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ABSTRACT 

The drastic growth of electric vehicles and photovoltaics 

can introduce new challenges, such as electrical current 

congestion and voltage limit violations due to peak load 

demands. These issues can be mitigated by controlling the 

operation of electric vehicles i.e., smart charging. 

Centralized smart charging solutions have already been 

proposed in the literature. But such solutions may lack 

scalability and suffer from inherent drawbacks of 

centralization, such as a single point of failure, and data 

privacy concerns. Decentralization can help tackle these 

challenges. In this paper, a fully decentralized smart 

charging system is proposed using the philosophy of 

adaptive multi-agent systems. The proposed system utilizes 

multi-armed bandit learning to handle uncertainties in the 

system. The presented system is decentralized, scalable, 

real-time, model-free, and takes fairness among different 

players into account. A detailed case study is also 

presented for performance evaluation. 

INTRODUCTION 

The increasing adoption of electric vehicles (EVs) and 

photovoltaic panels (PVs) can significantly reduce the 

dependence on fossil fuels. This would help reach climate 

goals by reducing carbon emissions. However, an 

uncontrolled introduction of these new grid elements may 

also impact the functioning of the distribution networks. 

The charging of EVs can be concentrated at certain times, 

which could lead to issues such as voltage drops, electrical 

current congestion, and power outages. Utility companies 

can tackle these challenges through grid reinforcement 

solutions. However, such solutions may come with higher 

network investment costs. In recent years, smart charging 

has been presented as a viable alternative to balance the 

load on the electrical grid by controlling the charging of 

electric vehicles.  

Smart charging of EVs requires the synergy of different 

electricity market actors at different levels. The constraints 

of these different actors (distribution system operator and 

prosumers) must be satisfied while optimizing the desired 

objective function of the smart charging optimization 

problem. A wide variety of smart charging solutions based 

on centralized or hierarchical architecture have been 

presented in the literature [1]. These mentioned solutions 

serve well to optimize the charging of EVs. However, such 

systems may suffer from issues such as a lack of scalability 

for real-time operation, potential single point of failure, 

and privacy concerns over each prosumer’s data. Most of 

the mentioned solutions require an accurate distribution 

network model, which is not always present. Such 

challenges can be tackled through the decentralization of 

the system.     

Multi-agent systems (MASs) using the concepts of control 

theory, graph theory, and game theory had been presented 

in the literature [1]. In [2], an agent-based control system 

for the smart charging of EVs is presented. In [3], a 

heuristic MAS has been presented for the same purpose, 

but the DSO constraints have not been considered. 

Standard reinforcement learning (RL) based multi-agent 

systems have also been proposed to control different smart 

grid operations [4]. In RL, the goal of each agent is to 

maximize the running total of its reward, which is obtained 

through interactions with the environment [4].  

In our presented MAS, the concepts of adaptive multi-

agent systems (AMAS) have been utilized. In AMAS, 

cooperation among different system agents is used for self-

organization [5]. In [5], Self-organization is defined as, 

“the mechanism or the process enabling a system to change 

its organization without explicit external command during 

execution time.” The agents in an AMAS generally hold 

properties such as autonomy, reactivity, locality, and 

social ability. This methodology has already been used to 

tackle problems from different domains [5]. The AMAS 

theory proposes meta-rules that can be combined with 

other self-organization approaches (such as reinforcement 

learning), to further improve performance, especially 

under stochastic conditions.  

As stated earlier, the application of standard reinforcement 

learning algorithms for smart grid control is not 

uncommon. However, the choice of the learning algorithm 

can highly impact the performance of the designed system. 

Q-learning algorithms with function approximations can 

suffer from instability, overestimation, and 

underestimation due to delusional bias in learning [6]. 

Also, theoretical convergence results for reinforcement 

learning with functional approximations are still limited. 

In contrast to standard reinforcement learning, there exists 

a sub-class, called multi-armed bandit (MAB) [9]. As it is 

a simpler sub-class of Markov Decision Processes (MDP), 

it converges faster compared to the most commonly used 
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standard reinforcement learning algorithms (Q-learning or 

DQN learning). This is a significant advantage of MAB 

algorithms for smart grid applications (where an Oracle 

giving the outcome of agent’s every action is not 

available), as the agent is expected to learn online, and thus 

the total cost of the agent is directly linked to its 

convergence time. Also, well-defined theoretical 

guarantees are present for MAB algorithms due to their 

simpler nature. Systems based on bandit algorithms have 

been proposed in the literature to control smart grid 

operations [7], as well as to optimize modern 

communication networks [8].   

The concepts of AMAS and bandit have been combined to 

propose a fully decentralized adaptive multi-agent system. 

The AMAS framework results in the decentralization of 

the system and ensures data privacy. The use of multi-

armed bandit learning helps each decision-making agent in 

the system to handle the uncertainties in the system while 

performing optimal control of the EVs charging.  

PROBLEM DESCRIPTION 

The objective of each EV is to minimize its daily total cost 

of charging considering the dynamic electricity pricing. It 

can be written as: 

𝑜𝑏𝑗: 𝑚𝑖𝑛 ∑ 𝑐(𝑖)𝑃(𝑖)∆𝑖
𝑚

𝑖=1
                     (1) 

where 𝑐(𝑖) is the instantaneous cost of electricity, 𝑃(𝑖) is 

the instantaneous charging power of the EV, 𝑚 is the total 

number of decision instants, and ∆𝑖 is the duration of each 

instant. Furthermore, it is considered that EVs can utilize 

the generated PV energy without any cost. Hence, learning 

the daily uncertain PV energy production trend also 

becomes essential to optimize the daily charging cost.  

A set of constraints must be satisfied as well. There should 

not be any electrical current congestion or voltage limit 

violations in the distribution network. Furthermore, each 

EV should be sufficiently charged at its departure time to 

satisfy the prosumer. 

ADAPTIVE MULTI-AGENT SYSTEM 

An AMAS is a special sub-class of MAS where agents 

cooperate with their neighboring agents. An AMAS agent 

does not require a full perception of the system as it 

perceives only a small part of its immediate environment 

(neighboring agents). In an AMAS, cooperation of agents 

at microlevel helps solve the problem at macrolevel. Each 

AMAS agent has its own objective and a set of possible 

actions. An agent is executed in a loop and goes through 

three main stages i.e., perception, decision, and action. 

Each agent perceives the input from the environment 

through sensors, selects an action to be carried out based 

on the observed information, and implements the decided 

action. At each iteration, the agent decides whether to take 

an action to satisfy its own objective or to help a 

neighboring agent through cooperation. This decision is 

made based on the comparison of criticalities. Each agent 

holds a criticality value (within the range [−1, 1]). A 

criticality value of 0 indicates that the agent is not critical 

and if it is needed, it can take an action to help a more 

critical neighboring agent.  Let 𝐶𝑟𝑝 be the criticality of the 

agent 𝑝, and [𝐶𝑟𝑛] be the set of criticalities of its 

neighboring agents. Then, the objective of 𝑝 according to 

the AMAS theory can be written as: 

𝑜𝑏𝑗: 𝑚𝑖𝑛 (𝑚𝑎𝑥(𝐶𝑟𝑝, [𝐶𝑟𝑛]))                 (2) 

i.e., minimize the maximum of the agent’s own criticality 

and its neighboring agents’ criticalities.  

Agentification and communication 

The agentification process is defined as the modeling of 

physical components of an electrical distribution network 

as AMAS agents. An example of this process is shown in 

Fig. 1. In our proposed AMAS, there are three main types 

of intelligent agents in the system. Each electrical line, 

electrical bus, and electric vehicle present in the 

distribution network has been modeled as a line agent, a 

bus agent, and an EV agent respectively. The functioning 

of each agent type is described in the next subsection.  

The communication is done through a pre-defined 

protocol. Each agent requires the perception of only its 

neighboring agents, which means each AMAS agent 

communicates only with its neighboring agents. The 

neighborhood of each agent is defined based on the 

physical structure of the distribution network. The 

communication request, sent from one agent to its 

neighboring agent(s), is in the form of a pair 

(𝐶𝑟𝑓 , [𝑋]𝑓). The first element of this dual pair is the 

criticality associated with the most critical agent. The 

second element represents the set of EVs (uniformly 

sampled from all EVs present in the distribution network), 

picked by the most critical agent for cooperative actions.  

Agent’s functioning 

Line agent 

The objective of each line agent is to avoid electrical 

current congestion in the system. First, the line agent 

receives requests from its neighboring agents. Then, each 

 
Fig. 1. (a) Example sub-section of a distribution network            

(b) Agentified AMAS model (the shaded area represents the 

neighborhood of the EV agent b) of the example network in (a). 
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line agent calculates its criticality based on the magnitude 

of the electrical current. Finally, for cooperation, it finds 

the most critical request (including itself), and forwards it 

to its neighboring agents. This functioning is described in 

Algorithm 1. Terms [E], and [X] represents all the EVs 

charging from the grid in the distribution network, and the 

set of EVs picked by the agent (through uniform sampling) 

to request for cooperative actions. This uniform sampling 

helps in maintaining fairness among all EV agents.  

Algorithm 1: Line Agent’s Functionality 

1: begin agent cycle 

2:  /* Perception Stage 

3:  [𝑅]←neighboring agents’ received requests 

4:  𝐼(𝑖) ← Instantaneous electrical line current 

5:  𝐼𝑟𝑎𝑡𝑒𝑑  ← Rated electrical line current 

6:  /* Decision stage 

7:  Cr ← 1 if (𝐼(𝑖) > 𝐼𝑟𝑎𝑡𝑒𝑑) else 0 

8:  if (|Cr|>|neighboring agents’ criticalities|) then   

10:   𝐶𝑟𝑓 ← Cr 

11:   [𝑋]𝑓 ← [X] uniformly sampled from [E] 

12:  else   

13:   𝐶𝑟𝑓 ← received highest criticality 

14:   [𝑋]𝑓← [X] of the most critical request 

15:  /* Action stage 

16:  Send (𝐶𝑟𝑓 , [𝑋]𝑓)  to all neighboring agents  

17: end agent cycle 

Bus agent 

Each bus agent ensures that the bus voltage remains within 

the desired limits. It follows the same steps as the line 

agent. The main difference is that it calculates its criticality 

based on the bus’ over-voltage or under-voltage. 

Furthermore, priority is given to the line congestion issue 

over the voltage limit violation issue in the decision step. 

The functioning of the bus agent is given in Algorithm 2.  

Algorithm 2: Bus Agent’s Functionality 

1: begin agent cycle 

2:  /* Perception Stage 

3:  [𝑅]←neighboring agents’ received requests 

4:  𝑉(𝑖) ← Instantaneous electrical bus voltage 

5:  𝑉𝑚𝑎𝑥 ← Maximum rated electrical bus voltage 

6:  𝑉𝑚𝑖𝑛 ← Minimum rated electrical bus voltage 

7:  /* Decision stage 

8:  Cr ← 1 if (V(𝑖) < 𝑉𝑚𝑖𝑛) else { -1 if (V(𝑖) >
𝑉𝑚𝑎𝑥) else 0} 

9:  if (any line congestion request is received) then   

10:   𝐶𝑟𝑓 ← Criticality of the congested line 

11:   [𝑋]𝑓 ← [X] picked by the congested line 

12:  else if (Cr ≠ 0) then 

13:   𝐶𝑟𝑓 ← Cr 

14:   [𝑋]𝑓 ← [X] uniformly sampled from [E] 

15:  /* Action stage 

16:  Send (𝐶𝑟𝑓 , [𝑋]𝑓)  to all neighboring agents  

17: end agent cycle 

EV agent 

The EV agent is the main decision-making entity in the 

system, as it decides to charge (or not charge) at a 

particular instant based on its objective and the received 

neighborhood criticalities. This decision problem is 

formulated as a combinatorial multi-armed bandit problem 

(CMAB). In CMAB, the agent plays a super arm (a 

combination of base arms with unknown distributions) to 

observe a reward from the environment. Based on this 

reward, the estimated return of each played base arm is 

updated. The goal of each agent is to find the best super 

arm [9]. In the studied problem, this means, each day 𝑑 

consists of 𝑚𝜖[𝑚] equally spaced instants (base arms), 

linked to the instantaneous electricity cost 𝑐(𝑖). The goal 

of each EV agent is to find the best instants to charge.  

Each EV makes a binary decision (to charge at the rated 

power or to not charge) for each upcoming instant. 

Assuming the linear structure of super arms gives the 

following expected reward for the super arm 𝑆: 

𝔼[𝑟(𝑆)] = 𝑆∗𝑇
𝜃                                (3) 

where 𝑆∗ = arg max 𝑆𝑇𝜃, and 𝜃𝜖𝑅𝑚 is an unknown 

parameter. Each EV agent uses linear Thompson Sampling 

to learn this parameter [10]. The optimal super arm is 

known when 𝜃 is completely known. Based on the d-th day 

estimation of the unknown vector 𝜃̂𝑑, the best estimation 

of the super arm on day d is defined as: 

𝑆𝑑 = arg max 𝑆𝑇 𝜃̂𝑑                          (4) 

and the pseudo-regret after D days of learning is given as: 

𝔼[𝑅(𝐷)] = ∑ 𝑆∗𝑇
𝜃

𝐷

𝑑=1

− ∑ 𝑆𝑑
𝑇𝜃̂𝑑

𝐷

𝑑=1

                 (5) 

The reward function depends on the criticalities of the 

neighboring agents, and the criticality of the EV agent. The 

criticality of the EV agent is linked to the normalized 

electricity cost as: 𝐶𝑟𝐸𝑉 = 𝑐(𝑖). Then, the reward function 

is defined as: 

𝑅𝑒𝑤(𝐶𝑟𝐸𝑉 , [𝐶𝑟𝑛]) = {
− max([𝐶𝑟𝑛]) ; 𝑖𝑓 ([𝐶𝑟𝑛] ≠ 0)

1 − 𝐶𝑟𝐸𝑉           ; 𝑖𝑓 ([𝐶𝑟𝑛] = 0)
 (6) 

The use of multi-armed bandit learning helps in tackling 

the uncertainties in the studied decentralized problem. The 

uncertainty in the choice of super arms of other players is 

handled through selfish Thompson Sampling [8]. The 

uncertainty in the freely available PV energy production is 

handled by learning the vector (∅̂𝑑𝜖𝑅𝑚) representing the 

instantaneous PV energy production, using Thompson 

Sampling. For real-time operation, after each instant, each 

EV agent updates the required number of grid charging 

instants, based on the latest information, as follows: 

𝑘𝑓 = ⌈
60𝐸𝑏𝑎𝑡(𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑠)

∆𝑖𝑃𝑚𝑎𝑥𝜂𝑐ℎ𝑟𝑔

−
∑ ∅̂𝑖

𝑡𝑑𝑒𝑝𝑎𝑟𝑡

𝑖=𝑡𝑎𝑟𝑟𝑖𝑣𝑒

𝑃𝑚𝑎𝑥𝜂𝑐ℎ𝑟𝑔

⌉ − 𝑘𝑝   (7) 

where 𝑘𝑝 is the number of already charged instants from 

the grid. Terms 𝐸𝑏𝑎𝑡 , 𝑃𝑚𝑎𝑥 , 𝑆𝑜𝐶𝑓, 𝑆𝑜𝐶𝑠, 𝜂𝑐ℎ𝑟𝑔, 𝑡𝑎𝑟𝑟𝑖𝑣𝑒, and 

𝑡𝑑𝑒𝑝𝑎𝑟𝑡 stands for the energy capacity of the EV battery, 

the rated charging power of the EV, the desired final SoC, 

the initial SoC at the connection time, the charging 
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efficiency of the EV, the arrival time, and the departure 

time of the EV respectively. The function ⌈. ⌉ represents the 

ceiling function. The functioning of the EV agent is given 

in Algorithm 3. In the algorithm, 𝟙{. } stands for the 

indicator function and ‖. ‖1 returns the total number of 

selected base arms. The assumption of linear structured 

super arms allows evaluation of the best super arm in 

𝑂(𝑚), which makes the system computationally scalable.  

Algorithm 3: EV Agent’s Functionality 

1: αϵR+, 𝛽ϵR+ 

2: 𝐴, 𝑌 ≔ 𝐼𝑚,𝑚, 𝜃̂, ∅̂ ≔ 0𝑚, b, 𝑧 ≔ 0𝑚 

3: for d =1, 2, 3, … do 

4:  𝑅, 𝑃, 𝑀, 𝑘𝑝 ≔ 0𝑚 

5:  𝜃̃~𝑁(𝜃̂, 𝛼2𝐴−1), ∅̃~𝑁(∅̂, 𝛽2𝑌−1) 

6:  for i =1, 2, 3, …, m∀ 𝑡𝑎𝑟𝑟𝑖𝑣𝑒 ≤ 𝑖 ≤ 𝑡𝑑𝑒𝑝𝑎𝑟𝑡 do 

7:   begin agent cycle 

8:    /* Decision Stage 

9:    Calculate 𝑘𝑓 using (7) 

10:    Play 𝑆𝑑 using (4) ∋∑ 𝑆𝑙,𝑑 =𝑙>𝑖,𝑑

‖𝑆𝑑‖1 = 𝑘𝑓 

11:    /* Action stage 

12:    Set EV’s instantaneous charging power  

13:    /* Perception stage 

14:    [𝑅]←received requests from neighbors 

15:    𝑐(𝑖) ← Instantaneous electricity cost 

16:    𝑅𝑖 ← Instantaneous reward using (6) 

17:    𝑃𝑖  ← Instantaneous PV sensor data 

18:    𝑀𝑖 ≔  𝟙{𝑖𝜖𝑆𝑑}, 𝑘𝑝 ≔ ‖𝑀𝑖‖1 

19:   end agent cycle 

20:  end for 

21:  𝐴 ≔ 𝐴 + 𝑀𝑀𝑇; Y≔ 𝑌 + 𝐼𝑘𝐼𝑘
𝑇 

22:  𝑏 ≔ 𝑏 + 𝑅; z ≔ 𝑧 + 𝑃 

23:  𝜃̂ ≔ 𝐴−1𝑏; ∅̂ ≔ 𝑌−1𝑧 

24: end for 

EXPERIMENTAL EVALUATIONS 

Experimental settings 

Two case studies have been performed to evaluate the 

performance of the proposed AMAS. First, a small-scale 

case study with 55 households, 55 PVs, and 55 EVs. 

Second, a large-scale case study with 10,175 households, 

10,175 PVs, and 10,175 EVs. The topologies of 

distribution networks modelled for both studies are shown 

in Fig. 2. Each sub-district in the shown topologies 

represents the IEEE low voltage test feeder (LVTF) [11]. 

The arrival and departure times of the EVs are set based 

on a real-life dataset [12]. The irradiance data to model the 

PV generation are obtained through the national renewable 

energy laboratory (NREL) database [13]. The 

instantaneous PV generation is defined as:  

𝑃𝑃𝑉(𝑖) = 𝐴𝜂𝑃𝑉𝐼𝑟𝑟(𝑖)                       (8) 

where 𝐴 is the area of the PV panels, 𝜂𝑃𝑉 is the efficiency 

of the PV panels, and 𝐼𝑟𝑟(𝑖) is the instantaneous 

irradiance. Terms 𝐸𝑏𝑎𝑡 , 𝜂𝑐ℎ𝑟𝑔, 𝑃𝑚𝑎𝑥 , and 𝑆𝑜𝐶𝑓 are set to 52  

 
Fig. 2. Topologies of the studied distribution networks (a) 

Small-scale network (b) Large-scale network. 

kWh, 0.95, 7 kW, and 0.8. Furthermore, it is assumed in 

these studies that the communication speed among agents 

is much faster than the resolution of each EV’s decision 

instant. This ensures no delays in the communication. To 

evaluate the fairness level achieved by the optimization 

strategy, the following equation is used:  

𝐹([𝐷]) =
1

1+(
𝜎[𝐷]

[𝐷]̅̅ ̅̅̅ )
2                                (9)   

where [𝐷] is the set of per-unit charging costs of each EV, 

𝜎[𝐷] is the standard deviation of the set [D], and [𝐷]̅̅ ̅̅  is the 

mean of the set [D]. This value ranges between 0 

(completely unfair system) and 1 (completely fair system). 

The following three charging strategies are compared: 

Uncontrolled (basic) charging strategy  

In this charging strategy, the EV starts charging at its 

maximum power as soon as it is plugged-in for charging. 

This is a non-optimal charging strategy.  

Centralized optimization charging strategy  

In this strategy, a centralized node performs optimization 

and decides the charging strategy of each EV present in the 

distribution network. The detailed explanation of the 

constraints for the centralized optimization is present in 

[14]. In this study, it is assumed that a completely accurate 

PV production forecast is known. This would mean that 

the solution obtained through the centralized strategy is the 

optimal solution, and hence can be treated as the lower-

bound to better evaluate the performance of our proposed 

AMAS, which learns the PV production trend.   

Proposed AMAS charging strategy  

This is our proposed charging strategy using the concepts 

of AMAS combined with multi-armed bandit learning.  

Results 

Small-scale study 

The learning algorithm converges within 30 simulation 

days. The mean of average learning rewards of all EVs in 

the network is shown in Fig. 3(a). The results of the next 

30 days have been used for performance evaluation. The 

results are summarized in Fig. 4. It can be seen that the 

proposed AMAS significantly reduces the system’s cost 

compared to the basic charging strategy. It should be noted 

that the shown centralized optimal cost is highly unlikely 

in real-life as it requires an error-free knowledge of the PV  
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Fig. 3. Average learning reward of the total network (a) Small-

scale case study (b) Large-scale case study. 

 
Fig. 4. Results for the small-scale distribution network study 

energy production forecast. There are also no violations of 

the constraints in the proposed AMAS, unlike the basic 

charging strategy. Furthermore, the fairness index value 

for our proposed AMAS is 0.994, which practically 

confirms that it takes fairness into account.   

Large-scale study 

The centralized optimization strategy does not work due to 

the large number of agents in the system. However, the 

proposed AMAS still converges, as shown in Fig. 3(b). 

After convergence, the results of the next 30 days are used 

to evaluate the performance. The performance summary 

against the basic charging strategy is presented in Fig. 5. 

The proposed AMAS results in no constraints violations. 

However, both current and voltage constraints are violated 

in the basic charging strategy due to peak load demands. 

The cost of the system is also reduced significantly if the 

proposed AMAS smart charging strategy is followed. No 

fairness index is calculated for the basic charging as it is 

not an optimization strategy. However, for our proposed 

AMAS, this value comes out to be 0.993.    

CONCLUSION 

An AMAS combined with MAB learning is presented for 

smart charging. The proposed system follows the AMAS 

theory for self-organization. The uncertainties are handled 

 
Fig. 5. Results for the large-scale distribution network study 

through combinatorial multi-armed bandit learning. The 

detailed performance evaluation confirms that the 

proposed decentralized system significantly improves the 

system’s performance compared to the basic charging 

strategy and produces near-optimal results. The impact of 

using PV forecasts as contextual data in the MAB 

algorithm can be studied in the future.  
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