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A SIMPLE OBSERVATION ON THE UNCERTAINTY PRINCIPLE FOR THE FRACTIONAL FOURIER TRANSFORM

The aim of this letter is to show that uncertainty principles for the pair u, F[u] (F the Fourier transform) can be tranfered without much effort to the pair Fα[u], F β [u] (Fα the Fractional Fourier transform) provided β -α / ∈ πZ. This letter is essentially of a tutorial nature and aims at avoiding that people waste their efforts on adaptations of the proofs from classical Fourier analysis to the fractional setting.

Introduction

The Fractional Fourier Transform (FrFT) was introduced by Condon [START_REF] Condon | Immersion of the Fourier transform in a continuous group of functional transformations[END_REF] by solving for the Green's function for phase-space rotations, and also in quantum mechanics by Namias [START_REF] Namias | The fractional order Fourier transform and its applications to quantum mechanics[END_REF] generalizing work of Wiener [START_REF] Wiener | Hermitian Polynomials and Fourier Analysis[END_REF] on Hermite polynomials. Further applications include optics and signal processing see e.g. [START_REF] Almeida | The fractional Fourier transform and time-frequency representations[END_REF][START_REF] Zhang | A Comprehensive Survey on Fractional Fourier Transform[END_REF], the book [START_REF] Ozaktas | The Fractional Fourier Transform with Applications in Optics and Signal Processing[END_REF] or the author's paper in relation to phase retrieval [START_REF] Ph | Uniqueness results in an extension of Pauli's phase retrieval[END_REF] to name a few.

Let us give a definition of this transform and list the properties that are sufficient for the needs of this letter. Most of them can be found e.g. in [START_REF] Bultheel | Recent developments in the theory of the fractional Fourier and linear canonical transforms[END_REF][START_REF] Zayed | On the relationship between the Fourier and fractional Fourier transforms[END_REF] and a more systematic study of the FrFT in relation to the representation theory of the metapleptic group can be found in [START_REF] De Gosson | Metaplectic group, symplectic cayley transform, and fractional fourier transforms[END_REF]. First, for u ∈ L 1 (R d ) ∩ L 2 (R d ) we define the Fourier transform as 

F[u](ξ) = R d u(t)e -2iπ t,ξ dt, ξ ∈ R d
F α [u](ξ) = c α γ α (ξ)F[γ α u](ξ/ sin α).
where

(i) γ α (x) = e -iπ|x| 2 cot α (note that |γ α | = 1); (ii) c α = exp i 2 α -π 2 | sin α| is a normalisation constant (c α is a square root of 1 -i cot α so that |c α | = 1 | sin α| ).
For k ∈ Z, we define

F 2kπ u(ξ) = u(ξ), F (2k+1)π u(ξ) = u(-ξ). Also note that, F π/2 = F, F -π/2 = F -1 .
Further, let us define the Hermite basis functions on R by

h k (t) = 2 1/4 √ k! - 1 √ 2π k e πt 2 d dt k e -2πt 2 , k ∈ N.
It is well known that (h k ) k∈N is an orthonormal basis of L 2 (R) and that h k can be expressed as h k (x) = H k (x)e -π|x| 2 with H k a polynomial of degree k. An other property of the Fractional Fourier Transform is that F α [h k ] = e -ikα h k so that it may alternatively be defined as

(1.2) F α [u] = +∞ k=0 e -ikα u, h k h k .
From these definitions, it is obvious that

F α [u] 2 = u 2 , F α : S(R) → S(R) (with S(R)
the Schwartz class) and that F α F β = F α+β which are the key properties here.

It is clear from the definition (1.1) that many properties of the Fourier Transform transfer to the fractional setting. For instance, an Uncertainty Principles (UP) asserting that u and F[u] can't be simultaneously concentrated should have a counterpart asserting that the same is true for u and F α [u] but with the parameter α playing a role on the optimal concentration see e.g. [START_REF] De Gosson | Principe d'incertitude et positivité des opérateurs à trace; applications à l'opérateur densité[END_REF][START_REF] Guanlei | The logarithmic, Heisenberg's and short-time uncertainty principles associated with fractional Fourier transform[END_REF][START_REF] Shi | On uncertainty principle for signal concentrations with fractional Fourier transform[END_REF][START_REF] Shinde | On uncertainty principle for real signals in the fractional Fourier transform domain[END_REF][START_REF] Yang | Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis[END_REF]. In most cases, the authors have taken the (usually difficult) road to adapt proofs of results in classical Fourier analysis to the fractional setting rather than exploiting the relation (1.1). Further work related to the UP involved the pair (F α , F β ) with general α, β and investigated the influence of α -β on the constants appearing in UPs. Here again, the path taken was usually to adapt proofs rather than using the following (probably folklore) observation: take u ∈ L1 (R) and note that ∈ πZ. The aim of this letter is to show by example how this simple fact is effective recovering many existing results as well as new ones. 1 We therefore hope that authors will start checking that the simple trick explained here does not lead to the result they want to prove before engaging into the more difficult path of adapting proofs of UPs to the fractional setting.

F β [u] = F β-α F α [u] . Write ϕ = γ δ F α [u] with δ = β -α then |F α u| = |ϕ|
The remaining of this letter is to give several examples of results that can be transferred without pain from classical Fourier analysis to the fractional setting.

Examples

Let us start with boundedness properties. Applying Beckner's improvement of the Hausdorff-Young inequality [START_REF] Beckner | Inequalities in Fourier analysis[END_REF], we can establish the norm of the Fractional Fourier transform from L p (R) to its dual when 1 ≤ p ≤ 2. It is interesting to note that Beckner's proof actually implicitly uses the fractional Fourier transform in his proof.

Example 2.1 (Beckner-Hausdorff-Young). Let 1 ≤ p ≤ 2, p be the dual index 1 p + 1 p = 1, and α ∈ R \ πZ. Then for every u ∈ L p (R),

F α [u] p ≤ | sin α| 1 2 -1 p p 1/p (p ) 1/p u p .
Equality is achieved when u

(x) = exp -π(1 -i cot α)x 2 . Proof. As F α [u](ξ) = c α γ α F[γ α ](ξ/ sin α), F α [u] p = |c α | | sin α| 1/p F[γ α u] p = √ 1 + cot 2 α | sin α| 1 p F[γ α u] p ≤ | sin α| 1 p -1 2 p 1/p (p ) 1/p γ α u p .
The result follows since γ α u p = u p . Further, equality is achieved if

γ α (x)u(x) = e -πx 2 that is if u(x) = exp -π(1 -i cot α)x 2 .
We are now going to prove several UPs, starting with the Logarithmic Uncertainty Principle from which Heisenberg's Uncertainty Principle follows (see e.g. [START_REF] Hirschman | A note on entropy[END_REF][START_REF] Beckner | Inequalities in Fourier analysis[END_REF]). Recall that if ψ is a probability density, then its entropy is defined by

E[ψ] = - R ψ(x) ln ψ(x) dx. Note that if u 2 = 1 then |F α [u]| 2 is a probability density. Example 2.2 (Logarithmic Uncertainty Principle). Let α, β ∈ R with β -α / ∈ πZ, then for every u ∈ S(R) with u 2 = 1 E[|F α [u]| 2 ] + E[|F β [u]| 2 ] ≥ 1 -ln 2 + ln | sin(β -α)|.
Proof. This can of course be done following the standard path starting with Beckner's optimal version of the Hausdorff-Young inequality but involves some calculus (though the hardest part is the same as for the classical case). Note that what we want to prove is that, for

δ = β -α and v = F α [u], E[|v| 2 ] + E[|F δ [v]| 2 ] ≥ 1 -ln 2 + ln | sin(δ)|.
Of course δ = π/2 is the classical logarithmic uncertainty principle. If, as said, we introduce

ϕ = γ δ F α [u] so that |F α [u]| = |ϕ| and |F β [u]| = |c δ ||F[ϕ](ξ/ sin δ)|. But then E[|ϕ| 2 ] = E[|F α [u]| 2 ] while E[|F β [u]| 2 ] = - R |c δ | 2 |F[ϕ](ξ/ sin δ)| 2 ln |c δ | 2 |F[ϕ](ξ/ sin δ)| 2 dξ = - R |F[ϕ](η)| 2 ln |c δ | 2 |F[ϕ](η)| 2 dη + ln | sin δ| = E[F[ϕ] 2 ] + ln | sin δ| with the change of variable η = ξ/ sin δ since |c δ | 2 = 1 + cot 2 δ = 1 | sin δ| and |F[ϕ](η)| 2 dη = F α [u] 2 2 = u 2 2 = 1.
The classical Logarithmic Uncertainty Principle thus implies that

E[|F α [u]| 2 ] + E[|F β [u]| 2 ] -ln | sin δ| ≥ 1 -ln 2 as claimed.
Heisenberg's Uncertainty Principle can be deduced from the Logarithmic Uncertainty Principle using the classical entropy inequality for a probablity distribution ϕ

R ϕ(x) ln ϕ(x) dx ≥ - 1 2 - 1 2 ln 2π R (x -µ) 2 ϕ(x) dx where R ϕ(x) dx = 1 and µ = R xϕ(x) dx.
This was noticed by Hirschman [START_REF] Hirschman | A note on entropy[END_REF] (in a non-optimal way) and improved by Beckner. From this, one can deduce:

Example 2.3 (Heisenberg's Uncertainty Principle). Let α, β ∈ R be such that δ = β-α / ∈ πZ. Let u ∈ L 2 (R), be such that x 2 F α [u], ξ 2 F β [u] ∈ L 2 (R). Define λ = R x|F α [u](x)| dx and λ = R η|F β u(η)| 2 dη, then R (x -λ) 2 |F α [u](x)| 2 dx 1/2 R (η -λ) 2 |F β [ϕ](η)| 2 dη 1/2 ≥ sin 2 δ 4π ϕ 2 2 .
Proof. Let us rather show how this can be obtained from the classical case. Let u ∈ L 2 (R) and

ϕ = γ δ F α u then |F α [u]| = |ϕ| and |F β u(ξ)| = |c δ ||F[ϕ](ξ/ sin δ)|.
Up to exchanging the roles of α and β, we may assume that sin δ > 0.

It follows that

R x|ϕ(x)| dx = R x|F α [u](x)| dx = λ while R ξ|F[ϕ](ξ)| 2 dξ = 1 |c δ | 2 sin 2 δ R η|F β u(η)| 2 dη = λ sin δ Therefore, Heisenberg's Uncertainty Principle R (x -λ) 2 |ϕ(x)| 2 dx 1/2 R (ξ - λ sin δ ) 2 |F[ϕ](ξ)| 2 dξ 1/2 ≥ ϕ 2 2 4π
reads after a change of variable η = ξ sin δ,

R (x -λ) 2 |F α [u](x)| 2 dx 1/2 R (η -λ) 2 |F β [ϕ](η)| 2 dη 1/2 ≥ sin 2 δ 4π ϕ 2 2 .
We leave the equality case to the reader.

A second popular family of uncertainty principles is the one due to Hardy. We here give a stronger version which is due to Beurling and has been further improved by the author in [START_REF] Bonami | Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms[END_REF] (there are even stronger versions in the subsequent work by Demange which can also be adapted without much effort).

Example 2.4 (Hardy-Beurling type Uncertainty Principle.). Let α, β ∈ R be such that δ

:= β -α / ∈ πZ and let N ∈ R + . Let u ∈ L 2 (R) then R 2 |F α [u](x)F β [u]|(ξ) e 2π | sin δ| |x||ξ| (1 + |x| + |ξ|) N dx dξ < +∞
if and only if there exists a polynomial Π of degree < N -1 2 such that

(i) if α ∈ πZ, u(x) = Π(x)e -π(1-i cot δ)x 2 (ii) if α / ∈ πZ, u(x) = Π(x)e -πσx 2 with σ = 1 sin 2 α -i/ cot α -cot β + i cot α. Proof. Indeed, write again ϕ = γ δ F α u then |F α u| = |ϕ| and |F β u| = |c δ ||F[ϕ](ξ/ sin δ)|.
Changing variable y = ξ/ sin δ shows that [START_REF] Bonami | Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms[END_REF] that ϕ(x) = P (x)e -πx 2 for some polynomial P of degree D = (N -1)/2 (that is 0 if N < 1). Now, if α ∈ πZ, this shows that u(x) = Π(x)e -π(1-i cot δ)x 2 for some polynomial Π of degree D. On the other hand, if α / ∈ πZ then F[γ α u] = P (x)e -π sin 2 α 1-i(cot α+cot δ) x 2 for some polynomial P of degree D. The desired form of u is then obtained from -the fact that the Fourier transform of e -κπx 2 is a multiple of e -κ -1 πx 2 when κ is a complex number with positive real part -the fact that when Q is a polynomial, the inverse Fourier transform of Q

R 2 |ϕ(x)F[ϕ](y)| e 2π|x||y| (1 + |x|) N (1 + |y|) N dx dy < +∞ since (1 + | sin δ||y|) N ∼ (1 + |y|) N . It follows from
(x)F[ψ] is Q(2iπ∂)ψ -some cumbersome trigonometry that sows that cot(β -α)+cot α = 1 sin 2 α(cot α -cot β)
.

The formulation here is an improvement of Beurling's Uncertainty Principle in the line of [START_REF] Bonami | Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms[END_REF]. Recall that Hardy's Uncertainty Principle can be deduced from this result. Further results of this sort (Morgan, Cowling and Price) can also be obtained this way. We leave them as an exercice for the reader. 

∈ L 2 (R), u L 2 (R) ≤ C(1 + | sin δ|)e C| sin δ||Sα||S β | 2 | sin δ| F α [u] L 2 (R\Sα) + F β [u] L 2 (R\S β ) .
where C is an absolute constant (C = 132 would do).

Proof. We will apply Nazarov's Uncertainty Principle [START_REF] Namias | The fractional order Fourier transform and its applications to quantum mechanics[END_REF]: if |S|, |Σ| < +∞ and C = 132, then To obtain a more symmetric expression, exchange the roles of α and β to get

u L 2 (R) ≤ Ce C| sin δ|Sα||S β | 1 | sin δ| F α [u] L 2 (R\Sα) + F β [u] L 2 (R\S β ) .
Then taking the average of both inequalities we get the result.

There are many more uncertainty principles. The surveys [START_REF] Bonami | A survey on uncertainty principles related to quadratic forms[END_REF][START_REF] Folland | Sitaram The uncertainty principle: a mathematical survey[END_REF][START_REF] Ricaud | A survey of uncertainty principles and some signal processing applications[END_REF] are a good starting point to investigate this subject. The articles [START_REF] Faris | Inequalities and uncertainty inequalities[END_REF][START_REF] Cowling | Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality[END_REF][START_REF] Price | Inequalities and local uncertainty principles[END_REF][START_REF] Price | Sharp local uncertainty inequalities[END_REF][START_REF] Ricaud | Refined support and entropic uncertainty inequalities[END_REF] all contain further uncertainty principes that can be adapted to the Fractional Fourier transform along the lines of this letter.

  and then extend it to L 2 (R d ) in the usual way. Here and throughout the paper | • | and •, • are respectively the standard Euclidean norm on R d and the corresponding scalar product. The inverse Fourier transform is denoted by F -1 . For α ∈ R \ πZ, we define the fractional Fourier transform of order α via (1.1)

  and |F β u| = |c δ ||F[ϕ](ξ/ sin δ)|. Now a change of variable should allow to transfer any UP written as a condition on |ϕ|, |F[ϕ]| into a similar UP on (|F α [u]|, |F β [u]|), provided β -α /

Example 2 . 5 (

 25 Nazarov's Uncertainty Principle). Let α, β ∈ R be such that δ := β -α / ∈ πZ. Let S α , S β be two sets of finite measure |S α |, |S β | < +∞. Then for every u

(2. 3 ) ϕ 2 ≤ 1 |

 321 Ce C|S||Σ| ϕ L 2 (R\S) + F[ϕ] L 2 (R\Σ) ). Take again ϕ = γ δ F α u thus |ϕ| = |F α [u]| so that ϕ L 2 (R) = F α [u] L 2 (R) = u L 2 (R) , F α [u] L 2 (R\Sα) = ϕ L 2 (R\Sα) while F β [u] L 2 (R\S β ) = | sin δ| 1/2 F[ϕ] L 2 (R\(sin δ)S β ) . It follows from (2.3) that u L 2 (R) ≤ Ce C|Sα||(sin δ)S β | ϕ L 2 (R\Sα) + F[ϕ] L 2 (R\(sin δ)S β ) ≤ Ce C| sin δ||Sα||S β | F α [u] L 2 (R\Sα) + sin δ| F β [u] L 2 (R\S β ) .

Of course, not all results for the Fractional Fourier transform can be obtained this way. The work[START_REF] Hogan | On uncertainty bounds and growth estimates for fractional Fourier transforms[END_REF][START_REF] Hogan | Hardy's theorem and rotations[END_REF] is a good example.