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bUniversité du Luxembourg, FSTM, Luxembourg
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Abstract

With the recent arrival of the exascale era, modern supercomputers are increasingly big making their programming much more
complex. In addition to performance, software productivity is a major concern to choose a programming language, such as Chapel,
designed for exascale computing. In this paper, we investigate the design of a parallel distributed tree-search algorithm, namely
P3D-DFS, and its implementation using Chapel. The design is based on the Chapel’s DistBag data structure, revisited by: (1)
redefining the data structure for Depth-First tree-Search (DFS), henceforth renamed DistBag-DFS; (2) redesigning the underlying
load balancing mechanism. In addition, we propose two instantiations of P3D-DFS considering the Branch-and-Bound (B&B) and
Unbalanced Tree Search (UTS) algorithms. In order to evaluate how much performance is traded for productivity, we compare the
Chapel-based implementations of B&B and UTS to their best-known counterparts based on traditional OpenMP (intra-node) and
MPI+X (inter-node). For experimental validation using 4096 processing cores, we consider the permutation flow-shop schedul-
ing problem for B&B and synthetic literature benchmarks for UTS. The reported results show that P3D-DFS competes with its
OpenMP baselines for coarser-grained shared-memory scenarios, and with its MPI+X counterparts for distributed-memory set-
tings, considering both performance and productivity-awareness. In the context of this work, this makes Chapel an alternative to
OpenMP/MPI+X for exascale programming.
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1. Introduction

On June 2022, one can consider that we officially entered
the exascale era as the 59th edition of the Top500 international
ranking1 revealed the Frontier system to be the first true ex-
ascale supercomputer at Oak Ridge National Laboratory. Ac-
cording to Top500, modern supercomputers are composed of
thousands of processing nodes, allowing high-level inter-node
parallelism, each of them including hundreds of cores coupled
with accelerators, supplying many-core low-level intra-node
parallelism. Such a complex hierarchical organization supply-
ing multi-level parallelism in heterogeneous resources (multi-
core processors, accelerators, etc.) makes exascale program-
ming much more challenging. The problem is that there is no
standard language for exascale programming. Even if the exas-
cale era is already there as announced several years ago, there
is still a debate between two schools of thought: evolutionary
and revolutionary. The first one defends the adaptation to exas-
cale of traditional bare-metal programming environments (e.g.
OpenMP, MPI+X) while the second one is disruptive suggest-
ing to design new ones (e.g. Chapel).

In this paper, we contribute to this debate focusing on the
intra- and inter-node parallel levels. We investigate repre-
sentative programming languages/libraries of each approach:

1Top500 (Edition of June 2022): https://www.top500.org/lists/

2022/06/

OpenMP (intra-node level) and MPI+X (inter-node or both
level(s)) for the evolutionary approach, and Chapel for the other
one. OpenMP and MPI are standards well known to be ef-
ficient for parallel shared- and distributed-memory program-
ming, respectively. Chapel is a productivity-aware language,
based on Partitioned Global Address Space (PGAS), that uni-
fies both intra- and inter-node parallel levels. The choice of
Chapel is motivated by the fact that it is an open-source lan-
guage representative of the PGAS paradigm, having an ac-
tive community2 and maintained by a well-established High-
Performance Computing (HPC) builder (HPE/Cray). As a basis
of our study, we consider parallel distributed tree-search with
a focus on backtracking/Branch-and-Bound (B&B) algorithms.
The efficient parallel design and implementation of these latter
is challenging, mainly because the pattern of computation and
communication captured by these methods (named a ”compu-
tational dwarfs” [1]) is highly irregular. For comparison pur-
pose, as test-cases we consider two different unbalanced tree-
search applications: B&B applied to the Permutation Flow-
shop Scheduling Problem (PFSP) [], and the Unbalanced Tree-
Search benchmark (UTS) []. The research question we address
in this paper is the following: is Chapel (representing the revo-
lutionary approach) representing an alternative to OpenMP and
MPI+X (representing the evolutionary approach) at the intra-

2e.g. Chapel Implementers and Users Workshop (CHIUW), https://
chapel-lang.org/CHIUW.html

Preprint submitted to Concurrency and Computation: Practice and Experience

https://www.top500.org/lists/2022/06/
https://www.top500.org/lists/2022/06/
https://chapel-lang.org/CHIUW.html
https://chapel-lang.org/CHIUW.html


and inter-node levels, in the context of parallel distributed tree-
search targeting exascale systems?

The major contributions of this paper are the following:

• We revisit the design and implementation of the DistBag
distributed data structure supplied in the Chapel’s
DistributedBag module [2]. This data structure is at-
tractive as it is a parallel-safe distributed multi-set imple-
mentation that employs an underlying dynamic load bal-
ancing mechanism among multiple nodes. However, we
demonstrate its limitations in a Depth-First tree-Search
(DFS) context. Therefore, we redesigned it (henceforth
renamed DistBag-DFS) as follows: (1) we propose a new
scheduling policy of its elements as well as a new syn-
chronization mechanism using non-blocking split deques,
and (2) we redefine the underlying dynamic load balancing
mechanism.

• We propose a generic Chapel-based parallel distributed
tree-search implementation, namely P3D-DFS, based on
our DistBag-DFS distributed data structure and the un-
derlying load balancing mechanism. P3D-DFS is then in-
stantiated on B&B and UTS.

• The above Chapel-based implementations are experi-
mented using up to 32 computer nodes (4096 cores). They
are compared to their state-of-the-art counterparts using
OpenMP and MPI+X. The reported results allow us to an-
swer the research question stated above.

The rest of the paper is organized as the following. In Sec-
tion 2, we first give a background on parallel distributed tree-
search algorithms, followed by some related works. Then,
the Chapel and baseline implementations are described in Sec-
tion 3, and experimented, compared and discussed in Section 4.
Finally, conclusions are drawn in Section 5 followed by some
future directions.

2. Background and related Works

2.1. Parallel distributed tree-search
2.1.1. Sequential DFS

Both UTS and B&B explore implicitly constructed trees –
implicit construction meaning that each node contains all in-
formation necessary to construct its children nodes. In UTS,
a synthetic benchmark designed to evaluate the performance
and ease of programming for parallel applications requiring dy-
namic load balancing, each node has a 20-byte descriptor which
allows to generate a variable, but deterministic number of chil-
dren. In B&B, an exact optimization algorithm, each tree node
corresponds to a subproblem (the initial problem defined on a
restricted domain) and children nodes are obtained by further
restricting the search space. As B&B computes lower bounds
on the optimal cost of each subproblem and prunes (eliminates)
subproblems that cannot lead to an improvement of the best
solution found so far, the number of children resulting from
a node decomposition is variable. In both cases, the explored
search trees are highly irregular and unpredictable.

The goal of the UTS benchmark is to count the total number
of nodes in a tree, while B&B finds an optimal solution to an op-
timization problem and proves its optimality by complete enu-
meration. While the search order in UTS is irrelevant, it may
have a strong impact on B&B’s capability of finding optimal
solutions. However, once B&B has found an optimal solution,
the search order becomes irrelevant as well.

In this work, we consider DFS, meaning that all children of
an internal node are explored before expanding the next sib-
ling node. DFS is easily implemented by storing generated,
but not yet visited nodes in a stack (last-in first-out, LIFO).
DFS is frequently used in combinatorial B&B algorithms be-
cause memory requirements of other search strategies, such as
breadth-first or best-first search, often become excessive. For
the PFSP, B&B search trees containing up to 339 × 1012 nodes
have been reported [3], meaning that breadth-first exploration
would require peta-bytes of memory to store the tree.

Despite the differences between UTS and B&B, in the fol-
lowing we refer to the tree-search algorithm considered in this
paper simply as B&B and use the B&B terminology (e.g. sub-
problems) – unless the distiction is meaningful.

2.1.2. Parallel tree-search
The parallelization of B&B is well-studied and different clas-

sifications have been proposed [4; 5]. The most general and
most frequently used approach is the parallel tree exploration
model (also called ”type 2” or ”high-level” parallelization).
It consists in exploring several disjoint subspaces in parallel,
meaning that multiple DFS, rooted in different tree nodes, are
performed in parallel (the global search order is no longer
depth-first, in general). This can be done either synchronously
or asynchronously.

In asynchronous mode, adopted in this paper, the search pro-
cesses communicate in an unpredictable manner and the sharing
of knowledge among workers becomes non-trivial. Therefore,
defining a data structure to store the work pool and an associ-
ated management policy is highly important for performance.

2.1.3. Work pool management
We call work pool the data structure that is used to store gen-

erated but not yet evaluated subproblems/nodes. A node is usu-
ally implemented as a structure containing all information nec-
essary for its evaluation. The role of the work pool management
policy is mainly to allow the insertion/retrieval of subproblems.
Moreover, the work pool may maintain subproblems in a certain
order, facilitating the implementation of a search strategy. For
instance, DFS corresponds to processing nodes in LIFO order
and is therefore naturally implemented by a stack.

In parallel B&B, there are different strategies for implement-
ing the work pool. One approach is to use a single centralized
work pool, concurrently accessed by all workers to pick sub-
problems for branching/evaluation. In single-pool approaches
synchronization between workers to gain exclusive access to
the pool for the insertion/retrieval of nodes is inevitable. These
concurrent accesses may create a bottleneck and memory con-
tention, limiting the scalability of the approach.
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Multi-pool approaches aim at solving this issue by using sev-
eral pools. There are variants of multi-pool B&B algorithms.
The most popular are collegial, grouped and mixed [4]. In the
collegial variant, used in this work, each worker manages its
own pool. The grouped approach uses multiple shared pools
for groups of workers and the mixed variant combines both ap-
proaches using a hierarchy of pools. Multi-pool strategies al-
leviate the bottleneck problem that occurs in single-pool ap-
proaches, but raise the issue of balancing the workload be-
tween multiple pools. Also, termination detection may be-
come challenging. Generally speaking, multi-pool approaches
require more sophisticated communication models than single-
pool ones.

While the latter implicitly balance the workload among
workers, multi-pool approaches require explicit dynamic load
balancing. A popular and provably efficient approach to dy-
namic load balancing is the Work Stealing (WS) paradigm [6].
Under WS, each process usually maintains a double-ended
queue (deque) of subproblems/nodes. Each worker processes
nodes from the tail of the deque and steals work units from
the head of another worker’s deque when its own work pool is
empty.

2.2. The Chapel programming language

Chapel is a programming language arising from the DARPA
High Productivity Computing System program [7]. It is de-
signed to improve productivity in HPC, and this is achieved
mainly by unifying both intra- and inter-node parallel levels
supplying a global view of control flow as well as a global view
of data structures [8].

Concerning the first aspect, the program is started with a sin-
gle task, and parallelism is added though intra- or inter-node
programming features. Regarding the global view of data struc-
tures, indexes are globally expressed, even in case the imple-
mentation of such data structures distributes them across sev-
eral Chapel processes, denominated locales. Thus, Chapel is a
language that applies the PGAS programming model [9]. More-
over, thanks to PGAS, a task can refer to any variable lexically
visible, whether this variable is placed on the same locale on
which the task is running, or on remote memory.

2.3. Related Works

There exist few studies analyzing Chapel’s performance
along with other modern or conventional programming lan-
guages. In [10], the authors studied several optimizations such
as reducing redundant memory allocation and manipulation.
On the one hand, the reported results show that these opti-
mizations increase Chapel’s intra-node performance up to 7.9×
on well-known application benchmarks such as LULESH and
SSCA2. On the other hand, it is shown that with these opti-
mizations Chapel can perform better than OpenMP. Similarly,
a performance analysis of Chapel is proposed in [11] in com-
parison to OpenMP using multi- and many-core architectures.
Several optimizations are proposed in different layers of the
Chapel software stack, and their impact on performance is dis-
cussed. It is observed that base performance of Chapel ranges

from 41% to 184% that of OpenMP. The optimizations show
performance improvements ranging from 1.4× to 2× in Chapel.
There exist also other related works in which the inter-node
level is considered as well. For instance, in [12], Chapel-
and MPI+OpenMP-based implementations are compared using
Breadth-First Search (BFS) and PageRank applications. Chapel
is proven 3.7× faster on average for BFS, but 1.3× slower for
PageRank. In addition, we investigated in [13] the parallel
generation of Mandelbrot’s fractals on shared- and distributed-
memory platforms. We demonstrate the competitiveness of the
Chapel implementation against its OpenMP and MPI+X coun-
terparts.

In this paper, we propose a similar investigation, but in the
context of parallel distributed tree-based exact optimization.
To the best of our knowledge, the few existing studies pro-
posed in this context are from some of the co-authors of this
paper. In [14], we proposed an incremental parallel PGAS-
based backtracking algorithm. The methodology starts with a
serial Chapel-based implementation, continues with an intra-
node one and ends with an inter-node one. The implemen-
tations have been applied to the N-Queens problem, experi-
mented and compared to their respective counterparts. The re-
ported results show that the serial Chapel implementation is on
average 7% slower than its C counterpart. At the intra-node
level, the results show that if Chapel is well parameterized (e.g.
using qthreads as a low-level threading library) it could be up
to 13% faster than OpenMP for large problem instances. At the
inter-node level, the distributed search in Chapel achieves up to
80% of the scalability compared to its MPI+OpenMP counter-
part. Unlike the present paper, in [14] the focus is put on the
iterator feature that supplies productivity in Chapel, consider-
ing the backtracking as a tree-search algorithm. In this paper,
instead of iterators we investigate the task parallelism using a
generic DFS algorithm, instantiated to the B&B method and
the UTS benchmark. Finally, we proposed in [15] a Chapel de-
sign and implementation of distributed B&B for solving large
PFSP instances. The results show that Chapel is much more ex-
pressive and up to 7.8×more productive than MPI+pthreads. In
addition, the Chapel-based search presents performance equiv-
alent to MPI+pthreads for its best results on 1024 cores and
reaches up to 84% of the linear speed-up.

On the other hand, some studies investigated productivity-
aware design and implementation of tree-search considering
other programming languages and the UTS benchmark. A Uni-
fied Parallel C (UPC) [16] implementation is presented and
evaluated in [17]. The latter achieves better scaling and parallel
efficiency in both shared- and distributed-memory settings than
using MPI. In [18], the authors investigate the use of the Global
Address Space Programming Interface (GPI) PGAS API [19]
for UTS on a many-core system. According to the reported
experimental results, GPI outperforms the MPI version by a
maximum factor of 2.5 in terms of raw performance (number
of nodes processed per second). In terms of speed-up and effi-
ciency, the authors observed promising results.

As mentioned in the introduction, we just entered the exas-
cale era making urgent the need to answer the software pro-
gramming issue of modern supercomputers. Getting a feed-
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back on the suitability and limits of conventional and new lan-
guages targeting exascale supercomputers becomes critical. In
the same spirit as [10; 11; 12; 13; 14; 15], this paper aims at
providing a useful data point to help practitioners gauge the dif-
ficult question of whether or not to invest time and effort into
learning and using the Chapel programming language.

3. Implementations

In Section 3.1, we first present the DistBag-DFS distributed
data structure used in our Chapel implementation. The lat-
ter is our revised version of the Chapel’s DistBag data struc-
ture supplied in the DistributedBag module. Then, in Sec-
tion 3.2, our Chapel-based parallel distributed DFS algorithm
is presented. Finally, the baseline implementations considered
for comparison purpose are described in Section 3.3.

3.1. Distributed data structure
3.1.1. The DistBag data structure

The DistributedBagmodule [2] developed by the Chapel’s
community provides a parallel-safe distributed multi-set imple-
mentation, called DistBag. This data structure is unordered
and incorporates a WS mechanism that balances workload
across multiple locales, transparently to the user. While the
bag is safe to use in a distributed manner, each node always op-
erates on its privatized instance. DistBag can contain either
predefined-Chapel types, user-defined types or external ones
(e.g. C structures).

Internally, the DistBag container is composed of multiple
pools (called segments) implemented as unrolled linked-lists. In
the following, we refer to pool and segment without distinction.
By default, there are as many segments per locale as threads.
To ensure correctness, operations on pools (insertion, retrieval,
etc.) are lock-protected. Preliminary experiments and source-
code inspection revealed that pools do not necessarily operate
in LIFO-order and, in addition, are not explicitly mapped onto
threads. In fact, multiple pools are maintained to reduce lock
contention, but threads remove and insert elements from any
(not necessarily the same) unlocked pool. Although this may
be acceptable for some applications, this behaviour is not suit-
able for parallel DFS. In DFS, when a node is evaluated, the
entire subtree below it must be explored before another sibling
node is processed. However, when children nodes are inserted
into a different pool than the one from which the parent was
taken, that necessary condition cannot be ensured. As a direct
consequence, memory requirements may rapidly grow out of
control (see Section 4.4.1). This observation is consistent with
the Chapel documentation [2] which states that important mem-
ory consumption may appear in single-locale experiments.

The parallel distributed aspect of the DistBag data structure,
as well as the underlying WS mechanism make it particularly
attractive in the context of parallel distributed productivity-
aware tree-search. However, as explained above, its segments’
scheduling policy does not allow us to use it for parallel DFS,
nor to have any control over the order of insertion/retrieval of
nodes. This motivates our redefinition of the data structure and
underlying management mechanisms.

Figure 1: Simplified view of a non-blocking split deque.

3.1.2. DistBag-DFS: our redesigned version of DistBag
The DistBag data structure has been redefined in two dif-

ferent ways: (1) we propose a new scheduling policy of its
elements as well as a new synchronization mechanism using
non-blocking split deques, and (2) we redefine the underly-
ing WS mechanism. The revised data structure is referred
to as DistBag-DFS [20]. Experimental comparisons between
DistBag and DistBag-DFS are done in Section 4.4.1.

Non-blocking split deques. We extend the segments’ schedul-
ing policy to support insertion and retrieval from both ends,
effectively supporting both first-in first-out (FIFO) and LIFO
orders, like a deque. This allows threads to perform the local
exploration of nodes in a DFS, whereas the oldest (i.e. shallow-
est) nodes are stolen in WS operation.

WS operations require synchronization between thieves and
victim threads. In the DistBag data structure, segments are
lock-protected using one atomic synchronization variable per
segment, i.e. when a thread operates on a segment, the latter
is locked until the end of the operation. In DistBag-DFS, we
redesign and re-implement this synchronization scheme using
non-blocking split deques [21; 22]. This method consists in
splitting deques (segments) into a public and a private portion
using an atomic split pointer, as shown in Figure 1. Under this
scheme, all processes push new tasks on the tail of the deque
and pop tasks from the tail to get the next task to execute in
LIFO order, while WS is done at the head in a FIFO manner.
This synchronization scheme allows lock-free local access to
the private portion of the deque and copy-free transfer of work
between the public and private portions. Work transfer is done
by moving the split pointer in either directions using appro-
priate release or acquire operations. Thieves synchronize
using a lock and the local process only needs to take the lock
when transferring work from a portion to the other of the deque.
Some authors demonstrate the efficiency of such synchroniza-
tion scheme at scale using several benchmarks, including the
UTS one [22].

Work stealing mechanism. When a thread’s segment becomes
empty during execution, the retrieval operation of the bag
(called remove) transparently becomes a WS operation, i.e.
an attempt is made to steal work items from another seg-
ment. The latter is thus embedded in the retrieval operation
of the DistBag-DFS data structure, which is illustrated in Fig-
ure 2. For readability, only one bag instance is shown (one
per Chapel’s locale in practice). In this figure, we assume that
DistBag-DFS is used by T threads (per locale) and therefore
bag instances are initialized with T segments. Each thread has
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Figure 2: Illustration of the DistBag-DFS data structure.

a unique identifier 0, . . . ,T − 1, mapping threads to segments.
The identifier is used in the bag’s insertion (resp. retrieval) pro-
cedure, to specify the segment into (resp. from) which an el-
ement node gets inserted (resp. retrieved). When a segment
si is empty, thread ti first tries to steal workload from another
thread’s segment of its locale. If a victim thread fulfills the
stealing request (tT−2 in the figure), ti gets its lock and steals
work items. In that case, remove returns one of the stolen items
and also the SUCCESS status of the operation. However, if all
local attempts fail, the thief tries a global steal. It means that
a victim bag instance is chosen, and its segments are visited.
Since global WS operations generate high parallel overheads,
the thief is expected to steal more work items than needed.
Then, these extra work items provide work for potential future
local WS. Thus, when a thread performs a global steal, other
global steal requests issued by threads in its locale are ignored
(FAST FAIL). Finally, the remove operation fails if both local
and global steals fail (FAIL). The random victim selection strat-
egy is used for both local and global WS, and half of the shared
region of the victim segment is stolen.

3.2. Parallel distributed DFS in Chapel

Algorithm 1 shows the pseudo-code of our Chapel-based
Productivity- and Performance-aware Parallel Distributed DFS
algorithm, namely P3D-DFS [20]. The algorithm starts by cre-
ating the root node, using the problem-specific data/parame-
ters (line 5). Here, problem represents an inherited class in-
stance containing all the data related to the problem. Then, the
DistBag-DFS distributed data structure (hereinafter referred to
as bag) is initialized (line 6). The initialization procedure con-
structs on each specified locale (stored in the built-in Locales

variable) a bag instance with as many segments as threads per
locale, as described in Section 3.1.2. Moreover, DistBag-DFS
is generic and requires the Node type of the elements. Further-
more, the root node is inserted inside the bag (line 7)—note
that we must specify the segment into which the root is inserted
(here segment 0 is chosen arbitrarily).

At this point, the parallel exploration of the tree starts with
the creation of concurrent homogeneous tasks (one per loop-
iteration, i.e. one per locale), using the coforall statement
(line 9). This statement can be seen as a concurrent for-loop,
creating distinct tasks, each of which executes a copy of the
loop body. In addition, each of these tasks is going to execute on

a remote locale using the on clause. Then, locale-specific vari-
ables are created, such as termination detection flags and state
vector (lines 10-12). A second coforall loop-based tasking
construct is then used to exploit the intra-node parallel level,
creating as many tasks as threads per locale (line 13). Then,
each created task indefinitely performs the following:

• Retrieve an node (line 17). Each task tries to take a parent
node (i.e. a subproblem) from the bag using the remove

procedure, that returns also the final state of the opera-
tion (SUCCESS, FAST FAIL or FAIL). As explained in Sec-
tion 3.1, this procedure contains an underlying WS mech-
anism.

• Check the termination (line 18). To favor readability, the
pseudo-code of the distributed termination detection is dis-
cussed separately.

• Decompose the node (line 20). Each parent node is de-
composed according to the problem-specific decomposi-
tion function. In B&B, this function consists in the branch-
ing, bounding and pruning operators, while in UTS it con-
sists in generating a random number of children to create.
We suppose that decompose is a thread-safe procedure
that creates a (possibly empty) set of children nodes from
an input parent node. Then, the resulting children nodes
are inserted in bulk into the bag—more precisely, into the
segment from which the parent was retrieved (line 21).

• Share the global knowledge (line 22). Some applica-
tions require continuous exchange of knowledge between
tasks/locales, e.g. the cost of the best solution found so
far in B&B. This is typically managed using global atomic
variables that are only read periodically to avoid high par-
allel overheads.

Algorithm 1: Pseudo-code of P3D-DFS in Chapel

1 var PrivSpace: domain (1) dmapped Private ();

2 var localeState: [PrivSpace] atomic bool = BUSY;

3 var Tasks: domain (1) = 0..# here.maxTaskPar;

4

5 var root = new Node(problem);

6 var bag = new DistBag_DFS(Node , Locales);

7 bag.add(root , 0);

8

9 coforall loc in Locales do on loc {

10 var allTasksIdle: atomic bool = false;

11 var allLocalesIdle: atomic bool = false;

12 var taskState: [Tasks] atomic bool = BUSY;

13 coforall taskId in Tasks {

14 allLocalesBarrier.barrier ();

15 while true {

16 var (hasWork , parent): (int , Node);

17 (hasWork , parent) = bag.remove(taskId);

18 /* Check termination condition */

19 var childList: list(Node);

20 childList = problem.decompose(parent);

21 bag.addBulk(childList , taskId);

22 /* Share the global knowledge */

23 }

24 }

25 }
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Algorithm 2 shows our implementation of the distributed ter-
mination detection. The latter is based on a bi-level detection
using state vectors. At the intra-node level, we maintain a vec-
tor of Boolean atomics taskState (one atomic per task), indi-
cating tasks’ status (IDLE or BUSY). The status of each task is
only accessible by tasks of the same locale, and local variables
are used in practice to avoid ”unnecessary” coherence opera-
tions when accessing taskState, also known as false shar-
ing [23]. Similarly, at the inter-node level, we maintain a vector
localeState, for which the set of indices is distributed across
locales, i.e. index i to locale i (lines 1-2 in Algorithm 1). The
status of each locale is accessible by any task of any locale. Ac-
cording to Chapel, the writing and reading of atomic variables
is done by calling the convenient write and read procedures,
respectively. It is worth to mention that local variables are used
in practice to avoid unnecessary global atomic accesses. Then,
according to the status of the remove procedure (here denoted
hasWork), three cases are encountered:

• If SUCCESS, the calling task still has work and sets its sta-
tus as well as its locale’s one to BUSY (lines 2-3).

• If FAST FAIL, the calling task is idle and failed to steal
work locally. However, there is an ongoing global steal
request and we assume that it is not necessary to check the
termination detection in that case. Thus, it simply puts its
status on IDLE (line 6) before continuing the search.

• If FAIL, the calling task is idle and failed to steal work
locally and globally. In that case, there is a high probabil-
ity so that each locale is almost empty. Therefore, it first
checks the intra-node detection (line 11), and if necessary,
the inter-node one (line 13). If the termination is detected,
the calling task breaks the exploration (line 14). Termina-
tion flags are used (lines 11,13) to allow fast checking for
the remaining tasks.

Algorithm 2: Pseudo-code of P3D-DFS’s termination detection in Chapel

1 if (hasWork == SUCCESS) {

2 taskState[taskId ]. write(BUSY);

3 localeState[localeId ].write(BUSY);

4 }

5 else if (hasWork == FAST_FAIL) {

6 taskState[taskId ]. write(IDLE);

7 continue;

8 }

9 else if (hasWork == FAIL) {

10 taskState[taskId ]. write(IDLE);

11 if all_idle(taskState , allTasksIdle) {

12 localeState[localeId ]. write(IDLE);

13 if all_idle(localeState , allLocalesIdle) {

14 break; /* End of the exploration */

15 }

16 } else {

17 localeState[localeId ]. write(BUSY);

18 }

19 continue;

20 }

3.3. Baseline implementations

In this section, the state-of-the-art baseline implementations
considered for comparison purpose are presented.

OMP-PBB. We implemented a C++/OpenMP version of an
asynchronous parallel multi-core B&B algorithm [24]. It aims
at mirroring the behavior of P3D-DFS at the intra-node level
as closely as possible. A shared multi-pool is implemented
as a vector of deques containing (pointers to) node elements
(whose type is specified as a template parameter). The OpenMP
atomic construct and OpenMP lock variables are used for syn-
chronization. The shared multi-pool operates in the same way
as DistBag-DFS. However, instead of using custom split deque
implementations, OMP-PBB relies on lock-protected contain-
ers from the C++ standard library. For further details, the
pseudo-code of the implementation is described in Appendix
A.

OMP-PUTS. This implementation of UTS based on
C+OpenMP is available in the public repository [25] of Dinan
et al. In this latter, each OpenMP thread maintains a stealStack,
which is a stack of nodes with sharing at the bottom of the
stack and exclusive access at the top for the ”owning” thread,
which has affinity to the stack’s address space. Elements move
between the shared and exclusive portion of the stack solely
under control of the owning thread (stealStack release

and stealStack acquire). Moreover, all operations on the
shared portion of the stack are guarded using a stack-specific
lock, based on the omp (un)set lock procedures. When
a thread has no more work, it tries to steal work from an-
other thread’s stack. The victim thread is selected in a ring
fashion, and the amount of work to steal is parameterized by
chunkSize. When a thread is unabled to steal work from
shared portion of other stacks, it enters quiescent state waiting
for termination, unless some thread has made work available.
The parallel search ends when all threads are in the waiting
state.

MPI-PBB. Single program - multiple data (SPMD) B&B writ-
ten in C++/MPI+pthreads [24]. MPI-PBB is a hierarchical
Master-Worker approach where workers (MPI processes) can
be multi-threaded or GPU-based. An interval-based encoding
of work units and the IVM data structure [26], specifically de-
signed for permutation-based problems (e.g. PFSP), are used
for the implementation of DFS. Each MPI worker consists of
multiple worker threads performing local WS operations for
load balancing on the intra-node level. A dedicated thread is
used for communication with the master process, allowing to
overlap work progress and communication efficiently. To over-
lap computation and communication, redundant exploration of
some parts of the search space is tolerated. Inter-node work
load balancing is performed by the intermediate of the central-
ized coordinator process. The presence of a master process cen-
tralizing the work-pool makes termination detection trivial and
simplifies checkpointing. However, at large scale, the master
process becomes a sequential bottleneck.
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Figure 3: Solution of a PFSP instance consisting of 3 jobs and 3 machines.

MPI-PUTS. We consider the C+MPI-based implementation
proposed by Dinan et al. in their UTS benchmark [25], that al-
lows us to characterize the performance of unbalanced compu-
tations on distributed-memory systems [27]. In this algorithm,
each MPI process maintains a private deque, and dynamic WS
is done using an explicit polling progress engine. A working
process must periodically invoke the progress engine in order
to observe and service any incoming steal requests. The fre-
quency with which a processor enters the progress engine is
adaptive and the amount of work to be stolen is parameter-
ized by chunkSize. Under this approach, processes with no
work constantly search for work to become available until ter-
mination is detected. More precisely, the global termination is
managed using a colored token which is circulated around the
processes in a ring in order to reach a consensus. In this imple-
mentation, MPI two-sided communications occur through the
WS mechanism.

4. Experimental results and discussion

We first present in Section 4.1 the application context. Then,
Sections 4.2 and 4.3 describe the experimental protocol and
the parameter settings, respectively. Furthermore, Section 4.4
presents the experimental results. In the latter, we first com-
pare both DistBag and DistBag-DFS data structures in terms
of memory requirements in the context of DFS. Then, we eval-
uate and compare in terms of performance the Chapel and base-
line implementations, on both shared- and distributed-memory
systems. Up to 32 computer nodes (4096 cores) are used. Fi-
nally, we discuss the productivity-awareness of P3D-DFS in
Section 4.5.

4.1. Application context

P3D-DFS is instantiated on the B&B method and the UTS
benchmark. These unbalanced tree-based applications provide
a means to study the expression and performance of algorithms
requiring continuous dynamic load balancing. The PFSP is
chosen as a test-case for the B&B.

4.1.1. The Permutation Flow-shop Scheduling Problem
The PFSP consists in finding an optimal processing or-

der (a permutation) for n jobs {J1, . . . , Jn} on m machines
{M1, . . . ,Mm}, such that the completion time of the last job on
the last machine (makespan) is minimized. Obeying a chain
production principle, the processing of a job J j on machine

Mk can only start if processing of J j is completed on all up-
stream machines M1, . . . ,Mk−1. Processing job J j on machine
Mk takes a given indivisible amount of time p jk and all jobs are
to be processed in the same order on all machines. Figure 3
shows an example of a solution of a PFSP instance consisting
of n = 3 jobs and m = 3 machines. For m = 2, the problem can
be solved inO(n log n) steps by sorting the jobs according to the
Johnson’s rule [28]; for m ≥ 3 it is shown to be NP-hard [29].

To evaluate a subproblem (bounding), different lower bound
functions (LBs) exist. In this paper, three different ones are
considered:

• LB1: the so-called one-machine bound [30] which can be
computed in O(mn) steps for one supproblem;

• LB1∆: a fast implementation of LB1, that takes advantage
of the fact that the LB1 value of a child node can be ob-
tained incrementally from the parent in O(m) steps, i.e. all
children are evaluated in O(mn) steps [31];

• LB2: the so-called two-machine bound which relies on the
exact resolution of two-machine problems obtained by re-
laxing capacity constraints on all machines, with the ex-
ception of a pair of machines (Mu,Mv)1≤u<v≤m. Taking
the maximum over all m(m−1)

2 machine-pairs, LB2 gives the
sharpest known LB (of polynomial complexity) [31]. LB2
can be computed in O(m2n) steps per subproblem.

Using LB1∆, the algorithm explores identical search trees as
with LB1, but the latter yields a more fine-grained workload
(lower computational cost for evaluating one subproblem). The
sharper LB2 bound results in a more coarse-grained, but also
more irregular workload, due to the improved efficiency of the
pruning operator.

In the PFSP, a tree node (subproblem) is typically a struc-
ture that contains all necessary information for its evaluation,
i.e. its depth, the number of scheduled jobs and its permuta-
tion. Moreover, the decompose function mentioned in P3D-
DFS (see Section 3.2) is composed of the sequential branching,
bounding and pruning operators.

4.1.2. The Unbalanced Tree Search benchmark
The UTS benchmark [32] consists in counting the number of

nodes in an implicitly constructed tree that is parameterized in
shape, depth, size and imbalance. Implicit construction means
that each node contains all information necessary to construct
its children. Thus, starting from the root, the tree can be tra-
versed in parallel in any order as long as each parent is visited
before its children.

UTS trees are generated using a process, in which the number
of children of a node is a random variable with a given distri-
bution. To create deterministic results, each node is described
by a 20-byte descriptor. The child node descriptor is obtained
by application of the SHA-1 cryptographic hash [33] on the
pair: parent descriptor / child index. The node descriptor is also
the random variable used to determine the number of children
of the node. Consequently the work in generating a tree with
N nodes is N SHA-1 evaluations. Carefully validated imple-
mentations of SHA-1 exist which ensure that identical trees are

7



generated from the same parameters on different architectures.
One of the parameters of a tree is the value r of the root node.
Multiple instances of a tree type can be generated by varying
this parameter, hence providing a check on the validity of an
implementation.

In this paper, we focus on binomial trees, i.e. each node has q
children with probability p and has no children with probability
1 − p, where p ∈ [0, 1]. When pq < 1, this process generates a
finite tree, and the variation of subtree sizes increases dramat-
ically as pq approaches 1 [32]. This is the source of the tree’s
imbalance. A binomial tree is an optimal adversary for load
balancing strategies, since there is no advantage to be gained
by choosing to move one node over another for load balance—
the expected work at all nodes is identical. The root-specific
branching factor b0 can be set sufficiently high to generate an
interesting variety of subtree sizes below the root. Finally, to
vary the granularity in our experiments, we introduced the g
parameter which controls the number of SHA-1 evaluation(s)
per decomposed node.

A significant advantage of the UTS benchmark compared to
B&B is that it allows us to vary the instance size and granular-
ity independently. Indeed, in general, the more coarse-grained
is the B&B lower bound and the smaller the critical tree; and
vice versa. From an implementation point of view, an UTS tree
node contains all necessary information for the generation of
its children, e.g. the distribution governing the number of chil-
dren (p and q). Moreover, the decompose function contains the
SHA-1 evaluation(s).

4.2. Experimental protocol

In this evaluation, P3D-DFS is instantiated on the B&B
method and the UTS benchmark. Moreover, for experimental
validation, we consider the PFSP for B&B and synthetic litera-
ture benchmarks for UTS. Then, our algorithm is experimented
at both intra- and inter-node parallel levels, and compared to
the best-known counterparts, based on traditional OpenMP and
MPI+X (see Section 3.3). It is worth to mentioned that each im-
plementation uses the DFS strategy as selection rule, and that
the decomposition functions are the same. Moreover, for a fair
comparison, all implementations enumerate equivalent search
spaces. Nevertheless, the implementations are still very differ-
ent from each other (data structure, WS mechanism, termina-
tion detection, etc.), and it is therefore not a purpose here to
evaluate the programming languages/libraries. We investigate
the intra- and inter-node performances of P3D-DFS, its scala-
bility according to the number of computer nodes, and the ben-
efits of our DistBag-DFS distributed data structure.

Three series of experiments are performed: (1) we evaluate
the memory requirements of both DistBag and DistBag-DFS

data structures in the context of DFS, (2) we evaluate and com-
pare the scalability of the P3D-DFS and OpenMP baseline im-
plementations on shared-memory setting, and (3) we evaluate
and compare the performance and scalability of the P3D-DFS
and MPI+X baselines implementations on distributed-memory
settings.

Table 1: Sample UTS trees with parameters and their resulting size in millions
of nodes.

Tree b0 p q r NNodes (106)
T1 2000 0.499995 2 38 5
T2 2000 0.499995 2 30 51
T3 2000 0.499995 2 55 514
T4 2000 0.499999995 2 0 10612
T5 2000 0.4999975 2 559 52990
T6 2000 0.499999 2 559 94795

Table 2: PFSP Taillard’s instances with parameters and tree size in millions of
nodes, according to the different LBs.

Instance m n
Optimal NNodes (106)
makespan LB1(∆) LB2

Ta10 5 20 1108 83 8
Ta20 10 20 1591 859 4
Ta30 20 20 2178 111 13
Ta27 20 20 2273 1854 54
Ta26 20 20 2226 11392 514
Ta24 20 20 2223 71876 2173

4.3. Parameter settings

Tables 1 and 2 summarize the UTS and PFSP instances con-
sidered as test-cases with their parameters and sizes in mil-
lion of nodes, respectively. These PFSP instances are from
the benchmark proposed by Taillard [34], which is the mostly
used in the literature. For larger instances (n > 20) the res-
olution time becomes excessive—unless advanced branching
techniques are used [35]—and those instances are therefore not
considered.

To compare the performance of B&B algorithms, they should
explore the same search space. When a problem instance
is solved repeatedly using parallel B&B, the number of ex-
plored subproblems is often different between independent res-
olutions, because tree nodes are expanded in a different order.
In order to study the performance of the parallel algorithm in
the absence of speed-up anomalies, we always initialize the al-
gorithm with the optimal solution of the instance to be solved.
With this initialization, the algorithm proves the optimality of
the initial upper bound and it is ensured that both the sequen-
tial and parallel algorithms explore exactly the critical tree (i.e.
all nodes for which the bounding operator gives a lower bound
smaller than the optimal makespan). Corresponding Taillard’s
optimal solutions are reported in [36].

The experiments are conducted on a cluster equipped with
2 AMD Epyc ROME 7H12 @ 2.6 GHz processors, includ-
ing a total of 128 cores and 256 GB RAM per computer
nodes. All nodes are interconnected through a Fast InfiniBand
HDR100 network, and operate under Red Hat Enterprise Linux
8.3, 64 bits. The Chapel implementation is based on version
1.29.0 and uses the default task layer (qthreads). Chapel’s
multi-locale code runs on top of GASNet, and several envi-
ronment variables are set with the characteristics of the sys-
tem the multi-locale code is running. One can see in Table 3
a summary of the runtime configuration for multi-locale execu-
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Table 3: Summary of the Chapel environment configuration for multi-locale
execution and compilation.

Variable Value
CHPL RT NUM THREADS PER LOCALE 128
CHPL TARGET CPU native
CHPL COMM gasnet
CHPL COMM SUBSTRATE ibv
CHPL LAUNCHER slurm-gasnetrun ibv
GASNET IBV SPAWNER ssh
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Figure 4: Bag size (in subproblems) according to the processing time when
solving the Ta10 (left) and Ta20 (right) PFSP instances.

tion and compilation. The ibv-conduit implementing GASNet
over InfiniBand networks is the one used for communication
(CHPL COMM SUBSTRATE) along with SSH, which is respon-
sible for getting the executables running on different locales
(GASNET IBV SPAWNER). Concerning the OpenMP and MPI+X
implementations, we used OpenMP 4.5, Open MPI 4.0.5 as
well as the gcc 10.2.0 compiler. Both Chapel and C-based
implementations are compiled using the --fast and -O3 op-
timization flags, respectively.

In MPI-PBB, each worker can be configured to use any num-
ber of worker threads. We chose to use 16 threads (plus one
additional communication thread) per MPI process. Therefore,
a total of 8L MPI processes is launched and mapped evenly
across the L compute nodes. Node 0 runs the master process
using the same configuration, meaning that node 0 hosts at most
7 worker processes (112 threads).

4.4. Experimental results

4.4.1. DistBag vs. DistBag-DFS
In this section, both DistBag and DistBag-DFS data struc-

tures are compared in terms of memory usage, in the context of
DFS. As a test-case, we consider the B&B instantiation of P3D-
DFS applied to the PFSP. Ta10 and Ta20 are solved, using LB1
and 4 processing threads.

Figure 4 shows the evolution of the bag size (in number of
subproblems) over time, which is roughly proportional to the

overall memory usage of the program. When solving Ta10 us-
ing DistBag, we first note a monotonic growth phase during
40s. At its maximum size, the bag holds up to 1.2 × 107 nodes.
Then, the bag size is progressively decreasing to 0, signifying
the end of the exploration. This change in behavior can be ex-
plained by the fact that in the upper parts of the search tree the
average branching factor is higher than in the bottom parts. In-
deed, all considered LBs increase monotonically according to
the depth of a subproblem, meaning that for all children c of
a parent p, LB(c) ≥ LB(p). Therefore, the average branching
factor decreases as the search moves deeper into the tree, caus-
ing the drain of the bag. Considering Ta20, the size of the bag
grows in a quasi-linear way until 6 × 107 nodes, and we had
to manually interrupt the experiment before the memory con-
sumption becomes too excessive. To get an idea of the latter,
let’s multiply the number of nodes inside the bag by the bit
size of each node (composed of 23 64-bit integers): it gives
6× 107 × (23× 64) = 88× 109 bits, or 11 GB. The same exper-
iments using the DistBag-DFS gives us very different results.
We observe that for both instances, the size of the bag, and thus
the memory consumption, remains bounded over time. Theo-
retically, in a DFS B&B algorithm applied to PFSP, the maxi-

mum size that a pool can contain is
n−1∑
i=1

i, i.e. 190 in our exper-

iments (n = 20). Indeed, by definition, the subtree of a node
must be completely explored before decomposing another node
of the same depth. Therefore, for each level l, at most n − l
nodes are kept in memory (the generated but not yet evaluated
subproblems). We note that this is satisfied, since the bag size
never exceeds 4 × 190 = 760 at a time.

These preliminary experiments show that our DistBag-DFS
data structure is more reliable than DistBag in the context of
DFS. Indeed, it allows a better control of the memory manage-
ment, in particular via the redesign of the scheduling policy of
its elements (see Section 3.1).

4.4.2. Intra-node performance
In this section, we compare the performance of our Chapel-

based P3D-DFS algorithm to the OpenMP-based baselines, at
the intra-node parallel level.

Figure 5 shows the absolute speed-up achieved by P3D-DFS
and OMP-PBB on the B&B method and its application to the
PFSP. Different granularities are considered (LBs: LB1∆, LB1
and LB2), and the Ta10, Ta20, and Ta30 instances are solved.
First of all, one can see that for a given instance, coarser is
the LB, better is the speed-up. Indeed, the computation time
of the LB overlays the parallel overheads. The best results
are obtained using LB2, where the speed-up ranges from 85%
to 95% of the ideal speed-up for P3D-DFS, and from 60% to
85% for OMP-PBB. Then, we can note that P3D-DFS always
achieves better or comparable performance to OMP-PBB. The
difference in absolute speed-up is explained by the faster single-
threaded execution time for P3D-DFS. Indeed, as shown in Ta-
ble 4 of Appendix B, OMP-PBB’s single-threaded execution
time is up to 42% larger considering LB1∆, 45% for LB1, and
18% for LB2. Although both approaches implement the same
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termination detection, as well as the same LBs calculation, the
difference in performance can be explain by the use of differ-
ent data structures, relying on different locking mechanisms for
example.

Similarly to the previous comparison, Figure 6 shows the
absolute speed-up achieved by P3D-DFS and its OMP-PUTS
counterpart, considering the UTS benchmark. Different granu-
larities g are considered, as well as different tree sizes (T1, T2
and T3). In all cases, our P3D-DFS implementation is outper-
formed by its counterpart, especially at low granularity where
OMP-PUTS achieves performance up to 3× better. In addition,
one can see on Table 4 that P3D-DFS’s single-threaded execu-
tion times are between 10 − 20% larger than those of OMP-
PUTS. At this point, it is important to note that both imple-
mentations are quite different, in contrast to the previous com-
parison. Mainly, they implement different data structures, dif-
ferent WS mechanism, as well as different termination detec-
tion mechanisms. We still have to investigate the origin of the
performance pitfall(s) that occur(s) in our Chapel-based imple-
mentation, but a first explanation could come from one of the
aforementioned mechanisms which would be less effective in
P3D-DFS than in OMP-PUTS. When the granularity is high
(g = 100 for instance), the gap between the two implementa-
tions narrows. For its best results, P3D-DFS achieves 82% of
the ideal speed-up using 128 processing cores.

Based on the reported results, it appears that our Chapel-
based P3D-DFS implementation achieves high performance at
the intra-node level in the context of the B&B method and its
application to the PFSP, and outperforms its OpenMP-based
counterpart. Therefore, we can expect the resolution of large
PFSP instances (n > 20) with P3D-DFS to be highly effi-
cient. Nevertheless, on UTS, which is a synthetic benchmark
with a fine-grained decomposition operator, P3D-DFS struggles
to achieve good scalability, while the OpenMP-based baseline
does.

4.4.3. Inter-node performance
In this section, we compare the performance of P3D-DFS to

the MPI+X baselines, at the inter-node level of parallelism.
Figure 7 shows the absolute speed-up achieved by P3D-DFS

and MPI-PBB on B&B applied to PFSP, considering different
granularities and the Ta27, Ta26, and Ta24 instances. We first
note that P3D-DFS outperforms MPI-PBB in almost all cases,
and more particularly solving the smallest Ta27 instance. As
shown in Table 5 of Appendix B, the single-node execution time
for MPI-PBB is between 6% and 30% larger than P3D-DFS, in
all cases. In addition, the lack of performance of MPI-PBB
can be explained by the presence of a centralized coordinator-
process in the inter-node load balancing mechanism that can
lead to sequential bottleneck at large scale, as explained in Sec-
tion 3.3. Nevertheless, one can note that larger is the critical
tree size of the instance, smaller is the gap between the imple-
mentations. Especially solving Ta24 with LB1∆, which is the
largest fine-grained instance solved, MPI-PBB performs better
than P3D-DFS. This can be related to the data structures, and
suggests that DistBag-DFS could be less efficient than its coun-
terpart in MPI-PBB. For its best results, P3D-DFS achieves

93% of the ideal speed-up, using 32 computer nodes.
Similarly to the previous comparison, one can see in Figure 8

the absolute speed-up achieved by P3D-DFS and MPI-PUTS,
on the UTS benchmark. We can see that MPI-PUTS outper-
forms P3D-DFS at low granularity (g = 10). More precisely,
P3D-DFS is up to 50% less efficient than the baseline. This
can be explained by the limited scalability of our algorithm at
fine granularity at the intra-node level, as observed in Figure 6.
Moreover, this is consistent with the single-node execution time
which is up to 43% higher for P3D-DFS, as shown in Table 5.
Nevertheless, when g increases, P3D-DFS provides compara-
ble or better performances than MPI-PUTS. More particularly,
we observe that P3D-DFS outperforms its MPI counterparts on
the smallest instance T4. P3D-DFS speed-up is more than 2×
larger than MPI-PUTS, considering 32 computer nodes. Lim-
ited scalability of MPI-PUTS can be explained by the fact that
the implementation does not have a bi-level WS mechanism,
as the P3D-DFS does, meaning that a thief thread steals a lo-
cal/remote victim one, without distinction. For its best results,
P3D-DFS achieves 78% of the ideal speed-up, using 32 com-
puter nodes.

Based on the reported results, it appears that P3D-DFS out-
performs its MPI+X counterparts, especially on the B&B and
its application to the PFSP. Its bi-level WS mechanism has
proven to be particularly effective up to 32 computer nodes.
Consering fine-grained UTS trees, P3D-DFS’s inter-node per-
formance is limited by its low intra-node scalability, observed
in Section 4.4.2.

4.5. Discussion on productivity

In this section, the productivity-awareness of P3D-DFS is
discussed. Some authors characterized HPC productivity as
a trade-off between performance and programming effort [37].
While the first aspect has been discussed in Section 4.4, we will
now give some highlights of the second one.

First of all, P3D-DFS is generic and general. It is designed
to be applicable to any DFS algorithm, e.g. for solving com-
binatorial problems. This is facilitated by the object-oriented
programming supported by Chapel, as well as the generic
DistBag-DFS data structure. As explained in Section 3.1, the
latter hides to the user the multi-pool implementation as well as
the underlying WS, which has the benefit of making the multi-
core implementation close to the sequential one, in terms of
lines of code. In turn, Chapel’s global view of control flow and
data structures make it straightforward to design and implement
a distributed B&B/backtracking based on a multi-core version.
Actually, as shown in Section 3.2, programming a distributed
version starting from a multi-core one requires the addition of
a few lines of codes, and there is no need to deal explicitly
with inter-node communications or command line launch pa-
rameters, as it is the case in MPI+X. In the latter, considering
only the core of the master process, multiple synchronization
points at the inter-node level (WS, termination detection, up-
date of the current best solution) need to be handled, which is
challenging and error-prone, as it induces hard-to-detect race
conditions [15].
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In contrast, the use of Chapel global shared atomics comes
in handy, but needs to be handled with extreme care to avoid
performance pitfalls. Similarly, the programmer must be aware
of the underlying communications. Finally, to achieve the best
performances of Chapel programs, one has to install and highly
tune its execution environment, in contrast to the ubiquitous
OpenMP and MPI. Depending on the hardware, this can be a
daunting task, especially since Chapel’s documentation is re-
stricted to a few system configurations, e.g. Infiniband network
with Slurm for job spawning.

5. Conclusions and future works

In this paper, we have investigated Chapel’s performance
within the context of parallel DFS on both shared- and
distributed-memory systems. We designed and implemented a
general PGAS-based parallel distributed tree-search algorithm
unifying both intra- and inter-node parallel levels, and evalu-
ated it using large unbalanced tree-based problems, which are
the B&B applied to PFSP and UTS benchmarks. The imple-
mentation is based on the DistBag-DFS distributed data struc-
ture, which is our revisited version of the Chapel’s DistBag

data structure for DFS. DistBag-DFS enables a better mem-
ory management in a DFS context, as well as a new synchro-
nization mechanism between threads. Our implementation has
been compared to state-of-the-art baseline approaches in terms
of performance, using up to 32 computer nodes including each
128 cores. In a shared-memory setting, the experimental re-
sults revealed that P3D-DFS is competitive with its OpenMP
counterparts for coarser-grained instances, while it suffers from
parallel overheads at low granularity. Moreover, by using
our DistBag-DFS data structure, one can achieve performance
equivalent to MPI+X in a distributed-memory setting, but with
a programming effort much smaller. Therefore, Chapel stands
out as an alternative to OpenMP and MPI+X at the intra- and
inter-node parallel levels for parallel distributed tree-search, in
the context of exascale programming.

In the future, we expect DistBag-DFS to be integrated in
the Chapel language. Actually, we have demonstrated in this
paper that this distributed data structure is now fully operable
in a DFS context. It could now be employed in a productive
manner by the Chapel community. In this paper, we have con-
sidered both intra- and inter-node parallel levels. However, we
still have to consider heterogeneous systems, including GPU
accelerators. Chapel 1.29.0 includes preliminary work to tar-
get NVidia GPUs using the CUDA driver API at runtime. Such
an approach will be compared to MPI+X+CUDA implemen-
tations, still on challenging unbalanced tree-based problems.
From the implementation point of view, we have seen that P3D-
DFS still suffers from some management overheads at the intra-
node level, and a series of low-level optimizations remains to be
performed. Doing so, we will contribute a bit more to the debate
between the two schools of thought: evolutionary or reuse what
we have (MPI+X) vs. revolutionary or using new languages
designed for exascale (e.g. Chapel).
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Appendix

A. OMP-PBB implementation

In this section, we provide the pseudo-code of the paral-
lel multi-core C++/OpenMP implementation described in Sec-
tion 3.3. It follows the same flow as the Chapel one. Never-
theless, some notable distinctions are present. In Chapel, the
element-type Node is passed to the bag’s initializer, whereas in
C++ this is typically achieved by specializing the sharedPool
template with the Node template parameter (line 2).

Another point is that we do not use for-loop in our
OpenMP implementation to launch concurrent tasks. Al-
though this is quite possible, OpenMP’s fork-join mechanism
(#pragma omp parallel) in combination with the built-in
omp get thread num() function seems to be the simpler so-
lution. Moreover, the way to manage atomicity is different ac-
cording to both implementations. Indeed, in P3D-DFS, we de-
clared atomic variables, while in OpenMP we have to explic-
itly declare atomic memory location through specific compiler
directives to ensure that race conditions are avoided through
direct control of concurrent threads. Thus, we introduce the
set stop flags and atomic read functions that include omp
atomic write, omp atomic read and omp flush pragmas
to ensure atomicity and consistency of memory (lines 20, 27,
30).
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Algorithm 3: Pseudo-code of OMP-PBB

1 Node root(instance);

2 sharedPool <Node > pool;

3 pool.insert(root , 0);

4

5 int global_best_ub = ub_init ();

6 int stop_flags[omp_get_max_threads ()];

7

8 #pragma omp parallel

9 {

10 int threadId = omp_get_thread_num ();

11 int local_best = global_best_ub;

12

13 stop_flags[threadId] = BUSY;

14

15 while true {

16 local_best = global_best_ub;

17 Node n = pool.take(threadId);

18 // if locally empty and steal failed

19 if !n {

20 set_stop_flags(threadId , IDLE);

21 // if globaly empty

22 if all_idle(stop_flags) {

23 break;

24 }

25 continue;

26 } else {

27 set_stop_flags(threadId , BUSY);

28 if n->is_leaf () {

29 int ub = evalSolution(n);

30 if (ub < local_best && ub < atomic_read(

global_best_ub)) {

31 #pragma omp critical

32 {

33 global_best_ub = ub;

34 // updates best solution ...

35 }

36 }

37 } else {

38 std::vector <Node > ns;

39 ns = decompose(n, local_best);

40 pool.insert(ns, threadId);

41 }

42 }

43 }

44 }

B. Reference times for absolute speed-up calculation
Tables 4 and 5 summarize the single-threaded and single-

node execution times of our Chapel-based implementation and
its baselines in shared- and distributed-memory settings, re-
spectively.
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