
HAL Id: hal-04165399
https://hal.science/hal-04165399

Submitted on 19 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards network resiliency with AI driven automated
load sharing in content delivery environments
Elkin Aguas, Anthony Lambert, Hervé Debar, Gregory Blanc

To cite this version:
Elkin Aguas, Anthony Lambert, Hervé Debar, Gregory Blanc. Towards network resiliency with AI
driven automated load sharing in content delivery environments. RESSI 2020 - Rendez-vous de la
Recherche et de l’Enseignement de la Sécurité des Systèmes d’Information, Dec 2020, En Ligne,
France. �hal-04165399�

https://hal.science/hal-04165399
https://hal.archives-ouvertes.fr

Towards Network Resiliency with AI Driven
Automated Load Sharing in Content Delivery

Environments
Elkin Aguas∗†, Anthony Lambert∗, Hervé Debar†, Grégory Blanc†

∗Orange Labs, Châtillon, France
{prenom.nom}@orange.com

†Télécom SudParis, Institut Polytechnique de Paris, Evry-Courcouronnes, France
{prenom.nom}@.telecom-sudparis.eu

Abstract—Recent developments in orchestration and machine
learning have made network automation more feasible, allowing
the transition from prone-to-error, time consuming, manual ma-
nipulations to fast and refined automated responses in areas such
as network security and management. This article investigates
the capabilities of an RL agent to learn how to automatically
distribute prefixes, correct undesired network behaviours and
increase network resiliency and security. Our work focuses on
network saturation, approaching the problem of network respon-
siveness in massive content delivery scenarios. Additionally, we
propose a platform architecture to continuously monitor and
deploy actions to the network.

I. INTRODUCTION

New developments in machine learning, service deploy-
ment, and orchestration have drawn attention to the idea that
automation in networks is needed and capable of achieving
more than ever before [1]. Incorporating automation in net-
working areas such as security or management would indeed
allow transitioning from error-prone, time-consuming, manual
manipulations to faster and more refined automated responses,
providing tools and methods to come up with a more resilient
and secure network.

Network security threats have unique patterns and features,
growing more complex and dynamic with time, rendering their
identification and mitigation even more difficult. Automation
has already proven applicable to detecting and correcting
security threats in the network and application plane [2], [3],
and thanks to novel learning approaches, e.g., neural networks
and deep neural networks, facing new and more complex
threats is becoming a possibility [4].

In particular, automation alleviates the control problem that
Carriers and Internet Service Providers (ISPs) have when col-
laborating with content devlivery networks (CDNs). A direct
consequence of the complex and opaque delivery strategies
of these overlay networks and their actors, is Carriers and
ISPs becoming “dumb pipes”, as they have neither control
nor insight on how traffic is delivered to their final users. This
loss of control makes these entities vulnerable to not being
able to react to events, such as traffic congestion and flash
crowds, and certainly not attacks (such as Distributed Denial

of Services (DDoS)), that put at risk the good, working state
of the network.

There is still a way in which Carriers and ISPs can retain
some control, that is by changing the BGP prefixes announced
to the traffic sources so as to control and share the traffic
coming from them. This however is a very error-prone and
complex task, as finding and maintaining the good load
sharing, that is in an optimal and timely manner, is hard. We
believe that automation is able to reduce errors and delays of
these manual prefix announcements.

This paper evaluates the capacity of automation through
Artificial Intelligence to solve the aforementioned issue. Our
work focuses on network saturation, approaching the problem
of network responsiveness in massive content delivery scenar-
ios and building a more resilient network, one that automati-
cally handles events that put at risk its proper operation and
user quality of experience (QoE). We use Deep Reinforcement
Learning as our learning approach, firstly, because of its
model-free nature, which enables to autonomously learn (by
experience) the relation between the state of the environment
and the impact of actions applied to it. This is motivated by the
lack of datasets and models for the training process. Secondly,
because of its inherent features (continuous adaptability and
environment learning process), we believe RL can address the
constantly changing and sometimes chaotic nature of computer
networks.

II. STATE OF THE ART

Recent work in Reinforcement Learning (RL) [5], [6] con-
tinue to expand the limits of this field of machine learning,
catching up researchers’ attention and making us question our-
selves about its applicability in different areas. Communication
networks is one of these areas, and work is being already done
to improve aspects such as QoE and traffic scheduling.

Xu et al. [7] propose experience-driven networking with
a an RL approach. They present a traffic engineering (TE)
framework that reduces end-to-end delay and improves net-
work utility, without degrading the throughput (sometimes im-
proving it). The RL algorithm they propose relies on the state
of the network, represented by two components: throughput

and delay of each communication session. Their action space
is formed by the split ratios of communication sessions.

An interesting congestion control problem with RL is
presented in [8]. Jay et al. show they can monitor intricate
patterns in network conditions and data traffic, by cosidering
congestion control as an RL problem. They represent the net-
work state by bounded histories of network statistics (latency
gradient, latency ratio, and sending ratio). They apply changes
in the sending rate as the actions on their environment.

III. ARCHITECTURE

The building blocks of our proposed platform and its
interaction with a service is shown in Fig. 1. The platform
periodically monitors a service in the network, then these
measurements are passed to a Buffer block that stores it
and organizes it in a chronological order with timestamps,
a Strategy block uses the collected information to create a
representation of the state St of the network and chooses an
action at, the latter modifying the transition of the former. This
action is chosen from a finite set of predefined actions stored in
the Action block. The Orchestrator block directs the process
of choosing and action and passing it to the Deployment
block. Finally, the Deployment block applies the action to
the network.

Abstraction
Layer

Napalm Responses

ActionsOrchestrator

Salt Master

StrategyBuffer

Monitoring

Salt Proxy

Deployment

Network

Device Device

Fig. 1. Architecture diagram.

IV. LEARNING APPROACH

As previously said, Reinforcement Learning is the learning
method chosen to approach our problem. Three factors rep-
resent the interaction between the agent and the environment
in an RL problem: state, which represents the environment,
action, which is the way the RL agent changes the environment
state, and reward, which is value that says how good the action
was based on the objective to be reached. The state of our
environment is the maximum capacity, the number of prefixes
and the traffic at a certain time, for each one of the links in
Fig. 2, as well as the slope of the traffic. There are six actions
for moving prefixes from one link to another, and one action
for not moving any prefix. Finally, the reward is represented
by a function (1), with cap[link] = [Link] maximum capacity
and pref[link] = [Link] number of prefixes.

reward = −|cappeer − prefpeer|
−|capdirect − prefdirect| − |capcache − prefcache|

(1)

V. EXPERIMENTAL SETTING

Two scenarios are considered for the tests. The first one,
the prefix distribution scenario, measures the performance of
two algorithms to distribute prefixes between the interfaces in
Fig. 2, based on their traffic capacity. The second one, the
prioritized prefix distribution scenario, complexifies the task
of the first scenario by prioritizing some traffic sources over
others, as it is the case in more realistic cases where financial
reasons are often the determinant factor.

Direct
connection

ISP cacheHome ASPeer AS

Content
server

Content
server

Content
server

BGP
session

BGP
session

BGP
session

Content

Content

Content

Fig. 2. CDN architecture.

A daily traffic model based on traffic characterized from a
European tier-2 ISP in [9] is used in the training process. This
traffic model is represented by the purple line in Fig. 5. A
sample will be taken every five minutes, for technical reason
and traffic wise convenience, giving a total of 288 measures
taken per day. The number of actions per day will be between
0 and 288.

For both tests, the traffic capacity is set to 20%, 30% and
50% of the total AS incoming traffic, for peer, direct and cache
link respectively. On each episode of the training process, a
new set of initial randomly chosen prefixes for the three links
is generated.

the prefix distribution scenario considers three cases. The
first (no-algorithm case) does not consider any prefix redis-
tribution algorithm, meaning that the initial random prefix
distribution will stay during the whole day. We call the second
case Naive Algorithm, and it is based on previous work
we performed in [10]. It takes into consideration a set of
conditional rules to verify the traffic in all the links and then
distribute one prefix at a time based on this choice. Finally,
the third case is our Deep Reinforcement Learning (DRL)
algorithm that moves batches of prefixes.

The prioritized prefix distribution scenario, uses a special
version of the DRL algorithm is used. We call it Priority Aware
DRL (PADRL). This algorithm has a new reward function that
reflects the desired prioritization between content sources.

The tests described above will allow to demonstrate that
the RL agent is capable to learn the correct set of actions to
reduce traffic loss, and therefore saturation in the network.

VI. PERFORMANCE ANALYSIS

Fig. 3 shows the maximum, mean, and minimum number
of actions for the algorithms after one thousand executions
of the test. Results show a proportional relation between the
complexity of the algorithm and the number of actions it uses.

The no-algorithm case is not considered here because no action
is ever taken. The average number of actions for DRL almost
triples the number for the Naive algorithm, and for PADRL it
is more than three times the number for DRL.

Naive DRL PADRL
Method

0

50

100

150

200

250

N
um

be
r

of
 a

ct
io

ns

76

31.15

0

205

84.032

2

285
271.07

38

Max actions
Mean actions
Min actions

Fig. 3. Number of actions per method.

Fig. 4 presents the results of the traffic loss for all cases and
for one thousand executions of the test. The loss percentage
presented here is calculated from the total traffic entering the
AS. Contrary to what we observed for the number of actions,
a more complex algorithm means a lower traffic loss, however,
using the most actions does not mean having the lowest loss
percentage, which is the case of PADRL. Less traffic loss
means less traffic congestion, which indicates the network
learns to be resilient to events creating this undesired state.

The increase in the number of actions and decrease in
the traffic loss, indicates that our RL algorithm can create a
model that tries to reach the goal we gave to it, which is the
distribution of prefixes to reduce congestion and traffic loss.

no-algorithm Naive DRL PADRL
Method

0

5

10

15

20

25

30

35

40

Lo
ss

 p
er

ce
nt

ag
e

40.94

8.04

0

17.81

2.94
0 1.0450.0370

4.3

0.57 0

Max loss
Mean loss
Min loss

Fig. 4. Traffic loss per method.

Fig. 5 shows the distribution process for the DRL algorithm.
The trained model brings the initial random number of prefixes
on the left, represented by dashed and dotted lines, down to

their expected values. After a convergence period of repeatedly
moving prefixes, the model set the prefix distribution very
close to the expected 20%, 30% and 50%.

0 50 100 150 200 250 300
Sample (24h period sampling each 5 minutes)

0

20

40

60

80

100

Tr
af

fic
 (%

)

Total traffic
Peer prefix distribution
Direct prefix distribution
Cache prefix distribution
Peer traffic
Direct traffic
Cache traffic

Fig. 5. Prefix distribution with DRL.

VII. CONCLUSION

Using RL to distribute BGP prefixes and increase network
resiliency is feasible. Results show that, by increasing the
number of actions taken and reducing the traffic loss, an RL
agent is capable of learning the correct actions that lead to a
better state of the network. Results also suggest that the base
case of prefix distribution can be extended to more complex
ad realistic cases, such as the prioritization case described, by
changing the reward function of the RL algorithm.

REFERENCES

[1] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez, “z-torch: An au-
tomated nfv orchestration and monitoring solution,” IEEE Transactions
on Network and Service Management, vol. 15, no. 4, pp. 1292–1306,
Dec 2018.

[2] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser, “De-
tecting spammers with snare: Spatio-temporal network-level automatic
reputation engine,” in Proceedings of the 18th Conference on USENIX
Security Symposium, ser. SSYM’09. USA: USENIX Association, 2009,
p. 101–118.

[3] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for dns,” in Proceedings of the
19th USENIX Conference on Security, ser. USENIX Security’10. USA:
USENIX Association, 2010, p. 18.

[4] N. Dionı́sio, F. Alves, P. M. Ferreira, and A. Bessani, “Cyberthreat
detection from twitter using deep neural networks,” in 2019 International
Joint Conference on Neural Networks (IJCNN), July 2019, pp. 1–8.

[5] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent tool use from multi-agent autocurricula,”
2019.

[6] K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “The tools challenge:
Rapid trial-and-error learning in physical problem solving,” 2019.

[7] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, April 2018, pp. 1871–1879.

[8] N. Jay, N. H. Rotman, P. B. Godfrey, M. Schapira, and A. Tamar,
“Internet congestion control via deep reinforcement learning,” 2018.

[9] Q. Grandemange, O. Ferveur, M. Gilson, and E. Gnaedinger, “A live net-
work as-level traffic characterization,” in 2017 International Conference
on Computing, Networking and Communications (ICNC), Jan 2017, pp.
901–905.

[10] E. Aguas, T. Green, and A. Lambert, “Poster abstract: On the feasi-
bility of event-driven network automation scenarios for bgp,” in IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), April 2019, pp. 1031–1032.

