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Abstract—We present an approach to discretize Maxwell’s
equations called Compatible Discrete Operators (CDO). It is
a low-order discretization that belongs to the large family of
mimetic schemes. This method is a generalization of the FDTD
method. It discretizes the closure relations in a geometrically
robust way that allows to deal with distorted and non-conformal
polyhedral meshes. We briefly introduce the scheme, its link with
the FDTD method and we give a first numerical result.

Index Terms—Maxwell’s equations, time domain, low-order
method, hybrid mesh

I. INTRODUCTION

Geometrical accuracy, computational time and the size of
the discrete problem are variables to optimize when dealing
with simulations. The use of Cartesian meshes is a good
way to increase the performances in terms of computational
time and memory storage, but they are not well-adapted to
capture geometrical details. The latter can be catched by
using an unstructured mesh, leading to more complex nu-
merical scheme. In this perspective, using polyhedral meshes
seems to be a good trade-off between the accuracy and the
computational cost. In this paradigm there are two solutions.
The first one, is to hybridize meshes, with unstructured and
structured zones, and schemes [1], by assigning a scheme to
each zone of the mesh and ensure the energy conservation at
zones interfaces through time. The second one, which will be
considered in this paper, is to use schemes that are able to deal
with hybrid mesh. The Compatible Discrete Operators (CDO)
spatial discretization is one of these methods. It is a robust
generalization of the finite difference method [2] that allows
to deal with highly distorted and non-conformal polyhedral
meshes. The presentation is done with the formalism proposed
in [3], and lies on the work of [4], [2], [5].

II. CDO DISCRETIZATION

We recall Maxwell’s equations in time-domain

∂tB−∇×E = 0, (1)
∂tD+∇×H = −J, (2)

D = εE, (3)
B = µH. (4)

In the CDO discretization, each geometrical entity has a
fixed orientation (Fig. 1) and the degrees of freedom are cho-
sen according to the physical representation of the fields. Flux
variables D, B and J are attached to faces, and circulation
variables E and H are attached to edges. The discretization
lies on the decomposition of the equations into two parts:
the topological law (1), (2) (independent of the material) and
the constitutive equations (3), (4) (dependent on the material,
possibly non-isotropic) [4].
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Fig. 1. Example of a 2D mesh composed of 2 quadrangular cells and its
incidence matrix CURL ∈ R2×7 defined by the orientation of the faces and
the edges.

A. Topological laws

The topological relations are discretized exactly using the
Stokes theorem applied to circulations and fluxes (in three
dimensions). It gives rise to discrete differential operators
represented by incidence matrices [4], which verify the same
physical properties as the continuous operators (for instance
Poincaré’s relations and adjunction properties). An example
of CURL matrix, the discrete counter-part of the continuous
∇× operator, for a 2D mesh is given in Fig. 1. Discretized



Fig. 2. Unstructured non-conformal mesh of 1178 volumes. It is composed
of 840 cubes, 242 tetrahedra and 96 polyhedra.

topological laws take the form:

∂tB − CURL E = 0, (5)
∂tD + CURL⊺H = −J, (6)

with B,D, J ∈ RNf , E,H ∈ RNe and CURL ∈ RNf×Ne . Nf

and Ne are respectively the number of faces and the number
of edges that compose the mesh.

B. Closure relations

The constitutive laws, represented by the Hodge operator ⋆
in differential geometry, are approximated by a linear operator
whose algebraic representation is a symmetric positive definite
matrix [2], [6]. Discretized closure relations take the form:

D = HεE, (7)
H = Hµ−1B. (8)

Different strategies can be applied to build these Hodge
matrices, giving for each of them, a different scheme. For
instance, if In is the identity matrix and if we consider a 3D
orthogonal grid with uniform step ∆x in each direction, the
choice of Hodge matrices as:

Hε := ε∆xIn and Hµ−1 :=
1

µ∆x
In,

leads exactly to the FDTD scheme. On polyhedral meshes they
are defined [2] as:

(Hε)i,j :=

∫
Ω

εℓi(x) ℓi(x) dx,

(Hµ−1)i,j :=

∫
Ω

1

µ
hi(x) hj(x) dx,

where the basis functions ℓi and hi are defined in order to
take into account the geometrical properties of the polyhedral
cells [7].
As a result, on a mesh composed of a Cartesian part and a

polyhedral one, it is possible to combine the FDTD method
with a more general CDO method.
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Fig. 3. Comparison of the numerical solution given by the CDO method (red
curve), and the analytical solution (blue dots) for the mode (1, 1, 0).

III. PRIMARY RESULTS

When using a leap-frog time integration strategy, this
scheme at the discrete level conserves the electro-magnetic
energy under the CFL condition:

∆t ≤ 2

∥H− 1
2

ε CURL⊺ H
1
2

µ−1∥
. (9)

Figure 3 shows the comparison between the numerical solution
resulting from the CDO scheme and the analytical solution.
The source is the mode (1, 1, 0) inside a 1m×1m×1m cavity.
The mesh used for the simulation is shown in Fig. 2. The time-
step given by (9) is ∆t = 5.24 10−11s while the FDTD time-
step would have been 1.75 10−10s for a mesh with similar
number of volumes. This is the cost of the hybridization for
a case that fits perfectly the FDTD framework. But, in the
tetrahedral part, the reference mesh length is h = 3.33 10−2m
(the minimal height of a tetrahedron). To obtain the same
degree of accuracy with a Cartesian grid, the number of
volumes should have been 7 times higher than the number
of volumes in the actual mesh.
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