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Abstract—FPL is a domain specific language used to specify
complex drone missions for the Paparazzi open-source autopilot.
FPL missions are compiled into C code that is directly embedded
into the autopilot code. The FPL to C code generator, currently
written in OCaml, is therefore a critical component when
addressing the drone safety. This paper presents the formal
verification of the FPL compilation process. First, we have
developed in Coq a new three-pass code generator, targeting the
Clight intermediate language from the CompCert suite. We have
then formally defined an operational semantics for FPL. Finally,
we have proved a bisimulation relation between FPL semantics
and Clight semantics. In the course of the formalization and
verification process, we have also unveiled several problems in
the original Paparazzi code generator.

Keywords—Code Generation, Compilation, Mechanized proof,
Operational semantics

I. INTRODUCTION

Paparazzi [1] is an open-source autopilot under GPL license
developed at ENAC1 since 2003. Paparazzi offers a variety of
customization settings in order to support different types of
drones or hardware, but also to define specific missions. These
missions, or flight plans, are expressed using an XML-based
domain specific language, denoted by FPL in this paper.

Flight plans are complex missions and FPL offers common
imperative features to define them, such as mutable variables,
exceptions or loops. FPL also offers some specific navigation
primitives like “go to a position” or “do a circle around a
location”. For instance, the following mission can be described
in FPL: “when the drone is started, it first needs to initiate its
sensors and wait for the GPS connection to be established.
Then the drone should take off and circle around a certain
GPS position to acquire data. During the flight, if the battery
level is below 20%, the drone must automatically go back to
the Home position and land.”

Paparazzi currently offers a code generator that takes as
input an FPL flight plan and generates a C file that must be

This work is supported by the Defense Innovation Agency (AID) of
the French Ministry of Defense (research project CONCORDE N 2019 65
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1The French Civil Aviation University

compiled together with the autopilot to be embedded in the
drone. The flight plan thus cannot be changed during a flight.
However, the drone operator can interact with the flight plan
and change its execution order. The generated C code file
is mainly composed of a step function, named auto_nav,
which is called periodically by the autopilot to compute the
next steps of the flight plan to be executed.

The generator is written in OCaml and Paparazzi users
may not entirely trust the generated code. In particular, we
may wonder if a) the function computing the next steps to
be executed in the flight plan always terminates and b) the
generated C code behaves as described by the flight plan.
These questions are crucial as the produced C code is intented
to be directly embedded in the drone.

Verifying that the embedded C code is correct, i.e. that
it behaves as prescribed by the flight plan, can be seen
as a compiler verification problem: we must prove that the
compiler translating FPL flight plans into C code guarantees
the correctness of the embedded code. Even if compiler
verification is a known problem [2], [3], some advances have
recently been done using proof assistants, particularly the
Coq proof assistant. Coq allows one to write programs in
the Gallina functional programming language, to formally
prove properties on such programs using powerful tactics,
and to extract Gallina programs into OCaml programs that
are semantically equivalent [4]–[6]. The main steps of the
verification of a compiler with Coq may be summarized as
follows: first, express the semantics of both the source and
the target languages in Gallina, then write the compiler in
Gallina and finally prove a semantics preservation theorem
establishing that the produced code has the same behavior as
the source code according to their respective semantics. The
CompCert C compiler [7] and the Velus Lustre compiler [8],
[9] are recent tours de force showing that this approach can
be applied to large subsets of real programming languages.
Notice that there is also an on-going work [10] using Coq
to verify a compiler for Esterel, an imperative synchronous
language, closer to FPL than the previous ones.

This paper presents an extension of FPL bringing new

https://zenodo.org/record/7584727#.ZAhUgIDMJhE
http://wiki.paparazziuav.org/wiki/Main_Page


features requested by Paparazzi users, a formal semantics
for this extended language and the development of a new
verified compiler from FPL to C code following the previously
described approach. The extension of FPL is conservative
and does not invalidate flight plans defined with the original
DSL.The syntax and semantics of FPL are expressed in
Gallina and we use as target language Clight, the Gallina
structure used in CompCert to represent C code, providing
us an already defined C semantics and a correct C pretty
printer. We then write a three-pass compiler in Gallina and
formally prove that the compiler preserves FPL semantics and
that the step function (i.e. a call to the auto_nav function)
always terminates. This new compiler produces C code similar
to the one produced by the current compiler in order to be
fully compatible with Paparazzi global architecture and APIs.
The differences between the C code generated with the new
generator and the previous one are minor and are mainly due
to limitations of the Clight syntax (see Section III-A5).

The paper is organised as follows: Section II introduces FPL
with its new functionalities, gives a glimpse of its semantics
through the execution of an example and then defines its
formal semantics. Section III presents the architecture of
the new three-pass compiler and describes the sketch of
the preservation proof of the compiler as well as choices
made to simplify its writing. Section IV presents the lessons
learned and the problems faced during the development of
the generator. Finally, Section V concludes and gives some
perspectives. All source files are publicly available at https:
//gitlab.isae-supaero.fr/b.pollien/vfpg/-/tree/formalise-2023.

II. FPL: FLIGHT PLAN LANGUAGE

Paparazzi uses a Domain Specific Language (DSL) to
describe flight plans, with an XML concrete syntax. FPL is a
conservative extension of this language that offers new features
such as a protection mechanism against unwanted behaviors,
either specified in the flight plan or by the drone operator.

A FPL file2 is divided into two sections: the flight plan
header and the core part. The flight plan header contains
definitions and meta-information. It is composed of several
sections: the header (arbitrary C code added in the header
of the generated C file), waypoints (a list of constant points
defined using GPS positions or relative coordinates), sectors
defined using lists of waypoints, and local variables that can
be used by the flight plan3.

The core is the main part of a flight plan and defines
the different parts of the mission. In the following, when
talking about a flight plan, we will only refer to its core
part. Section II-A presents the syntax of FPL and an informal
description of its semantics. Section II-B provides an intuitive
example of a flight plan execution. Section II-C presents the
new features we added in the language. Section II-D introduces
FPL formal semantics. Finally, Section II-E presents the
structure of the generated C code.

2The project contains several flight plan examples such as tests/
regression-tests/full_example.xml for instance.

3The value of these variables can be updated by operators during a flight.

A. Syntax and informal semantics of FPL

flight_plan ::= {| excpts : list fp_exception , blocks : list fp_block |}

fp_exception ::= {|
cond : c_cond,
id : block_id,
exec : option c_code

|}
fp_block ::= {|
id : block_id,
stages : list fp_stage,
excpts : list fp_exception

|}

fp_stage ::=
WHILE (cond: c_cond)

(body: list fp_stage)
| SET (var: var_name)

(value: c_value)
| CALL (fun: c_code)
| DEROUTE (idb: block_id)
| RETURN (reset: bool)
| NAV (mode: fp_nav_mode)

(init: bool)

Fig. 1. Flight Plan (FP) Gallina structure representing FPL.

Figure 1 presents the FP Gallina structure that corresponds
to the FPL grammar4. We denote by c_code any valid C
code, c_value any C expression, c_cond C code that can be
evaluated as a boolean expression and var_name the name
of a C variable. The parsing of FPL into FP is done by a
pre-processor that is presented in section III-A1.

A flight plan is composed of at least one block and possibly
exceptions. A block describes a part of the mission (e.g. “take
off” or “initialize sensors”) and is composed of a unique id,
potential local exceptions and a list of atomic instructions
called stages. The WHILE stage is a classic imperative loop.
The SET stage assigns value to var. The CALL stage
executes the C code fun. The DEROUTE stage changes the
block being currently executed to block idb (the position
in the block and the id of the block before the deroute are
memorized as the last position). The RETURN stage returns
to the block that was executed prior to the last deroute stage
or exception. Its reset parameter allows the user to choose
whether the execution should start at the beginning of the
last block or at its latest stage reached when the deroute
or exception occurred. Finally, the NAV stage executes the
navigation code corresponding to the primitive (e.g. GO to a
position or do a CIRCLE) depending on the value taken by
the parameter mode5.

Exceptions constitute a protection mechanism to avoid un-
wanted behaviours. An exception is raised when its condition
cond is evaluated to true. The execution of the flight plan
then proceeds to the block id and, if specified, the code exec
is called. For example, if the drone has less than 20% of battery
left, the flight plan must execute the block that lands the drone
at the Home position. An exception can be global and will be
tested at every call to the auto_nav function or local to a
block and will be tested only when the block is executed.

Finally, notice that a flight plan may contain arbitrary C
code calls, for example, in conditions or in CALL stages. We
will discuss the implication of the presence of such code in
section II-D1.

4Available in the FlightPlan.v file.
5This parameter is defined by the sum fp_nav_mode type

where each constructor correspond to a navigation primitive, see the
FPNavigationMode.v file.
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Example of a flight plan:

{| excpts : [],
blocks : [

{| id: 0, excpts: [],
stages: [

CALL "InitSensors()";
WHILE "!GPSFixValid()" {};
SET "home" "GPSPosHere()"]

|};
{| id: 1, excpts: [],

stages: [
NAV (TakeOff params) true;
DEROUTE 10]

|};
... {| id: 10, ... |} ...

]
|}

A possible execution of the auto_nav function:

Call Current Code ExecutedBlock

1 0 InitSensors()
!GPSFixValid()

~w true
2 → 8 0 !GPSFixValid()

~w true

9 0 !GPSFixValid()
~w false

home = GPSPosHere()
10 1 StartMotors()

11 → 19 1 TakeOffDone()
~w false

20 1 TakeOffDone()
~w true

Deroute → 10
21 10 ...
...

...
...

Fig. 2. Example of the execution of a flight plan.

B. A flight plan execution example

Execution of flight plans is similar to execution of programs
written in typical synchronous languages such as Lustre [11] or
SCADE [12] that are commonly used in embedded code. The
execution of synchronous code is composed of an initialisation
phase followed by periodic calls to a step function. The initial-
isation phase, for flight plan execution, sets the environment in
order to start the execution at block 0. Executing the flight plan
then consists in calling regularly the auto_nav function. The
first call to auto_nav executes the first block of the plan and
stages inside the block are to be executed. There are 2 types
of stages: continue stages and break stages. The forms of the
stages are defined statically and implicitly by the semantics.
Executing a block consists in executing its stages sequentially
in their definition order as long as they are continue stages.
The execution of the auto_nav function terminates when a
break stage is executed. In this case, the execution of the flight
plan pauses and is resumed by the next call to auto_nav.

Figure 2 presents an example of a flight plan and one of its
possible executions. This flight plan contains no exceptions
and several blocks of which only 3 are represented. Let us
present briefly the execution of the auto_nav function on
this example. The first block (block 0) is entered and its first
stage is executed. The CALL stage is a continue stage: its
execution simply calls the C code it contains and the next
stage is executed. The next stage is a WHILE stage, therefore
the condition of the loop, i.e. "!GPSFixValid()", must be
evaluated. Assume that this evaluation returns true. In this
case, the WHILE stage is a break stage: it ends the execution
of the auto_nav function. The flight plan will continue its
execution at the next call to auto_nav during which the
execution of the flight plan is resumed where it was left, i.e.
inside the WHILE loop. As the loop body is empty in this
example, there is no stage to execute and the condition of the
loop is reevaluated.

The execution of auto_nav continues to evaluate the loop
condition until it is evaluated to false. Assume that the
loop condition evaluates to false in call 9. In this case,

the WHILE stage is considered as continue. The last stage
SET is therefore executed and as it is a continue stage,
its execution terminates the execution of the block, stopping
auto_nav execution and the next block (numbered 1 here)
will be executed at next iteration.

The NAV stage execution is translated into a call to a
C function that sets navigation parameters depending on the
navigation primitive used. These parameters will be used by
the autopilot and translated into orders for the motors. In
this example, the NAV stage runs the navigation primitive
TakeOff. This stage requires an initialisation step as the
init parameter is set to true. There is thus some specific
code that will be called at the first execution of the stage
(here StartMotors that does not appear in the flight plan
but is specified in Paparazzi autopilot and added by the
generator). Then, the C code corresponding to the second
part of the TakeOff primitive is a function TakeOffDone
that returns a boolean value depending on whether the drone
has taken off or not. If the TakeOffDone function returns
false, then the stage is a break stage, otherwise NAV is
considered as a continue stage. Notice that the navigation
primitive TakeOff and the C functions called have been
forged for this example. The real C code generated may
correspond to several calls to functions that may have non-
explicit names. This code is generated from functions found
in the FPNavigationModeGen.v file.

Finally, when the drone has taken off (call 20), auto_nav
execution continues and the DEROUTE stage is executed.
This stage is a break stage and the next call to auto_nav
will execute the corresponding derouted block (block 10 here).

The grammar presented in figure 1 and used in the previous
example defines a simplified syntax of FPL. For instance, the
CALL stage has several more parameters: it is possible to
specify that the code must be executed until it returns true
or that the stage must break after the execution. We omit such
details to keep the key elements of FPL and give an intuitive
presentation of its syntax and semantics. The full definition of
FPL can be found in the flight_plan.dtd file.

https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/blob/formalise-2023/src/generator/FPNavigationModeGen.v
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Blocks and stages are normally executed one after the other
in their definition order, but DEROUTE statements or raised
exceptions can change the currently executed block. Note that
a human operator can also manually change the current block
during the flight plan execution on Paparazzi control console.

C. New features

FPL brings two new features to the language currently
used in Paparazzi. First, we add another protection mecha-
nism called forbidden deroute. Forbidden deroutes should be
specified by the user to prevent the execution of “dangerous”
block changes such as jumping directly to a block where the
drone motors are cut off from a block where the drone is
airborne. A flight plan may contain any number of forbidden
deroutes. The syntax of flight plans is extended as follows:

fp_fb_deroute ::= {|
from : block_id
to : block_id
only_when : option c_cond

|}

flight_plan ::= {|
fb_drtes : list fp_fb_deroute
excpts : list exception
blocks : list fp_block

|}
A forbidden deroute describes a deroute from a block from

to a block to that must be either unconditionally forbidden
or watched by a only_when condition6.

The second feature we added is a Paparazzi user request
about the execution of C code when entering or leaving a
block. We add the possibility for users to specify on_enter
and on_exit code for every block. This code is executed
when entering (resp. exiting) the block. Like other flight plan
details, on_enter and on_exit are not presented in FPL
formal syntax to focus on the most interesting elements of
FPL. Notice however that on_enter and on_exit are
actually handled in our verified implementation.

D. Semantics

Flight plans describe how the drone should behave when
flying autonomously. In this section, we define a semantics
for FP describing system evolution and observable events that
happen during execution. The system modeled as an execution
state and observable events is introduced in Section II-D1.
Section II-D2 presents some relevant inference rules of the
semantics. These definitions will then be used in Section III
to verify the generator. The Gallina definition of the semantics
can be found in the FPBigStep.v Coq file.

1) States and traces: A semantics generally defines how
a system evolves during its execution from an initial state
s to a final state s′, but also describes the interactions with
the outside world. These external operations are modeled by
traces or outputs. For instance, an imperative programming
language often uses, as a state, an abstraction of the com-
puter memory. The corresponding semantics describes how
the memory changes during the program execution. Traces
thus can be sequences of accesses to an external memory or
messages received and sent over a network.

Definition 1 (FP state):

6Since conditions are pieces of arbitrary C code seen as an abstract type
c_cond, we use an option type to represent unconditional deroute with None,
in order to optimize code generation.

fp_state ::= {|
idb: block_id, stages: list fp_stage ,
lidb: block_id, lstages: list fp_stage

|}
We abstract the real memory state of the flight plan by

focusing on key elements as shown in Definition 1: an environ-
ment contains the current (resp. previous) position in the flight
plan, represented by the current block idb and remaining
stages stages to be executed within this block (resp. lidb
and lstages). The previous position is saved when a deroute
or an exception occurs.

When executing a flight plan, several C functions specific
to each type of drone (fixedwing, rover, rotorcraft etc) are
called. For instance, the NavCircleWaypoint function
setting the navigation parameters to perform a circle has
different implementations for fixedwing or rotocraft drones.
The execution of the flight plan can also execute arbitrary C
code defined by the user. The semantics will therefore produce
outputs that represent calls to such C code that are considered
as external calls.

Definition 2 (Traces):
c_exec ::= COND (c_cond * bool) | C_CODE c_code
fp_trace ::= list c_exec
A single trace is a value of c_exec, i.e. the evaluation of a

condition or arbitrary C code. The bool field records the value
of the condition c_cond.

The execution of C code represented in the trace may
modify the memory environment of the drone. Specific C
functions like the navigation functions are defined outside the
flight plan code, therefore their execution does not modify
the state of the flight plan. However, arbitrary C code may
be introduced by users and we must assume that such code
does not modify the state of the flight plan as discussed in
section III-C1. The drone memory environment can thus be
decomposed into two disjoint parts: a) the memory space
abstracted by fp_state b) the memory space that can be
modified when executing C code calls represented by the
fp_trace.

Definition 3 (FP environment):
fp_env ::= (fp_state × fp_trace)
An environment contains the current state of the flight plan

and a history of the external operations that occurred.
The result of the evaluation of a condition is required to

define the semantics, but since such conditions are arbitrary
C code that cannot be interpreted, we assume the existence of
an evalc function specified as follows.

Parameter 1 (Evalc Function):
evalc : fp_env → c_cond → (bool × fp_env)
evalc e c returns a couple (b, e′) such that evaluating the C
code c returns the boolean b. The trace of the environment e
is updated by appending COND (c, b) to it, yielding e′.

The trace history contained in fp_env is essential for eval-
uating conditions. Let us consider an example: evaluating the
condition “Battery() < 80” twice may produce different
results as the drone battery is emptying during flight. But as we
chose to not specify its real outside environment, considering

https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/blob/formalise-2023/src/semantics/FPBigStep.v


a trace history allows us to support such cases and to represent
C function calls with side effects.

2) Inference rules describing flight plan semantics: We
have defined an initial fp_env noted e0 and a step func-
tion representing a usual big-step semantics evaluation func-
tion [13], [14]. The state e0 contains an empty trace and refers
to the first block of the flight plan. Executing the flight plan
then consists in calling regularly the auto_nav function. The
step function represents the execution of a call to auto_nav.
We emphasize the fact that during this execution, the flight
plan is not run to completion, but current stage and/or current
block are modified and C code may be called. The resulting
environment will be ready for another execution step. In the
following, in addition to each Notation definition, we provide
its Gallina name and a clickable link to its definition in the
source code.

Notation 1 (Step function, step):
The step function describes the execution of a call to the
navigation function:

step : flight_plan → fp_env → fp_env

step fp e = e′ noted e ↪−→
fp

e′ states that e′ is the resulting

environment after the execution of the flight plan fp starting
from the environment e. The definition of the function using
this notation is presented in the Figure 37. In the following,
we will manipulate interchangeably fp_env as one variable or
a couple of fp_state and fp_trace (see Definition 3).

The execution of a flight plan can be decomposed into two
phases. First, all exceptions are checked and if one of them
is raised, then the environment is derouted to a safe block,
otherwise the remaining stages are executed. We therefore first
present the semantics to manage exceptions, to deroute to a
block and then to execute stages.

Notation 2 (Exceptions semantics, exception):

e
exceptions
↪−−−−−→

fp
e′
w�res holds iff the test of the fp exceptions

starting from e terminates in environment e′ and res is true
iff a global or local exception has been raised.

Notation 3 (Deroute semantics, goto_block):
e

goto_block
↪−−−−−→

(fp,id)
e′ holds iff the deroute from environment e

to block id generates a new environment e′. The new envi-
ronment e′ memorizes, as the previous position, the current
position of e and its current position points to block id iff the
deroute is not forbidden. If the deroute is forbidden, the new
environment points to the same position as the environment e
with an updated fp_trace if some conditions of the forbidden
deroutes have been evaluated.

Notation 4 (Stages execution semantics, run_step):
(s, t)

stages
↪−−−→

fp
e′ holds iff the execution of fp starting from

the environment (s, t) with the list s.stages remaining
to be executed terminates in environment e′. If there are no

7Notice that in the Coq development, the semantics is implemented as
a computable function (see FPBigStep.v) but we present it as a set of
inference rules for readability.

remaining stages, the execution continues to the next block for
the next call to the step function.

We explain in the following the inference rules presented
on Figure 3. We will denote by var{f := v} a record similar
to var but with value v for field f and iddb(fp) the default
block index of the flight plan fp which is the last block of the
flight plan.

Inference rule (IR-1) describes what happens when an
exception is raised and rule (IR-2) describes what happens
when no exception is raised.

Inference rule (IR-3) describes what happens when there is
no stage to execute but the current block is not the last block of
the flight plan. In that case, the next block to be executed is the
one following the current block in the flight plan. Otherwise,
the current block becomes the default block and we stay there
(c.f. rule (IR-4)).

The most interesting part of the semantics concerns ex-
ecution of stages. When there are remaining stages to be
executed in the current environment, they are executed in their
definition order until a break stage is executed. We focus on
the presentation of the differences for stages SET, WHILE
and NAV that are representative of all stages, therefore without
loss of generality.

The SET stage (rule (IR-5)) is a continue stage that simply
assigns a value to a variable. The assigned value is arbitrary
C code and cannot be analyzed. The assignment is thus added
in the trace.

The WHILE stage executes a list of stages while a con-
dition holds. The condition is evaluated and if it holds, the
body of the loop is added at the beginning of the stages list
to be executed and the execution is stopped and the final
environment is updated (rule (IR-6)). The WHILE stage is
kept in the stages list in order to evaluate the condition and
possibly iterate the loop after having executed its body. When
the loop condition is false, the WHILE stage is consumed
and the execution continues (rule (IR-7)).

The navigation stage is designed to encapsulate the be-
haviour of all navigation primitives (CIRCLE, GO, etc). Some
of them require an initialisation step, described by the init

parameter in FP. We note e
nav

↪−−−−−−→
(fp,mode)

e′ the semantics

representing the execution of the NAV stage with parameter
mode from the state e to e′. We note init_code mode the
initial code to be executed for mode mode.

When init is set to false, the navigation code is directly
executed as presented in rule (IR-8). In the other case, an
initialisation step is required first, before executing the navi-
gation code. Rule (IR-9) describes this behaviour: init_code
is executed but the navigation stage is not consumed and is
modified by setting its init parameter to false.

The other inference rules of the semantics are similar and
can be found inside the FPBigStep.v file that contains the
Gallina definitions.

E. Generated C code

Figure 4 presents the C code generated from a simple FP
flight plan with one block and two CALL stages. We denote by

https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/blob/formalise-2023/src/semantics/FPBigStep.v#L258
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e
exceptions
↪−−−−−→

fp
e′
w�true
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s.stages = [ ] s.idb < iddb(fp)
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goto_block
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s.stages = SET (var, value) :: stages′

s′ = s{stages := stages′}
(s′, t++[C_CODE (var = value)])
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s.stages = WHILE (cond, body) :: stages′

evalc (s, t) cond = (true, (s′, t′))
s′′ = s′{stages := body ++s.stages}

(s, t)
stages
↪−−−→

fp
(s′′, t′)

(IR-6)

s.stages = WHILE (cond, body) :: stages′

evalc (s, t) cond = (false, (s′, t′))

(s′{stages := stages′}, t′)
stages
↪−−−→

fp
e′′
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(IR-7)

s.stages = NAV (mode,false) :: stages′

(s{stages := stages′}, t)
nav

↪−−−−−−−→
(fp,mode)

e′′

(s, t)
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e′′

(IR-8)

s.stages = NAV (mode,true) :: stages′

s′ = e{stages := NAV (mode,false) :: stages′}

(s, t)
stages
↪−−−→

fp
(s′, t++[init_code mode])

(IR-9)

Fig. 3. Inference rules for FP.

GEN_DEFAULT_C_CODE the code generated for the default
block added by the pre-processing8 at the end of the list
of blocks. The get_nav_block()/get_nav_stage()
functions return the value of the nav_block/nav_stage
variables, i.e. the ids of the current block/stage being executed.

{| excpts: [],
fb_drtes: [],
blocks: [

{|
id: 0,
excpts: [],
stages: [

CALL "func1()";
CALL "func2()"

]
|}

]
|}

static inline void auto_nav(void) {
switch (get_nav_block()) {

case 0: // Block 0
switch (get_nav_stage()) {

case 0: // Stage 0
func1();

case 1: // Stage 1
func2();

default:
case 3: // Default Stage

NextBlock();
break;

}
break;

case 1: // Default Block
GEN_DEFAULT_C_CODE()

}
}

Fig. 4. The C auto_nav function generated from an simple FPL file

The auto_nav function is mainly composed of a switch
statement in which every case statement corresponds to the
treatment of a block. Each block treatment also consists in a
switch statement called stage switch. Each case of a stage
switch corresponds to the execution of one stage. The previous
example shows two CALL stages which are continue stages,

8The pre-processing is one of the steps for the code generation that will be
detailed in Section III-A.

therefore the generated case statements do not contain a
break statement: if stage 0 is executed, when the function
func1 has been executed then the function func2 will be
called. Otherwise, break stages have a break statement and
the stage switch will be exited when encountering such a
stage, ending auto_nav execution. It is worth noting that the
structure of the C code generated for the stages of a block may
be different from the FP structure. In the example presented on
Figure 4, every C case statement corresponds to a FP stage,
but there are stages that may produce several case statements.
For instance, navigation stages may require an initialisation
step, depending on the parameter init, that is added as an
extra case statement in the generated code.

III. VERIFIED GENERATOR

This Section presents our new generator and how we
verified it. Section III-A presents the new architecture of
the verified generator. Section III-B presents a sketch of the
semantics preservation theorem that has been proved. Finally,
we discuss in Section III-C the hypotheses made and the
axioms used to verify the generator.

A. Code generator architecture

Figure 5 presents the code generator architecture. First,
the FPL input file is parsed by a pre-processor written in
OCaml and some tranformations are performed to generate
the FP Gallina structure representing the flight plan. The
core of the generator, written in Gallina, then translates FP
into Clight code which is then printed using an OCaml post-
processor to obtain the final C code file to be embedded in the
autopilot. The FP to Clight generator is split into three passes:
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Fig. 5. Architecture of the generator.

an extension pass, a size verification pass and a generation
pass. The extension pass transforms the FP structure into an
extended version FPE closer to the C code to be generated.
The size verification pass performs some size verification on
the FPE structure and may return errors. If the FPE is well-
sized, this pass returns a structure called FPS. The generation
pass finally converts FPS into Clight code.

We should ideally verify that the whole generator is correct.
Unfortunately, some operations such as reading and writing
files are difficult to implement in Gallina, therefore the gen-
erator frontend and backend are currently written in OCaml.
However, we are confident that these pre-processing and post-
processing phases are correct as they only perform minor
transformations. The code for these two phases can be found
in the OCaml files preproc.ml and postproc.ml.

1) Pre-processor: The first role of the pre-processor is to
convert the FPL input file into a FP Gallina structure.

The flight plan header is pre-processed with simple transfor-
mations, e.g. coordinates are converted into different formats
(UTM, LLA etc). The main transformations happen on the
core part of the flight plan: a safety block is added and macro
stages are expanded. The safety block is a block that sends
the drone to land at its take-off position. It is added at the end
of the flight plan in order to be called only when the original
flight plan has been completed. Macro stages are “syntactic
sugar” that are translated to atomic stages: FOR loops are
converted to WHILE loops and PATH stages that take a list
of waypoints to be followed by the drone are replaced by a
list of NAV primitive GO.

The final transformation indexes the blocks initially refer-
enced in FPL using names. The pre-processor verifies that
every block reference corresponds to a position of a defined
block in the FPL file (starting at index 0) and replaces each
block name with its index. The pre-processor then generates
a C file header composed of definitions (constants for the
waypoints coordinates, block names, security height, etc)
collected during the pre-processing phase.

2) Extension pass: This pass transforms FP structures
into FPE, an extended flight plan which is an intermediate
representation closer to the final C code structure9. As pre-
sented in Section II-E, the FP structure contains stages that
correspond to several case statements in the generated C
code, such as the NAV stage that requires an initialisation
stage. Some constructs like WHILE use lists of nested stages
to represent their bodies, however the stage switch only occurs
once. Moreover, all stages are referenced with indexes in the

9The Coq definitions are available in the FlightPlanExtended.v file.

generated C code but FP does not contain such indices and its
semantics proceeds by maintaining a sequence of remaining
stages to be executed. FPE has been defined to fill this gap
between FP and C code and the differences between FP and
FPE only concern stages.

The extension pass is realized by the extend_stages_-
default function numbering the stages and linearizing the
list of stages. For instance, the WHILE stage will be unfolded
by appending the loop body to the main list of stages. New
stages will be also added like NAV_INITe that corresponds
to the case where a NAV requires an initialisation stage or
END_WHILEe added after the loop body used to generate a
switch case in the generated C code that will restart the loop.

3) Size verification pass: During the pre-processing phase,
flight plans that are syntactically incorrect are rejected, but
no guarantee is obtained on the block numbering process at
the Coq level. Moreover, the generated C code aims to be
compiled and executed on drones with limited resources. In
order to optimise memory usage, integer variables like nav_-
block that contains the current block id are coded on 8 bits,
therefore limiting the number of blocks and stages to 256. We
thus defined a property verified_fp_e, noted Hws, that
is satisfied if a FPE is correct: the flight plan does not contain
more than 256 blocks, each block is well-numbered and does
not contain more than 256 stages, as well as others properties
not detailed here.

The size verification pass, realized with the function
size_verification, either returns error messages if the
flight plan is detected as incorrect or a FPS, a well-sized
flight plan. FPS is the subset of FPE flight plans that respect
the property Hws. The FPS structure also carries a proof of
Hws which will be used to prove the semantics preservation
theorem presented in Section III-B1.

The size restriction has been added after finding an issue
in the old generator as it did not perform size verification
and thus can produce a flight plan with more than 256 blocks
while using 8 bits variables to store the current block id. Some
blocks cannot therefore be accessed and the computation of
the next block id may create an overflow. This problem was
not raised before because the size upper bound is not reached
in real use cases. Flight plans are in general short as they
describe missions that can be realized by small drones with
limited batteries.

4) Clight generation function: The final Gallina generation
function is a global_definition function taking a FPS
flight plan as a parameter and returning a Clight program,
noted FPC, containing a global variable nb_block represent-
ing the number of blocks of the flight plan and some functions:

https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/blob/formalise-2023/frontend/preproc.ml
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https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/blob/formalise-2023/src/syntax/FlightPlanSized.v#L71
https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/blob/formalise-2023/src/generator/FPSizeVerification.v#L399
https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/blob/formalise-2023/src/generator/Generator.v#L234


forbidden_deroute testing if a deroute between two
blocks is forbidden or not, auto_nav and some auxiliary
functions that will not be detailed in this paper.

The functions extend_stages_default, size_-
verification and global_definition are regrouped
inside the generate_flight_plan function. This func-
tion takes a FP flight plan and produces the final Clight code
or possible warning10 and error messages, which are mainly
produced during the size verification pass.

5) Post-processor: The post-processor produces a compi-
lable C code file from the generated Clight structure. The
first part of the file is the header generated by the pre-
processor. The second part contains the functions produced by
the generator. Notice that we want to keep full compatibility
with Paparazzi and therefore be as close as possible to the
C code generated by the previous and unverified Paparazzi
code generator. Indeed, Paparazzi users may rely on the
generated code structure, incidentally or not, to develop their
own components. The flight plan is also not run in isolation
and accesses a number of global variables in Paparazzi.

The post-processor uses the CompCert PrintClight
module that translates the Gallina Clight structure into pseudo
C code. Unfortunately, this module has mainly been developed
for debugging purposes and the produced code cannot be
compiled. For instance, when a Clight variable identifier is
printed, the $ symbol is added in front of the identifier. The
post-processor makes a final pass to convert the printed C code
into a compilable one.

The generated C code is very similar to the code gen-
erated by the old OCaml generator. The only noticeable
differences are due to Clight limitations. For instance, the
boolean operator (&&) does not exist in Clight and must be
replaced by conditional statements. Similarly, expressions like
fun1(fun2()) cannot be defined in Clight and must be
split into two statements, using a temporary variable to store
the result of calling fun2().

B. Verification of the generator

The verification of the generator is divided into two parts:
we first prove that the generator behaves correctly and pre-
serves semantics and then prove that the code generated for
the auto_nav function always terminates.

1) Semantics preservation: Let us first present the abstract
semantics of a flight plan.

Definition 4 (Abstract semantics):
fp_semantics ::= {|
flight_plan_type: Type,
env: Type,
flight_plan: flight_plan_type,
init_env: env → Prop,
step: env → env → Prop

|}
fp_semantics describes the semantics of a flight plan:

the execution begins with an initial environment e0 (i.e.
init_env e0 is satisfied) and every call to the auto_nav

10Warnings will be discussed in Section V.

function is represented by the step predicate. A fp_-
semantics structure has been defined for FP, FPE, FPS and
FPC. The step function for FPC corresponds to the execution
of a call to auto_nav using the Clight semantics [15]. The
environment for FPC semantics is composed of a list of Clight
traces and a memory environment that contains at least the
same information than the fp_state . In the following, we will
denote by “fp_sem fp” the fp_semantics for the flight
plan fp and “fpc_sem cfp” the fp_semantics for the
Clight program cfp.

The idea of semantics preservation consists in “executing”
through the corresponding formal semantics both the source
program and the generated program starting from two equiva-
lent environments and to verify that both executions terminate
in equivalent states. In order to do so, we define a matching
relation env∼ between source and target environments. Two
environments are matched through the relation env∼ if they
represent the same flight plan environment.

We formalise our verification problem as a standard bisim-
ulation problem, i.e. we exhibit a forward simulation and a
backward simulation between both semantics.

Definition 5 (Simulation):
simulation FP1 FP2 (

env∼) ::= {|
match_initial_envs:

∀e1, FP1.init_env e1
→ ∃e2, FP2.init_env e2 ∧ e1

env∼ e2,
match_step:

∀e1e′1, FP1.step e1 e′1
→ ∀e2, e1

env∼ e2
→ ∃e′2, FP2.step e2 e′2 ∧ e′1

env∼ e′2
|}
Definition 6 (Bisimulation):
bisimulation FP1 FP2 (

env∼) ::= {|
forward_sim: simulation FP1 FP2 (

env∼),
backward_sim: simulation FP2 FP1 (

env∼)
|}
The definitions of fp_semantics and bisimulation

can be found in the FPBigStepGeneric.v file.
Finally, we define the semantics preservation theorem for

the flight plan generator, i.e. a bisimulation between the
semantics of FP and FPC. We note cenv∼ the matching relation
between fp_env and the environment of the FPC semantics.

Theorem 1 (Semantics Preservation):
∀fp cfp, cfp = generate_flight_plan fp

→ bisimulation (fp_sem fp) (fpc_sem cfp) ( cenv∼)
This theorem states that if the C code cfp can be generated

from the flight plan fp, then there is a bisimulation between
fp and cfp. The forward simulation property states that any
execution of fp can be simulated by the C code generated:
no behavior described by the semantics is lost during the
generation. Reciprocally, the backward simulation property
states that any Clight execution of the auto_nav function
corresponds to a behavior of the FP semantics: all executions
are allowed by the semantics.

The verification of Theorem 1 in Coq has been divided
into smaller proofs by proving bisimulation for the dif-
ferent passes of the generator, i.e. between FP-FPE (see
VerifFPToFPE.v), FPE-FPS (see VerifFPEToFPS.v)
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and FPS-FPC (see VerifFPSToFPC.v). These proofs were
finally combined using the bisimulation composition property.
The global proof of the theorem 1 can be found in the Coq
file VerifFPToFPC.v.

2) Termination: We want to ensure that the autopilot can
call the auto_nav function without the risk of being blocked
because of an infinite loop. Using Theorem 1, the termination
proof of the C code is equivalent to ensure that the FP
step function terminates (see Section II-D). Since Coq does
not allow to define non-terminating functions, the definition
of the step semantics function of FP in Gallina proves the
termination of the auto_nav function. The implementation
of this function can be found in the Coq file FPBigStep.v.

C. Verification hypotheses

The proof of the semantics preservation theorem is based on
a modeling of our system and some hypotheses. The goal of
this section is to present these choices in order to give confi-
dence in the new verified generator. Section III-C1 summarizes
the model used to define the main theorem. Section III-C2
presents all axioms defined to verify this theorem.

1) Models of the system: The drone autopilot is a complex
system evolving in a real outside environment. The auto_-
nav function interacts with the drone autopilot and indirectly
with the outside environment. An ideal property we may want
to prove is that the drone will always behave as defined in
the flight plan. Unfortunately, proving this property would
require to represent concretely the interaction between the
flight plan, the drone autopilot, and the outside environment
which is complex and time-consuming. Instead, we proved that
the execution of the auto_nav function will interact with
the drone autopilot as defined in the flight plan without any
further guarantees that the autopilot will behave correctly. As
presented in Section II-D1, we model the drone environment
by two elements: fp_state that represents the internal states
of the flight plan and fp_trace that represents the interactions
between the flight plan and the autopilot. These interactions
can be calls to functions of the autopilot but also to arbitrary
C code defined by the user (for example the code executed in
CALL stages). We thus assume that they will not modify the
internal state of the flight plan.

We also add another hypothesis for proving the termination
of the auto_nav function. As the execution of the flight plan
depends on the execution of arbitrary C code that cannot be
verified a priori, the termination of the auto_nav function
holds under the condition that arbitrary C code eventually
terminates, which we consider established by other means11.

2) Axioms: We use a parameter function called create_-
ident that takes a string and produces a Clight ident
during the code generation pass. Clight idents are used in
the Clight syntax to describe variable or function names. This
function is a Coq Parameter, i.e. it is defined in OCaml and
linked during the extraction. It has to be defined in OCaml
as the corresponding string is stored in a hashtable. The

11The WCET analysis presented in [16] shows that on a real-world example,
the function auto_nav always terminates in less time than its call period.

PrintClight function uses the hashtable to print the cor-
responding name of variables and functions. As this function
is defined outside Coq, it is not possible to prove properties
on it. We thus add an axiom stating that the create_ident
function is injective which is reasonable knowing the OCaml
implementation. The declaration of the function and the axiom
can be found in the ClightGeneration.v file.

The step property of FPC semantics executes symbolically
the Clight code of the auto_nav function from an initial
memory state and terminates in a final memory state. During
program execution, the Clight semantics produces a list of
trace that corresponds to the fp_trace of fp_env . The list
of trace must thus be generated by the execution of the
arbitrary C code of the flight plan. In the Clight semantics,
the traces are only generated for statements executing
calls of external or built-in functions. However, arbitrary C
code in Paparazzi is not restrained to these constructions.
For instance, such code may appear in the condition of
a conditional statement. Moreover, there is no way to use
results of the evalc function in the Clight semantics. We thus
define 4 axioms that are available in the ClightLemmas.v
and CommonFPVerification.v files. Roughly speaking,
these axioms can be seen as an extension of the Clight
semantics that takes into account the model defined in the
previous section by mainly adding two cases: 1) the call to a
void function produces a trace, 2) the call to a function with a
boolean result will return a value using evalc and such a call
also produces a trace.

Using these axioms, we do not need to use the external call
mechanism of Clight. We thus define another axiom stating
that the execution of external code from the same state always
produces the same trace (see the FPBigStepClight.v
file). This axiom allows to prove that the Clight semantics is
deterministic. For the proof of Theorem 1, we first proved the
forward simulation and then we used the property that Clight
is deterministic in order to prove the backward simulation.

Finally, we use some classical axioms from Coq standard
library such as excluded middle, proof irrelevance (two proofs
are equal if they prove the same property) and functional
extensionality (equality of functions is pointwise equality).
These axioms are particularly necessary when manipulating
dependent types, see Section IV-B.

IV. LESSONS LEARNED

During the development of the project, we have learned
several lessons we think valuable for those wanting to prove a
compiler with Coq. Section IV-A presents some feedback on
development process in Coq and Section IV-B presents some
technical remarks about using Coq, Clight and MathComp.

A. Development methodology

The verification of a compiler using a proof assistant like
Coq is a well-tested and tried technique. Some of the projects
using it are mature enough to be used in critical software
development (see CompCert [7] for instance). Even if its
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complexity cannot be compared to projects like CompCert or
Velus, the FPL code generator is not a toy example.

The context of the Paparazzi autopilot has constrained our
formal development in several ways. First, the FPL input
language was fixed and already in use, so we were obliged
to keep its quirks12 and propose only conservative extensions,
instead of a global redesign that could have been helpful in
order to ease the verification effort. Second, we were also
tied to a specific C code structure that users may rely upon.
Third, we needed as soon as possible to devise an executable
semantics and present it to the original FPL designers for
validation and feedback, which led us to a simple FP semantics
without a formal model of external C code.

Developing such a project with Gallina forced us to a
deep clarification of some rather tedious semantic details
and incidentally unveiled a number of issues in the original
compiler. For instance, writing down the proof allowed us
to find a bug when there are more than 256 blocks or
stages. Also, in the original semantics of FPL based on the
previous generator, we found that the DEROUTE stage has an
unexpected behaviour: when it is executed, the current position
is stored in last_block and last_stage, and the current
block becomes the derouted block. Therefore, when there is a
RETURN stage executed in the derouted block, the execution
resumes at the stored position, so the same DEROUTE stage
is executed again and the program enters an infinite loop. This
issue was only found during the formalization of the semantics
as the RETURN stage is rarely used by Paparazzi users and
when it is, it is only to resume the plan execution after an
exception.

Finally, verification of the generator by ensuring semantics
preservation is really time-consuming and on-the-fly changes
must be avoided as much as possible. Indeed, the code
generator was split into three independent passes so that the
proof effort for each pass is manageable, but also so that at
least the different passes are unlikely to change, whatever the
development hazards of the other passes.

B. Technical remarks

In order to define the syntax of FP and FPE, we naturally
wanted to reuse Coq types and libraries, such as list . We thus
defined the flight plan as presented in section II-A but we
faced a problem when performing induction over the nested
recursive fp_stage type. The induction principle generated
automatically by Coq does not take into account the interplay
between fp_stage and list . We thus had to define our own
induction principle: proving a property P for a fp_stage
requires proving P for all the different nested stages.

In Section II-D, for the sake of readability, the semantics
of FP is given through a relational presentation with inference
rules, but we decided to implement the semantics in Coq as a
step function for early validation purposes. An Ocaml inter-
preter is then obtained by mere extraction of the Coq defini-

12For instance, the fp_state only stores one previous position. If we execute
two DEROUTE then two RETURN stages, then the first return rolls back
from the second deroute as expected, but the second return does nothing.

tion. Having a function also makes it possible to automate and
simplify proofs by using normalization by evaluation instead
of manually applying many rewrite rules. Another important
point is that we wanted to avoid gratuitously assuming new
axioms about correctness of non-Gallina phases, such as pre-
processing. Therefore we used dependent types (i.e. a base
type with some property) associated with verification functions
that inject a structure from the base type if its correctness
property holds, or return an error otherwise. For instance, we
defined the type of natural numbers representable in 8 bits for
FPS and also the type of well-sized and well-numbered flight
plans (cf. Hws property in Section III-A3).

We used Clight as the output language because it has many
advantages. First, it provides a trustworthy semantics for C.
However, Clight semantics for external calls does not corre-
spond to our model. We thus have to define our own Clight
semantics for arbitrary C code, as presented in Section III-C2.
Also, our modelisation choices naturally split the flight plan
memory states from the drone states (represented by the trace
of events), thus we avoid dealing with separation logic.

Second, CompCert offers the clightgen tool that takes a
C file and converts it into a Clight structure. This tool can help
the user to understand Clight and its differences with C, by
translating existing C programs. For instance, the && boolean
operator and some other constructions do not exist in Clight
(see Section II-E).

CompCert also offers two semantics: a small-step one and
a big-step one. On the one hand, the big-step semantics is the
natural semantics which can describe the run-to-completion
model of a program. This semantics is easier to work with,
but unfortunately, it does not define the behavior of all Clight
statements such as goto, which is used for loops. On the
other hand, the small-step semantics describes the behavior of
all Clight statements. However, the small-step semantics only
describes one step of execution and the remaining code to
execute is stored in a continuation. The execution of a whole
program then corresponds to a succession of small steps which
can be tedious for verifying semantics preservation, as our own
semantics is direct and does not involve continuations.

It is also possible to produce C code with the
PrintClight module of CompCert. However, as presented
in section II-E, the module does not produce compilable C
code and some transformations have to be performed.

In addition to CompCert implementation, we also used
MathComp, a Coq library of formalized mathematics. We
used some MathComp lemmas about arithmetics on natural
numbers but we mainly used seq, a library about lists that
provides a lot of useful functions and lemmas like the drop
function that removes the first elements of a list. We also
use SSReflect, a proof language that allows to simplify proofs
compared to standard Coq proof tactics. The main problem we
faced using MathComp concerns program extraction. Indeed,
the MathComp library is not designed to be extracted into
Ocaml code as it depends on constructions that are not sup-
ported. We thus have to manually specify the only functions
that need to be extracted from MathComp.

https://github.com/AbsInt/CompCert/blob/master/cfrontend/PrintClight.ml
https://math-comp.github.io/


V. CONCLUSION

This paper presents the development and the formal ver-
ification of a new flight plan generator for the Paparazzi
autopilot. This generator is implemented in Coq as a three-
pass compiler, translating drone missions described in the
FPL language into C code. This new generator is fully
compatible with the previous unproved generator but supports
new features such as forbidden deroutes and detects erroneous
flight plans which were previously unnoticed. During the early
development stages, we developed some tests showing that
the C code generated by the two generators behave similarly
on several examples. We have defined a Gallina structure
representing FPL programs with its operational semantics and
then proved that the semantics of FPL programs is preserved
when generating Clight code. The project is composed of 1,3k
loc of OCaml for the pre- and post-processing steps and almost
17k loc of Coq with only 12% of working code (the rest are
lemmas, definitions and proofs).

As future work, we want to reduce as much as possible the
number of unverified transformations, such as the OCaml pre-
processing phase. For instance, we might use menhir with
the -coq option to get a formally verified parser. We will also
consider supporting new types of error and warning messages.
We are currently specifying and implementing warning mes-
sages when forbidden deroutes are blocking. We want to warn
the users when there is a deroute (or potential exceptions
raised) to an explicitly forbidden block in the flight plan. When
the deroute stage is executed, depending on its condition,
the change of block may be forbidden and the flight plan may
be stuck in a deadlock.

Moreover, we want to simplify the use of the generator.
Currently, the generator is a distinct project from the Paparazzi
UAV autopilot project. We plan to integrate the verified gener-
ator directly into Paparazzi build process to ease its adoption
by Paparazzi users. We should also consider connecting our
generator to CompCert to have a fully verified compiler that
translates FPL to assembly code.

Finally, we want to modularize the generator by separating
the navigation modes from the flight plan. The idea is to offer
users a generic interface to specify their own navigation mode.
They will thus have to define the semantics and the code
generation function for their navigation modes. If they prove
that the semantics is preserved for their navigation modes,
then they have a personnalised C code generator. It will then
be possible to support easily new autopilots or to use the
generator in another context that uses synchronous programs
such as finite-state machine.
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