strategy as the reference.

and performs significantly better compared to the basic charg-
ing strategy. The proposed system satisfies all the required
constraints while also managing to obtain near-optimal so-
lutions (obtained through centralized optimization). In future
works, optimality gap reduction by including PV forecasts as
contextual data in the bandits formulation, and comparison
with other decentralized control algorithms can be studied.
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