
HAL Id: hal-04165354
https://hal.science/hal-04165354v1

Preprint submitted on 18 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recurrent Neural Networks with more flexible memory:
better predictions than rough volatility

Damien Challet, Vincent Ragel

To cite this version:
Damien Challet, Vincent Ragel. Recurrent Neural Networks with more flexible memory: better pre-
dictions than rough volatility. 2023. �hal-04165354�

https://hal.science/hal-04165354v1
https://hal.archives-ouvertes.fr

RECURRENT NEURAL NETWORKS WITH MORE FLEXIBLE
MEMORY: BETTER PREDICTIONS THAN ROUGH VOLATILITY

Damien Challet1 and Vincent Ragel1,2
1 Université Paris Saclay, CentraleSupélec, Laboratoire MICS,

91190 Gif-sur-Yvette, France
2 BNP Paribas, 20 boulevard des Italiens, 75008 Paris, France
damien.challet,vincent.ragel@centralesupelec.fr

ABSTRACT

We extend recurrent neural networks to include several flexible timescales for each dimension of their
output, which mechanically improves their abilities to account for processes with long memory or
with highly disparate time scales. We compare the ability of vanilla and extended long short term
memory networks (LSTMs) to predict asset price volatility, known to have a long memory. Generally,
the number of epochs needed to train extended LSTMs is divided by two, while the variation of
validation and test losses among models with the same hyperparameters is much smaller. We also
show that the model with the smallest validation loss systemically outperforms rough volatility
predictions by about 20% when trained and tested on a dataset with multiple time series.

Keywords Time series · Long memory · Recurrent Neural Networks · Rough Volatility · Volatility modelling

1 Introduction

Some time series in Nature have a very long memory (Robinson, 2003): fluid turbulence (Resagk et al., 2006), asset
price volatility (Cont, 2001) and tick-by-tick events in financial markets (Challet and Stinchcombe, 2001; Lillo and
Farmer, 2004). From a modelling point of view, this means that the current value of an observable of interest depends
on the past by a convolution of itself with a long-tailed kernel.

Deep learning tackles past dependence in time series with recurrent neural networks (RNNs). These networks are in
essence moving averages of nonlinear functions of the inputs and learn the parameters of these averages and functions.
Provided that they are sufficiently large, these networks can approximate long-tailed kernels in a satisfactory way,
and are of course able to account for more complex problems than a simple linear convolution. Yet, their flexibility
may prevent them to learn quickly and efficiently the long memory of time series. Several solutions exist: either one
pre-filters the data by computing statistics at with various time scales and use them as inputs to RNNs in the same spirit
as multi-time scale volatility modelling (Zumbach and Lynch, 2001; Corsi, 2009), see e.g. Kim and Won (2018), or
one extends the neural networks so as to improve their abilities. For example, Zhao et al. (2020) adds delay operators,
taking inspiration from the ARIMA processes, to the states of recurrent neural networks, while Ohno and Kumagai
(2021) modifies the update equation of the network output so that its dynamics mimics that of a variable with a long
memory. In both cases, the time dependence structure is enforced by hand in the dynamics of such networks.

Here, we propose a flexible and parsimonious way to extend the long-memory abilities of recurrent neural networks by
using an old trick for approximating long-memory kernels with exponential functions, which helps recurrent neural
networks learn faster and better time series with long memory.

Our main contributions are: (i) we introduce RNNs with several multiple flexible time scales for each dimension of the
output; (ii) we show that learning to predict time series with long-memory (asset price volatility) is faster and more
reliably good with more flexible time scales (iii) rough volatility predictions can be beaten by training a fair number of
recurrent neural networks and only using the one with the best validation loss.

Recurrent neural networks with more flexible memory: better predictions than rough volatility

2 Methods

Let time series yt be of interest. Its moving average can be written

ỹt =

∫ t

−∞
K(t− t′)y′tdt

′, (1)

where K is a kernel. In a discrete time context,

ỹt =

t∑
−∞

K(t− t′)y′t. (2)

When the process is Markovian, its kernel K(x) ≃ e−x/τ0 for large x, where τ0 is the slowest timescale at which the
process forgets its past. In this case, one can write yt in a recursive way

ỹt = ỹt−1(1− λ) + λyt, (3)

where λ ≃ 1/τ0; ỹt is then an exponentially moving average (EMA) of yt.

Long memory processes however, have a kernel that decreases at least as slowly as a power-law. In turn, power-laws
can be approximated by a sum of exponential functions: naively, if K(x) = x−α, one writes

K(x) ∝
∞∑
i=1

wi exp(−x/τi) (4)

with wi ∝ (1/cα)i and τi = ci for a well-chosen constant c: one covers the x space in a geometric way and the
weights wi account for the power-law decreasing nature of K(x). This rough approach works well and is widespread.
Bochud and Challet (2007) propose a more refined method to determine how many exponential functions one needs to
approximate optimally K and how to compute wi for a given α and for a given range of x over which the kernel has to
be approximated by a sum of exponential functions (e.g. x ∈ [1, 1000]). For example, one needs about 4 exponential
functions to approximate 3 decades).

Writing down the update equations of well-known recurrent neural network architectures makes it clear that they use
exponentially moving averages with a single time scale for each output dimension. For example, Gate Recurrent Units
(GRU) Cho et al. (2014) transform the input vector xt into a vector of timescales λt defined as

λt = σ(Wλxt + Uλct−1 + bλ) (5)

which is then used in the update of the output ct

ct = ct−1 ⊙ (1− λ) + λ⊙ c̃t, (6)

where the update c̃t is also computed from the input with learned weights, i.e.

c̃t = σc(Wcxt + Uc(ct−1 ⊙ rt) + bc) (7)
rt = σr(Wrxt + Urct−1 + br) (8)

for a non-linear functions σc and σr, ⊙ is the element-wise (Hadamar) product and rt the reset gate which modifies the
value of ct−1 when computing c̃t. By design, GRUs can only compute exponentially moving averages of c̃t, although
they possess the interesting ability to learn both λt and the update c̃t as a function of their inputs. It is straightforward
to extend GRUs to an arbitrary number of timescales n by using n c̃

(k)
t , k = 1, · · · , n and

λ
(k)
t = σ(W

(k)
λ xt + U

(k)
λ c

(k)
t−1 + b

(k)
λ) (9)

c
(k)
t = c

(k)
t−1 ⊙ (1− λ

(k)
t) + λ

(k)
t c̃t, (10)

where each c
(k)
t is an exponentially moving average at time scale ∼ 1/λ

(k)
t . Finally, the output will be

ct =

n∑
k=1

wkc
(k)
t , (11)

2

Recurrent neural networks with more flexible memory: better predictions than rough volatility

The simple α−RNN (Dixon and London, 2021), which are simplified GRUs, share the same assumption of a single
time scale per output dimension and thus can be generalized in the same way. Let us show now how extend LSTMs
with a forget gate (Gers et al., 2000). Starting from their output ht, one has

ht = ot ⊙ σh(ct) (12)
ct = ft ⊙ ct−1 + it ⊙ c̃t, (13)

where ot, it, and c̃t are determined from the input xt and the previous output ht−1 with learned weights and σh is a
nonlinear function. Writing ft = 1− λt makes it obvious that the cell vector ct evolves in the same way as yt in Eq. (6)
if it ≃ λt.

Extending LSTMs to include n time scales by cell state dimension is therefore straightforward: one needs to compute n
EMAs and their associated λs as follows

f
(k)
t = σ(W

(k)
f xt + U

(k)
f ht−1 + b

(k)
f) (14)

i
(k)
t = σ(W

(k)
i xt + U

(k)
i ht−1 + b

(k)
i) (15)

c
(k)
t = f

(k)
t ⊙ c

(k)
t−1 + i

(k)
t ⊙ c̃t, (16)

where c̃t follows Eq. (11). Note that one could set i(k)t = 1− f
(k)
t = λ

(k)
t and not learn the weights associated to it.

Learning as well i(k) is equivalent to modulate the importance of the update, which is known as to as cognitive bias
(Palminteri et al., 2017): this is made clear by writing i

(k)
t = v

(k)
t (1− f

(k)
t) = v

(k)
t λ

(k)
t , where v

(k)
t is the modulation

of learning speed.

We will focus on the case n = 2: (11) amounts to

ct = c
(1)
t ⊙ α+ (1− α)⊙ c

(2)
t , (17)

where the vector α is learnable and its components are bounded to the [0, 1] interval. We call LSTMs with several time
scales (n > 1) per dimension VLSTMs, which stands for very long short term memory.

Note that LSTMs with a sufficiently large cell dimension Nh can in principle learn to superpose timescales in the same
way as Eq. (11) by learning one time scale per dimension and using final dense layer to learn how to combine them.
However, imposing constraints (or equivalently, injecting some known structure) is known to lead to faster learning and
better results (e.g. Physics-guided deep learning, see Thuerey et al. (2021) for a review).

Naively, when learning to predict a process that is not too noisy, we expect the difference between VLSTM and LSTM
to be the highest when Nh = 1, i.e. precisely when LSTMs do not have the possibility to compute long-term averages
and to decrease when Nh increases.

2.1 Volatility prediction

Given an asset price Pt, its and its log return rt = logPt−logPt−1, the asset price volatility σ is defined as σ2 = E(r2).
The dynamics of financial markets is ever-changing, which results in a temporal dependence of σ with clear patterns of
long-term dependence (Cont, 2001) (see Fig. 1).

Risk management, portfolio optimization. and option pricing benefit from the ability to predict the evolution of σt.
Fortunately, σt is relatively easy to predict, owing to its long memory (Cont, 2001): for example, its auto-correlation
decreases very slowly, presumably as a power-law over more than a year. Econometric models include GARCH,
whose simplest version involves only one timescale, while many variations use several time scales (Zumbach and
Lynch, 2001; Corsi, 2009; Zumbach, 2015). Rough volatility (Gatheral et al., 2018), on the other hand, considers
log σt as fractional Brownian motion and thus includes all the time scales. As can be expected, rough volatility models
outperform GARCH-based models for volatility prediction. Using LSTMs for volatility prediction is found e.g. in Kim
and Won (2018); Filipović and Khalilzadeh (2021); Rosenbaum and Zhang (2022) that use various types of predictors
(including GARCH models) and architectures. Notably, Rosenbaum and Zhang (2022) show that the average prediction
of 10 stacked LSTMs with past volatility and price return as predictors match the performance of rough volatility.

2.2 Architecture and hyperparameters

Our first aim is to characterise the effects of multiple time scales per cell dimension. Therefore, we compare simple
non-stacked LSTMs with or without the proposed modification. Stacked LSTMs can learn additional time scales at

3

Recurrent neural networks with more flexible memory: better predictions than rough volatility

2000 2004 2008 2012 2016 2020
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

vo
la

til
ity

Figure 1: Volatility of the SPX index (annualized) as a function of time, showing traces of long-term dependence. Data
source: Oxford-Man Institute (Heber et al., 2022).

the cost of doubling the number of parameters, which we precisely wish to avoid here. We pass the outputs ht of the
LSTMs and VLSTMs through a dense layer of size Nh with sigmoid activation functions, so as to combine the outputs
in a non-trivial way, and a final dense layer with linear activation. Both final layers have a bias term, which allows the
model to learn a baseline volatility level.

We report a systematic study of the relative performance of LSTMs vs VLSTMs. We vary the sequence length Tseq
from 10 to 100 by steps of 15, and the dimension of the hidden state Nh ∈ {1, · · · , 5}. Finally, we train models with
and without biases (except for the final two dense layers which always have biases). There are thus 70 variations of
hyperparameters per architecture choice.

For each hyperparameter and architecture couple, we train 20 networks which yields 2800 models altogether. We use a
standard 60/20/20 train/validation/test splits and apply early stopping criterion of the minimum validation loss over the
5 last epochs, with a maximum of 1000 epochs. Batch size is set to 128. We train the networks to predict log σt+1 with
an MSE loss function.

Data comes from volatility computed by Oxford-Man Institute from intraday data with the two-scale realized kernel
estimation method (Barndorff-Nielsen et al., 2008), which contain volatility time series for 31 indices and 2117 to 5385
data points per index (Heber et al., 2022). Since the volatility individual time series start and end at heterogeneous
dates, we used the dates to define the train/validation/test splits: the train set ranges from 2000-01-04 to 2012-09-06,
validation set from 2012-09-07 to 2016-11-23 and test set from 2016-11-24 to 2021-02-17. This is necessary as the
time series are cross-correlated, hence, splitting them according to their respective length would cause information
leakage from the future and thus overfitting.

3 Results

3.1 Average loss

Let us plot the average test loss of LSTMs and VLSTMs as a function of Nh at fixed Tseq, the dimension of the memory
cell, and of Tseq at fixed Nh. This approach is taken by Rosenbaum and Zhang (2022) who trained 10 LSTMs instead
of 20 here. Figure 2 shows that VLSTMs enjoy a sizeable advantage on average. We note that when Nh = 1, our initial
intuition was correct: VLSTMs have a smaller average test loss for all variations of hyperparameters (Tseq and bias)

Large loss fluctuations among models are associated with large average test losses for both VLSTMs and LSTMs;
however test losses of VLSTMs are more likely to be small (and have accordingly small fluctuations). This is
explained by a large difference in training convergence time, as shown below. We also note that, at least for volatility
prediction, keeping bias terms in the computation of i, f , c̃, and c (referred to as internal biases henceforth) is manifestly
problematic; it turns out to be the default option both for PyTorch and Keras and is probably implicitly used in other
papers. On the whole, we note that a simple average of the outputs of an ensemble of models leads to quite large
fluctuations, hence that the question of the convergence of the models must be investigated and a way to select the good
models would much improve the usefulness of LSTMs in that context.

4

Recurrent neural networks with more flexible memory: better predictions than rough volatility

1 2 3 4 5
Nh

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
m

ea
n

te
st

 lo
ss

LSTM bias
VLSTM bias

1 2 3 4 5
Nh

0.2

0.4

0.6

0.8

1.0

1.2

m
ea

n
te

st
 lo

ss

LSTM no bias
VLSTM no bias

10 25 40 55 70 85 100
Tseq

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ea

n
te

st
 lo

ss

LSTM bias
VLSTM bias

10 25 40 55 70 85 100
Tseq

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ea

n
te

st
 lo

ss

LSTM no bias
VLSTM no bias

Figure 2: Volatility prediction. Upper plots: mean test loss vs the memory cell dimension Nh (Tseq = 40); lower plots:
mean test loss vs the sequence length Tseq (Nh = 2). Left plots: (V)LSTMs with bias weights; right plots: (V)LSTMs
with no bias weights. The dashed line is the average MSE of predictions made with rough volatility models.

Train convergence, it turns out, is a hit and miss process: some models are stuck in a high loss regime, while some
models do learn a more realistic dynamical process and reach much lower losses. This yields a bi-modal density of
losses (see Fig. 3). It is noteworthy that the fraction of VLSTMs that learn better is much larger. This is linked to the
fact that VLSTMs learn much faster (see below) and that VLSTMs without internal biases are less likely to be stuck in
a high loss regime.

Since the volatility process is well approximated e.g. by a rough volatility model (?), the test loss is commensurate
with the validation loss as expected, itself commensurate with the train loss. We plot in Fig. 3 the test loss versus the
validation loss, which shows that test losses are accordingly also bimodal, with a majority of models not stuck in the
high loss regime, some having a test loss smaller than rough volatility models.

3.2 Keeping the better models

This result suggests a way to select the good models, since the validation loss distribution is bimodal and since the
test losses are roughly proportional to validation losses. To select models whose validation loss belongs in the lower
peak, we compute 9 quantiles q(p) with regular sequence of probabilities p = 0.1, · · · , 0.9, and keep the models whose
validation loss is smaller than the quantile corresponding to the maximum change between quantiles, a simple yet
effective way to find well separated peaks. We call these models the better ones in the following. This procedure allows
a fairer comparison between LSTMs and VLSTMs.

VLSTMs are still better than LSTMs, even for larger Nh. Figure 4 plots the average test loss of the models with
below-average validation loss versus Nh and the sequence length. The test losses are now much closer, but VLSTMs
still retain a sizable advantage: their test losses are both lower on average and their fluctuations are much smaller.

Both the variability of results and the strange results for Nh = 1 when biases are allowed in the computation of the
internal states of (V)LSTMs can be traced back to training convergence problems. A simple way to ascertain the main

5

Recurrent neural networks with more flexible memory: better predictions than rough volatility

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
validation loss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

NN
LSTM no bias
LSTM bias
VLSTM no bias
VLSTM bias

100

validation loss

100

te
st

 lo
ss

LSTM no bias
LSTM bias
VLSTM no bias
VLSTM bias

Figure 3: Left plot: density of validation losses by architecture. Right plot: test loss vs validation loss. Multiple
volatility time series prediction. The dashed line is the average MSE of predictions made with rough volatility models.

1 2 3 4 5
Nh

0.22

0.24

0.26

0.28

0.30

0.32

0.34

m
ea

n
te

st
 lo

ss

Better models Tseq = 100
LSTM bias
VLSTM bias

1 2 3 4 5
Nh

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

m
ea

n
te

st
 lo

ss

Better models Tseq = 100
LSTM no bias
VLSTM no bias

10 25 40 55 70 85 100
Sequence length

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

m
ea

n
te

st
 lo

ss

Better models Nh = 3

LSTM bias
VLSTM bias

10 25 40 55 70 85 100
Sequence length

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

m
ea

n
te

st
 lo

ss

Better models Nh = 3

LSTM no bias
VLSTM no bias

Figure 4: Multiple volatility time series prediction test losses of the models with below-average validation losses. Upper
plots: mean test loss vs the memory cell dimension Nh (Tseq = 100); lower plots: mean test loss vs the sequence length
Tseq (Nh = 3). Left plots: (V)LSTMs with bias weights; right plots: (V)LSTMs with no bias weights. The dashed line
is the average MSE of predictions made with rough volatility models.

6

Recurrent neural networks with more flexible memory: better predictions than rough volatility

Architecture bias test loss test loss
average std dev.

rough vol. 0.288
LSTM yes 0.241 0.032
LSTM no 0.245 0.057
VLSTM yes 0.232 0.017
VLSTM no 0.230 0.015

Table 1: Standard deviation of the test losses of the better models computed over all the values of Nh and Tseq. Multiple
time series volatility prediction

100 200 300 400
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ea
rl

y
st

op
pi

ng
 p

ro
po

rt
io

n

Batter-than-average models Nh = 1
NN

LSTM bias
LSTM no bias
VLSTM bias
VLSTM no bias

0 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ea
rl

y
st

op
pi

ng
 p

ro
po

rt
io

n

Better-than-average models Tseq = 100

NN
LSTM bias
LSTM no bias
VLSTM bias
VLSTM no bias

Figure 5: Fraction of models having converged before a given number of epochs. Left plot: Nh = 1, right plot: all Nh;
multiple time series volatility prediction, Tseq = 100.

difference between VLSTMs and LSTMs is to measure the time it takes for their training to converge, i.e., to reach the
early stopping criterion. Figure 5 reports the fraction of models that have converged as a function of the number of
epochs (limited to 1000). LSTMs need more epochs to be trained. We also found that the case Nh = 1 and small Tseq is
hard to learn for this kind of architecture, the training of many models requiring more than 1000 epochs to reach the
early stopping criterion.

3.3 Best model

Finally, let us investigate the test loss of the model with the best validation loss among the 20 models trained for each
of the 140 hyperparameters/architecture choices. It turns out that under these conditions VLSTMs and LSTMs have
essentially the same performance. What differentiate them however is the speed at which they learn. Let us plot the test
loss versus the time of convergence for LSTMs and VLSTMs with and without biases (left plot of Fig. 6): there is slight
negative dependence between test loss and convergence times, the longer one learns, the better. Notably convergence
times of LSTMs are spread all over the whole [1, 1000] interval, while VLSTMs converge before 400 epochs. The right
plot of Fig. 6 displays the ECDF of the convergence times, which shows a sizable difference between LSTMs and
VLSTMs: whereas 20% of LSTMs models do not manage to converge before 1000 epochs, all VLSTMs do before 400,
except one, when biases are allowed.

Thus, training a given number of models is significantly shorter with VLSTMs because they do not need to learn how to
approximate the kernel K(x). One also sees that models with internal biases converge more slowly than those without
them. We also wish to point out that because the fluctuation of validation losses among the trained models is much
smaller for VLSTMs than for LSTMs, hence, that in practice, one needs to train fewer VLSTMs than LSTMs before
finding a good one.

4 Conclusion

Adding an explicit but flexible kernel structure to LSTMs brings significant improvements in every metric: number
of epochs needed to reach convergence, overall prediction accuracy, and accuracy variation between models at fixed

7

Recurrent neural networks with more flexible memory: better predictions than rough volatility

0 200 400 600 800 1000
Convergence time

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29
Te

st
 lo

ss

Best model

LSTM bias
LSTM no bias
VLSTM bias
VLSTM no bias

0 200 400 600 800 1000
Convergence time

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

Best model

NN
LSTM bias
LSTM no bias
VLSTM bias
VLSTM no bias

Figure 6: Left plot: test loss of the models with the best validation loss for all architecture and hyperparameter choices.
Right plot: empirical cumulative distribution function of the convergence time for the four architecture choices. All
values of Nh and Tseq; multiple time series volatility prediction. The dashed line is the average MSE of predictions
made with rough volatility models.

parameters. There is a cost as the number of trainable parameters of VLSTMs is larger than LSTMs are fixed
hyperparameters, but doubling the number of time scales does not require to double the number of trainable parameters,
thanks to the explicit kernel approximation structure. Although this paper focuses on LSTMs, the same idea can be
applied to GRUs and α−RNNs in a straightforward way.

Our results mirror those of Rosenbaum and Zhang (2022): we also succeeded in training a single model at a time on
many volatility time series of various underlying asset types. This reflects the universality of volatility dynamics, a fact
also hinted at by rough volatility and multi-scale GARCH-like models (Zumbach, 2015).

While it is hard to beat rough volatility for volatility prediction, we found that even simple LSTMs can beat it, provided
that one trains several models and selects the best one according to its validation loss. Using LSTMs for that purpose
requires to train more models over more epochs than using VLSTMs. Volatility prediction can be further improved by
adding some more features, such as prior knowledge of predictable special events, and possibly by using more complex
neural architectures.

5 Code and data availability

Full code, including the Keras VLSTM class, and data, are available at https://github.com/damienchallet/
VLSTM.

Acknowledgments

This work used HPC resources from the “Mésocentre” computing center of CentraleSupélec and École Normale
Supérieure Paris-Saclay supported by CNRS and Région Île-de-France.

References
Ole E Barndorff-Nielsen, Peter Reinhard Hansen, Asger Lunde, and Neil Shephard. Designing realized kernels to

measure the ex post variation of equity prices in the presence of noise. Econometrica, 76(6):1481–1536, 2008.

Thierry Bochud and Damien Challet. Optimal approximations of power laws with exponentials: application to volatility
models with long memory. Quantitative Finance, 7(6):585–589, 2007. doi: 10.1080/14697680701278291.

Damien Challet and Robin Stinchcombe. Analyzing and modeling 1+ 1d markets. Physica A: Statistical Mechanics
and its Applications, 300(1-2):285–299, 2001.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078, 2014.

8

https://github.com/damienchallet/VLSTM
https://github.com/damienchallet/VLSTM

Recurrent neural networks with more flexible memory: better predictions than rough volatility

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative finance, 1(2):223,
2001.

Fulvio Corsi. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7
(2):174–196, 2009.

Matthew Dixon and Justin London. Financial forecasting with α-rnns: A time series modeling approach. Frontiers in
Applied Mathematics and Statistics, 6, 2021. doi: 10.3389/fams.2020.551138.

Damir Filipović and Amir Khalilzadeh. Machine learning for predicting stock return volatility. Swiss Finance Institute
Research Paper, (21-95), 2021.

Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quantitative finance, 18(6):933–949,
2018.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with LSTM. Neural
computation, 12(10):2451–2471, 2000.

Gerd Heber, Asger Lunde, Neil Shephard, and Kevin Sheppard. Oxford-Man Institute’s realized library, 2022. URL
https://realized.oxford-man.ox.ac.uk/.

Ha Young Kim and Chang Hyun Won. Forecasting the volatility of stock price index: A hybrid model integrating lstm
with multiple GARCH-type models. Expert Systems with Applications, 103:25–37, 2018. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2018.03.002.

Fabrizio Lillo and J Doyne Farmer. The long memory of the efficient market. Studies in Nonlinear Dynamics &
Econometrics, 8(3), 2004.

Kentaro Ohno and Atsutoshi Kumagai. Recurrent neural networks for learning long-term temporal dependencies with
reanalysis of time scale representation. In 2021 IEEE International Conference on Big Knowledge (ICBK), pages
182–189. IEEE, 2021.

Stefano Palminteri, Germain Lefebvre, Emma J Kilford, and Sarah-Jayne Blakemore. Confirmation bias in human
reinforcement learning: Evidence from counterfactual feedback processing. PLoS computational biology, 13(8):
e1005684, 2017.

Christian Resagk, Ronald du Puits, André Thess, Felix V Dolzhansky, Siegfried Grossmann, Francisco Fontenele Araujo,
and Detlef Lohse. Oscillations of the large scale wind in turbulent thermal convection. Physics of fluids, 18(9):
095105, 2006.

Peter M Robinson. Time series with long memory. Advanced Texts in Econometrics, 2003.
Mathieu Rosenbaum and Jianfei Zhang. On the universality of the volatility formation process: when machine learning

and rough volatility agree. arXiv preprint arXiv:2206.14114, 2022.
Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um. Physics-based Deep

Learning. WWW, 2021. URL https://physicsbaseddeeplearning.org.
Jingyu Zhao, Feiqing Huang, Jia Lv, Yanjie Duan, Zhen Qin, Guodong Li, and Guangjian Tian. Do RNN and LSTM

have long memory? In International Conference on Machine Learning, pages 11365–11375. PMLR, 2020.
Gilles Zumbach. Cross-sectional universalities in financial time series. Quantitative Finance, 15(12):1901–1912, 2015.
Gilles Zumbach and Paul Lynch. Heterogeneous volatility cascade in financial markets. Physica A: Statistical Mechanics

and its Applications, 298(3-4):521–529, 2001.

9

https://realized.oxford-man.ox.ac.uk/
https://physicsbaseddeeplearning.org

	Introduction
	Methods
	Volatility prediction
	Architecture and hyperparameters

	Results
	Average loss
	Keeping the better models
	Best model

	Conclusion
	Code and data availability

