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Abstract

In this article, we study the large-population limit of interacting particle systems posed on
weighted random graphs. In that aim, we introduce a general framework for the construction of
weighted random graphs, generalizing the concept of graphons. We prove that as the number of par-
ticles tends to infinity, the finite-dimensional particle system converges in probability to the solution
of a deterministic graph-limit equation, in which the graphon prescribing the interaction is given by
the first moment of the weighted random graph law. We also study interacting particle systems posed
on switching weighted random graphs, which are obtained by resetting the weighted random graph
at regular time intervals. We show that these systems converge to the same graph-limit equation, in
which the interaction is prescribed by a constant-in-time graphon.

Introduction

Models for interacting particle systems provide a general framework to study any population of
agents (also referred to as “particles”) interacting pairwise, and generally giving rise to collective
behavior without any centralized intelligence. These models can be refined and adapted to many
applications, as varied as animal behavior [9, 10], opinion formation [15, 8], cell movement [5], crowd
motion [22], etc.

Interacting particle systems can broadly be grouped into two categories: models for indistin-
guishable particles, and models for non-indistinguishable (or non-exchangeable) particles [2]. In the
former, the interaction between particles is exclusively based on their position in the state space,
so that exchanging two particles has no effect on the overall dynamics. In the latter, particles are
tagged with a specific identity, and their interaction also depends on an underlying interaction graph:
they are non-exchangeable.

In this article, we aim to derive the large-population limit of coupled dynamical systems posed
on random weighted graphs, of the form

d

dt
uNi (t) =

1

N

N∑
j=1

ξijD(uNj (t)− uNi (t)), i ∈ {1, . . . , N}. (1)

Here, the time-evolving variables (uNi )i∈{1,··· ,N} ∈ RN can represent oscillator frequencies as in
the Kuramoto model [19, 24], opinions as in the Hegselmann-Krause model [15], neuron poten-
tials [16], positions, or any other quantity likely to evolve based on an underlying graph. The
interaction function D regulates the interaction due to the values of uNi and uNj at time t, indepen-
dently of the underlying network. The network’s role, on the other hand, is encoded in the weights
(ξij)i,j∈{1,··· ,N} ∈ (R+)N , which depend exclusively on the nodes i and j, and not on the values of
the evolving variable.

The relevance of such dynamical systems posed on random interaction networks has been pointed
out in many applications. For instance, Watts and Strogatz have introduced a model for a “small-
world” network, that they apply to systems as varied as the C. elegans neural network, the US power
grid or the social structure of the movie actors community [28]. The construction procedure involves
connecting each node with its closest neighbors to form a ring lattice, and then rewiring each edge at
random with probability p. The constructed network reflects the well-known “small-world” property
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according to which each individual has a small probability to be connected with another individual
supposedly outside its circle.

Because of their large size, dynamical systems of the form (1) are generally difficult to analyze.
However, it has been shown in many cases that their continuum limit (as N goes to infinity) often
provides a good approximation of their behavior [29]. The limit of such a system posed on an
underlying deterministic graph was derived in [23] in the graph limit framework, and in [17, 18] in
the mean-field framework. In [24], Medvedev derived the limit of (1) when N goes to infinity, in the
case of a W−random graph in which the weights take random values in {0, 1}, signifying the presence
(ξij = 1) or absence (ξij = 0) of edges. Given a graphon W ∈ L∞([0, 1]2; [0, 1]), the probability for
the presence or absence of each edge is assumed to satisfy P[ξij = 1] = 1 − P[ξij = 0] = W (xi, xj),
where xi, xj are deterministic or random variables that depend respectively on i and j. The limiting
equation is the nonlinear heat equation

∂tu(t, x) =

∫
I

W (x, y)D(u(t, y)− u(t, x)) dy, (2)

in which the graphon W now plays the role of deterministic edge weights between the (continuous)
vertices indexed by x and y. Thus, the limit of a dynamical system posed on a random unweighted
graph is a nonlinear heat equation posed on a deterministic weighted graphon: the stochasticity of
the system is lost as N goes to infinity.

However, as remarked in [4], binary (or unweighted) graphs, in which each edge is either present
or absent, lack essential features needed to fully capture the complexity of a real network. This
motivated the introduction of weighted graphs in which each edge is assigned a weight proportional
to the intensity of the connection between the nodes it links. The worldwide airport network is an
example of a weighted graph in which the nodes model the cities containing an airport, the edges
model the existing direct-flight connections between any two cities, and the edge weights model the
intensity of these connections (for instance in number of seats per year) [4]. Many real-life networks
are in fact better modeled by weighted graphs, where the weights can represent communication
frequencies or intensities. It then seems natural to couple the notions of random graphs and weighted
graphs to define weighted random graphs.

A weighted graph of size N , denoted by GN = 〈V (GN ), E(GN ),W (GN )〉, is composed of N
vertices and of a maximum of N2 edges. With this notation, V (GN ) = {1, · · · , N} denotes the set of
vertices, E(GN ) ⊂ {1, · · · , N}2 the set of edges, and W (GN ) the set of edge weights, considered to
be non-negative. For weighted graphs, one can always consider that the number of edges is exactly
equal to the maximal number N2, by attributing zero-weights to some edges, as follows:

(W (GN ))ij :=


ξij ∈ R∗+, if (i, j) ∈ E(GN )

0 otherwise.

A weighted graph is said to be a weighted random graph if the edge weights are attributed randomly.
In [13], Garlaschelli introduced a weighted random graph model in which the probability of

drawing an edge of discrete weight w ∈ N between vertices i and j is given by P[ξij = w] := qij(w) =
(yiyj)

w(1 − yiyj), where (yi)i∈{1,··· ,N} tune the expected stength of the vertices. In [12], a general
model was introduced permitting to assign random weights to the egdes and to the vertices, so that all
edge weights are i.i.d. random variables. In [1], the authors introduce and study a weighted random
graph in which all edge weights are i.i.d., following the law of an exponential random variable.

Although specific examples of weighted random graphs such as the few above can be found in the
literature, to the best of our knowledge there lacks a general framework encompassing all models
into one. In the present article, we propose a general framework for weighted random graphs, able
to encompass specific examples such as those given in [1, 12, 13, 28] as well as unweighted random
graphs (which can be seen as weighted random graphs with weights belonging to {0, 1}). Notably,
our framework allows for non identically distributed edges.

In this aim, we define a weighted random graph law q : [0, 1] × [0, 1] → P(R+), i.e. a function
taking values in [0, 1]2, such that for every (x, y) ∈ [0, 1]2, q(x, y; ·) is a probability measure. Similarly
to the approach in [24], we can then define a q−weighted random graph of size N in two ways, that
differ from one another in their level of randomness:

(r-r) Given a sequence of i.i.d. random variables (Xi)i∈N uniformly distributed in [0, 1], for each
edge (i, j), we randomly select the weight ξNij with probability q(Xi, Xj ; ·).

(r-d) Given a deterministic sequence (xNi )i∈{1,··· ,N} satisfying xNi ∈ [ i−1
N
, i
N

) for all i, we randomly
select the value of ξNij , with probability q(xNi , x

N
j ; ·).

The approach (r-r) (standing for random-random) requires randomness in both steps: that of ran-
domly attributing the random variables Xi to each node i, and that of randomly selecting the weights
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ξij from the law q(Xi, Xj ; ·). It is the approach presented in [20]. The approach (r-d) (for random-
deterministic) requires randomness only in the second step, and has been presented in [24]. The
advantage of the second one is that it is convenient for applications, since as mentioned in [24], it
can often easily be linked to existing random graph models (as for instance the interpretation of the
“small-world” graph as a W -random graph generated by a deterministic sequence).

Figure 1 shows pixel representations of random matrices (ξij)i,j∈{1,··· ,N} corresponding to a
weighted version of the small-world network (in the case (r-d)). The right-most plot shows the
limit graphon (x, y) 7→ w̄(x, y) :=

∫
R+
w q(x, y; dw).

Figure 1: Values of the random interaction matrices generated from a deterministic sequence according
to the Small-World weighted random graph law (26) for N = 20 and N = 60. Right: Corresponding
continuous graphon (x, y) 7→ w̄(x, y) :=

∫
R+

w q(x, y; dw).

In each of these cases, we will prove that as N tends to +∞, the microscopic system (1) converges
in probability to the solution of the following graph limit equation:

∂tu(t, x) =

∫
I

(∫
R+

w q(x, y; dw)

)
D(u(t, y)− u(t, x)) dy, (3)

which is a deterministic integro-differential equation, in which the weight of the edge (x, y) is given
by the expected value of the weighted random graph law q(x, y; ·). More precisely, if the probability
measures q(x, y; ·) have uniformly bounded first four moments, we prove that on any finite time
interval [0, T ], the solutions uN to the discrete system (1) and the solution u to the integro-differential
equation (3) satisfy

P

[
sup
t∈[0,T ]

‖uN (t)−PX̃Nu(·, t)‖2,N ≥
C(T )√
N

]
≤ C̃

N
,

where the constants can be computed explicitely. This quantitative result is obtained in both cases
(r-r) (Theorem 2) and (r-d) (Theorem 3), but in the latter, additional regularity assumptions are
required on the initial data, the weighted random graph law q and the interaction function D.

We then focus our attention on time-dependent weighted random networks. Again, this consid-
eration is motivated by practical applications [6]. In neural networks, neurons interact via electric
spikes that take place only intermittently. In packet switching technology (such as the Internet), data
channels are occupied only during the transmission of information packets. Both are examples of
“blinking networks”, in which connections are sporadic. In [6], Belykh et al introduced the so-called
“blinking model” in the context of a small-world network composed of a regular locally coupled lat-
tice, to which is superimposed a time-varying random small-world network. The varying small-world
network is obtained by randomly switching on or off some new shortcuts on the graph every lapse of
time ε. Since then, it has been studied for many dynamical systems on graphs (as in [3, 11] for the
Kuramoto oscillators models for instance). It has been proven that when the “blinking” time is small
compared to the characteristic synchronization time, a few random shortcut additions significantly
lower the synchronization threshold of the system.

We extend this concept to the framework of weighted random graphs. Applying results from
Averaging theory, we show that for a given N , when the “blinking” time tends to zero, the blinking
system tends to a system in which the communication weights are constant, and given by the expected
values of the blinking weights. We then prove that the continuous limit (as Nε goes to infinity) of
the finite-dimensional blinking system is the same graph limit equation (3), obtained as the limit of
non-blinking systems.

The article is organized as follows. After defining the framework of weighted random graphs in
Section 1, we prove the convergence of the coupled dynamical system (1) towards its graph limit
(3) in the context of random graphs generated by random (Section 2) or deterministic (Section 3)
sequences. Section 4 is devoted to the study of the interplay between the blinking time and the
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number of agents in dynamical systems evolving on blinking weighted random graphs. We illustrate
our results with numerical simulations in Section 5.

1 Notations and preliminary concepts

In this paper, we will use the notation I := [0, 1]. P(R+) denotes the set of probability measures
with support in R+. We will denote by E and V the expectation and variance of random variables.

In everything that follows, D : R → R will denote the interaction function, and g : I → R
will provide the initial condition of both microscopic and macroscopic systems. We will make the
following technical assumptions:

Hypothesis 1. Let D ∈ L∞(R) be bounded and Lipschitz continuous, with ‖D‖L∞(R) := K and
‖D′‖L∞(R) := L.

In the seminal paper [21], a procedure was introduced to construct unweighted random graphs
from a limiting object named graphon. Formally, a graphon is a measurable function

W : I × I → [0, 1]
(x, y) 7→ W (x, y).

Using the graphon W , a W -random graph can then be constructed in two ways [27]:

(r-r) W -random graph generated by a random sequence: given a sequence of i.i.d. random variables
(Xi)i∈N uniformly distributed in [0, 1], an edge between the nodes i and j is attributed with
probability W (Xi, Xj).

(r-d) W -random graph generated by a deterministic sequence: given a sequence (xi)i∈N satisfying
for all i ∈ {1, · · · , N}, xi ∈ [ i−1

N
, i
N

), an edge between the nodes i and j is attributed with
probability W (xi, xj).

We introduce the concept of weighted random graph law, which will allow us to generalize W -
random graphs to q-weighted random graphs. Since it will be central to all that follows, we define it
here.

Definition 1. A weighted random graph law is a function

q : I × I → P(R+)
(x, y) 7→ q(x, y; ·).

In this article, we will only consider weighted random graph laws with uniformly bounded first
four moments, requiring the following:

Hypothesis 2. There exists M > 0 such that for all (x, y) ∈ I2, for all k ∈ {1, · · · , 4},(∫
R+

wkq(x, y; dw)

)1/k

≤M, (4)

i.e. the first four moments of the probability measure q(x, y; ·) are bounded uniformly in x and y.

From here onwards, for all x, y ∈ I, we denote by w̄(x, y) :=
∫
R+
wq(x, y; dw) the first moment of

the probability distribution q(x, y; ·).
Similarly to the construction of W -random graphs, we will also consider two sampling methods

to construct a q-weighted random graph. The first one, in which the graph is generated from a
sequence of independent uniformly distributed random variables (Xi)i∈N, is introduced in Section 2.
The second one, in which the graph is generated from a deterministic sequence of points (xi)i∈N, is
introduced in Section 3.

Given (xN )i∈{1,··· ,N} := {xN1 , xN2 , . . . , xNN} a set of distincts points in I, for all t ∈ [0, T ], we
denote the projection of a function f ∈ C(I) onto xN by the evaluation of f at these points, i.e.

PxN f = (f(xN1 ), f(xN2 ), . . . , f(xNN )) ⊂ RN , (5)

which is a vector of RN . For such vectors u, v ∈ RN , we use the weighted Euclidean inner product

(u, v)N :=
1

N

N∑
i=1

uivi, u = (u1, u2, . . . , uN )T , v = (v1, v2, . . . , vN )T

and the corresponding norm ‖u‖2,N :=
√

(u, u)N .
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2 Networks on weighted random graphs generated by
random sequences

Denote X = (X1, X2, X3, . . . ) and XN = (X1, X2, . . . , XN ) where Xi, i ∈ N are independent identi-
cally distributed (i.i.d.) random variables. We suppose that X1 follows the law of a uniform random
variable on I, i.e. L(X1) = U(I). We define general weighted random graphs, which generalize the
study of particular weighted (or unweighted) random graph models like in [1, 13, 21, 28].

Definition 2. Let
q : I × I → P(R+)

(x, y) 7→ q(x, y; ·)
be a weighted random graph law. A q-weighted random graph on N nodes generated by the
random sequence X, denoted GN , is such that the weight of each edge (i, j), i 6= j, of GN is
randomly attributed, and its law is q(Xi, Xj ; ·).
The decision of the attribution of the weight of a pair (i, j) ∈ {1, . . . , N}2, i 6= j is made independently
from the decision for other pairs.

Remark 2.1. This general definition of q-weighted random graphs encompasses many specific ex-
amples, including unweighted random graphs.

• W -random graphs [21]: given a graphon W : I2 → [0, 1], an (unweighted) W -random graph
can be defined with the Bernoulli weighted random graph law: q(x, y, ·) = W (x, y)δ1 + (1 −
W (x, y))δ0

• Weighted Erdös-Rényi random graph: the model of Garlaschelli [13] can be recovered with the

weighted random graph law : q(x, y; ·) = (1− xy

2
)

+∞∑
i=0

(
xy

2
)iδi.

• Weighted random graph with i.i.d. exponential weights [1]: q(x, y; dw) = λe−λwdw

Given (Xi)i∈{1,··· ,N} a sequence of i.i.d. random variables satisfying L(X1) = U(I), we consider
the system of differential equations

d

dt
uNi (t) =

1

N

N∑
j=1

ξijD(uNj (t)− uNi (t)),

uNi (0) = g(XN
i ), i ∈ {1, . . . , N}

(Sr−r
N )

where for all (i, j) ∈ {1, · · · , N}2, L(ξij |X) = q(Xi, Xj ; ·). We denote this system (Sr−r
N ) due to its

twice random nature: for each pair (i, j) ∈ {1, · · · , N}2, the weight ξij is randomly attributed from
the law q(Xi, Xj ; ·), generated by the random variables Xi and Xj . Our goal will be to prove the
convergence of the microscopic system (Sr−r

N ) towards the continuum limit∂tu(x, t) =

∫
I

(∫
R+

wq(x, y; dw)

)
D(u(y, t)− u(x, t))dy

u(x, 0) = g(x), x ∈ I,
(C)

in a sense that we will clarify.
We start by recalling the well-posedness of the limit equation (C).

Theorem 1. Suppose that D is Lipschitz continuous, that there exists M > 0 such that for all

(x, y) ∈ I2,

∫
R+

wq(x, y; dw) ≤ M and that g ∈ L∞(I). Then, for any T > 0, there exists a unique

solution u ∈ C1([0, T ];L∞(I)) to (C).

We refer the reader to [23] for a proof in a more general framework. Our main result can then
be stated as follows:

Theorem 2. Let D satisfy Hyp. 1, let g ∈ L∞(I) and let q be a weighted random graph law satisfying
Hyp. 2. Then, as N goes to infinity, the solution uN to the discrete system (Sr−r

N ) converges to the
solution u of the continuous model (C). More precisely,

P

[
sup
t∈[0,T ]

‖uN (t)−PX̃Nu(·, t)‖2,N ≥
C1(T )√
N

]
≤ C̃1

N
(6)

where the constants C1(T ) and C̃1 are respectively defined by C1(T ) :=
√
T
√

1 +M2K2e(
1
2
+4ML)T

and C̃1 := 3M4K4 + 6.
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Remark 2.2. This theorem generalizes and improves previous results concerning the convergence
on W -random graphs. In [24], dynamical systems on W -random graphs were shown to converge
in probability to the solution to (2). With the q-weighted random graph formulation, this result is
covered by Theorem 2, since as seen in Remark 2.1, writing q(x, y; dw) = W (x, y)δ1 +(1−W (x, y))δ0
yields: ∫

R+

wq(x, y; dw) = W (x, y).

Moreover, unlike in [24], in which proofs are applications of the Central Limit Theorem, our proof
of this result will rely on multiple applications of the Bienaymé-Chebyshev inequality. This allows us
to obtain an explicit rate for the convergence in probability, as stated in (6).

The proof of Theorem 2 relies on two technical lemmas. The first one quantifies the asymptotic
bounds of two random variables αN and γN defined from the family of i.i.d. random variables
(ξij)i,j∈{1,··· ,N} as follows:

αN :=

(
1

N2

N∑
i=1

N∑
j=1

ξ2ij

) 1
2

and γN := max
i∈{1,··· ,N}

1

N

N∑
j=1

ξij . (7)

As can be expected from the Central Limit Theorem, although there is no bound on the individual
values of (ξ2ij)i,j∈{1,··· ,N}, their sum can be shown to be bounded with probability tending to 1 as N
goes to infinity. Moreover, the bound on the first four moments of q (Hyp. 2) allows us to use the
Bienaymé-Chebyshev inequality, and we can even quantify the rate of convergence to be N−2. The
bound on γN is slightly less trivial to obtain, due to the fact that it is defined as the maximum of
a sum. However, using a generalization of the Bienaymé-Chebyshev inequality, we also show that it
is bounded with probability going to 1 as N tends to infinity, but with a rate only proportional to
N−1.

Lemma 1. Let X = (Xi)i∈{1,··· ,N} be a sequence of i.i.d. random variables satisfying L(X1) = U(I),
and (ξij)i,j∈{1,··· ,N} be the weights of a q-weighted random graph generated by the random sequence
X. Then the two random variables αN and γN defined in (7) satisfy for N large enough:

P [αN ≥ 2M ] ≤ 1

N2
and P [γN ≥ 2M ] ≤ 5

N
,

where M is the uniform bound on the moments of q defined in (4).

Proof. We aim to apply the Bienaymé-Chebyshev inequality to the random variable αN . Recall
that (ξij)i,j∈{1,··· ,N} are i.i.d. random variables whose expectations and variances satisfy for all
(i, j) ∈ {1, · · · , N}2:

E[ξ2ij ] =

∫∫
I2

∫
R+

w2q(x, y; dw)dxdy ≤M2

and

V[ξ2ij ] =

∫∫
I2

∫
R+

w4q(x, y; dw)dxdy −

(∫∫
I2

∫
R+

w2q(x, y; dw)dxdy

)2

≤M4, (8)

so the Bienaymé-Chebyshev inequality implies:

P

[
1

N2

N∑
i=1

N∑
j=1

ξ2ij −
1

N2

N∑
i=1

N∑
j=1

E[ξ2ij ] ≥M2

]
= P

[
α2
N − E[α2

N ] ≥M2] ≤ P
[∣∣α2

N − E[α2
N ]
∣∣ ≥M2]

≤ 1

M4
V[α2

N ] =
1

M4N4

N∑
i=1

N∑
j=1

V[ξ2ij ] ≤
1

N2
.

Thus,

P
[
α2
N ≥M2 +M2] ≤ P

[
α2
N ≤

1

N2

N∑
i=1

N∑
j=1

E[ξ2ij ] +M2

]
≤ 1

N2
,

which implies

P [αN ≥ 2M ] ≤ P
[
α2
N ≥ 2M2] ≤ 1

N2
,

concluding the first part of the statement.
To study the term γN , we apply a generalization of the Bienaymé-Chebyshev inequality to the

random variables ( 1
N

∑N
j=1 ξij)i∈{1,··· ,N} and obtain

P

[
1

N

N∑
j=1

ξij −
1

N

N∑
j=1

E[ξij ] ≥M

]
≤ P

[∣∣∣∣∣ 1

N

N∑
j=1

ξij −
1

N

N∑
j=1

E[ξij ]

∣∣∣∣∣ ≥M
]

≤ 1

M4
E

∣∣∣∣∣ 1

N

N∑
j=1

ξij − E

[
N∑
j=1

ξij

]∣∣∣∣∣
4
 .
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Besides,

E

∣∣∣∣∣ 1

N

N∑
j=1

ξij − E

[
N∑
j=1

ξij

]∣∣∣∣∣
4
 =

1

N4

N∑
j=1

E
[
|ξij − E [ξij ]|4

]
+

6

N4

∑
1≤j<k≤N

V[ξij ]V[ξik]

≤ 4M4

N3
+

3N(N − 1)

N4
M4 ≤ 4M4

N2

for N large enough. This implies that

P

[
1

N

N∑
j=1

ξij −
1

N

N∑
j=1

E[ξij ] ≥M

]
≤ 4

N2
.

Since the random variables ( 1
N

∑N
j=1 ξij)i∈{1,··· ,N} are i.i.d.,

P

[
max

i∈{1,··· ,N}

1

N

N∑
j=1

ξij <
1

N

N∑
j=1

E[ξij ] +M

]
= P

[
N⋂
i=1

{
1

N

N∑
j=1

ξij <
1

N

N∑
j=1

E[ξij ] +M

}]

=

N∏
i=1

P

[
1

N

N∑
j=1

ξij <
1

N

N∑
j=1

E[ξij ] +M

]

=

N∏
i=1

(
1− P

[
1

N

N∑
j=1

ξij ≥
1

N

N∑
j=1

E[ξij ] +M

])

≥
(

1− 4

N2

)N
= exp

(
N ln

(
1− 4

N2

))
.

Hence, for N large enough,

P

[
max

i∈{1,··· ,N}

1

N

N∑
j=1

ξij ≥ 2M

]
≤ P

[
max

i∈{1,··· ,N}

1

N

N∑
j=1

ξij ≥
1

N

N∑
j=1

E[ξij ] +M

]
≤ 1− exp

(
N ln

(
1− 4

N2

))
=

4

N
+ o

(
4

N

)
≤ 5

N
.

In a second technical lemma, we study the time-dependent random variable Y Ni (t) defined from
the solution u to (C) for all i ∈ {1, · · · , N} and t ∈ [0, T ] as Y Ni (t) :=

√
NZNi (t), where

ZNi (t) :=
1

N

N∑
j=1

ξijD(u(Xj , t)− u(Xi, t))−
∫
I

w̄(Xi, y)D(u(y, t)− u(Xi, t))dy. (9)

Notice that the expected value of ZNi (t) satisfies for all t ∈ [0, T ]:

E
[
ZNi (t)

]
=

∫
I2

∫
R+

1

N

N∑
j=1

wD(u(y, t)−u(x, t))q(x, y; dw)dydx−
∫
I2
w̄(x, y)D(u(y, t)−u(x, t))dydx = 0,

recalling that w̄(x, y) denotes the first moment of q(x, y; ·). Hence, it also holds E
[
Y Ni (t)

]
= 0.

In the following lemma, we compute the (time-dependent) variance of Y Ni (t) that we denote by
σ2
Y (t) := V[Yi(t)], and we estimate the expected value and variance of (Y Ni (t))2, expressing them as

functions of σ2
Y (t).

Lemma 2. Given a solution u to the integro-differential equation (C), we consider the collection of
random variables (Y Ni )i∈{1,··· ,N}, defined for all i ∈ {1, · · · , N} by Y Ni (t) :=

√
NZNi (t), where ZNi (t)

is given by (9). Then for all i ∈ {1, · · · , N}, its variance satisfies: V
[
(Y Ni )

]
= E

[
(Y Ni )2

]
= σ2

Y (t),
where

σ2
Y (t) :=

∫∫
I2
w̄(x, y)D(u(y, t)− u(x, t))2dxdy −

∫
I

(∫
I

w̄(x, y)D(u(y, t)− u(x, t))

)2

dx.

For the random variables (Y Ni )2, it holds for all i ∈ {1, · · · , N},

E
[
(Y Ni )4

]
= 3σ4

Y (t) +O(
1

N
) and V

[
(Y Ni )2

]
= 2σ4

Y (t) +O(
1

N
).

Proof. The proof of Lemma 2 can be found in the Appendix 6.1.

We are now ready to prove Theorem 2.
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Proof of Theorem 2. For all i ∈ {1, . . . , N} and t ∈ [0, T ], we denote ζNi (t) := u(Xi, t) − uNi (t)
and ζN (t) = (ζN1 (t), . . . , ζNN (t)). For conciseness, when context is clear, we omit the explicit time
dependence and write u(x, t) as u(x). We substract (Sr−r

N ) from (C) evaluated at x = Xi and obtain

d

dt
ζNi (t) =

∫
I

w̄(Xi, y)D(u(y, t)− u(Xi, t))dy −
1

N

N∑
j=1

ξijD(uNj (t)− uNi (t))

=

∫
I

w̄(Xi, y)D(u(y, t)− u(Xi, t))dy −
1

N

N∑
j=1

ξijD(u(Xj , t)− u(Xi, t))

+
1

N

N∑
j=1

ξij
[
D(u(Xj , t)− u(Xi, t))−D(uNj (t)− uNi (t))

]
.

Recognizing the random variable ZNi (t) from its definition in (9), we multiply by
1

N
ζNi and sum over

i, which yields:

1

2

d

dt
‖ζN‖22,N = −(ZN , ζN )N +

1

N2

N∑
i=1

N∑
j=1

ξij [D(u(Xj)− u(Xi))−D(uNj − uNi )]ζNi . (10)

Using the Cauchy-Schwarz inequality for the inner product (·, ·)N , the second term of (10) can be
bounded above as follows:∣∣∣∣∣ 1

N2

N∑
i=1

N∑
j=1

ξij [D(u(Xj)− u(Xi))−D(uNj − uNi )]ζNi

∣∣∣∣∣ ≤ 1

N2

N∑
i=1

N∑
j=1

ξijL
(
|ζNj |+ |ζNi |

)
|ζNi |

≤ L

N2

N∑
i=1

|ζNi |
N∑
j=1

ξij |ζNj |+
L

N2

N∑
i=1

|ζNi |
N∑
j=1

ξij |ζNi |

≤ L

N

N∑
i=1

|ζNi |

(
1

N

N∑
j=1

ξ2ij

) 1
2
(

1

N

N∑
j=1

|ζNj |2
) 1

2

+
L

N

(
1

N

N∑
i=1

|ζNi |2
) 1

2

 1

N

N∑
i=1

(
N∑
j=1

ξij |ζNi |

)2
 1

2

≤ L

(
1

N

N∑
i=1

|ζNi |2
)(

1

N

N∑
i=1

1

N

N∑
j=1

ξ2ij

) 1
2

+
L

N

(
1

N

N∑
i=1

|ζNi |2
) max

i∈{1,··· ,N}

(
N∑
j=1

ξij

)2
 1

2

= L‖ζN‖22,N

(
1

N2

N∑
i=1

N∑
j=1

ξ2ij

) 1
2

+
L

N
‖ζN‖22,N

 max
i∈{1,··· ,N}

(
N∑
j=1

ξij

)2
 1

2

= L‖ζN‖22,N (αN + γN ),

(11)

with αN :=
(

1
N2

∑N
i=1

∑N
j=1 ξ

2
ij

) 1
2

and γN = maxi∈{1,··· ,N}
1
N

∑N
j=1 ξij . Coming back to (10), it

holds

d

dt
‖ζN‖22,N ≤ 2‖ZN‖2,N‖ζN‖2,N + 2L‖ζN‖22,N (αN + γN ) ≤ ‖ZN‖22,N + ‖ζN‖22,N (1 + 2L(αN + γN )).

From Gronwall’s lemma and using the fact that ‖ζN (0)‖22,N = 0, we obtain:

‖ζN (t)‖22,N ≤
∫ t

0

‖ZN (s)‖22,Nds e(1+2L(αN+γN ))t ≤ T sup
s∈[0,T ]

‖ZN (s)‖22,N e(1+2L(αN+γN ))T . (12)

The asymptotic behavior of αN and γN was studied in Lemma 1. We now focus on the asymptotic
behavior of ZN .

Denonting for all i ∈ {1, · · · , N} σ2
i (t) := V[Y Ni (t)], notice from Lemma 2 that for all t ∈ [0, T ],

σ2
i (t) = σ2

Y (t)

=

∫∫
I2
w̄(x, y)D(u(y, t)− u(x, t))2dxdy −

∫
I

(∫
R+

∫
I

w̄(x, y)D(u(y, t)− u(x, t))q(x, y; dw)dy

)2

dx

≤ c1 := M2K2,
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where K and M are the constants of Hyp. 1 and 2. Therefore, applying again the Bienaymé-
Chebyshev inequality, it holds

P
(√

N‖ZN (t)‖2,Ne(
1
2
+4ML)T ≥

√
1 + c1e

( 1
2
+4ML)T

)
= P(N‖ZN (t)‖22,N ≥ 1 + c1)

≤ P

(
N‖ZN (t)‖22,N ≥ 1 +

1

N

N∑
i=1

(σi(t))
2

)

≤ P

(∣∣∣∣∣N‖ZN (t)‖22,N −
1

N

N∑
i=1

(σi(t))
2

∣∣∣∣∣ ≥ 1

)

= P

(∣∣∣∣∣ 1

N

N∑
i=1

(Y Ni (t))2 − E

[
1

N

N∑
i=1

(Y Ni (t))2
]∣∣∣∣∣ ≥ 1

)

≤ 1

N2

N∑
i=1

V
[
(Y Ni (t))2

]
≤ 1

N2

N∑
i=1

(2σ4
Y (t) +O(

1

N
)),

where we used Lemma 2 for the last inequality.
Thus, for N large enough,

P
(√

N‖ZN (t)‖2,Ne(
1
2
+4ML)T ≥

√
1 + c1e

( 1
2
+4ML)T )

)
≤ 3

N
M4K4.

Hence, for all t ∈ [0, T ],

P
[√

N‖ZN (t)‖2,Ne(
1
2
+L(γN+αN ))T ≥

√
1 + c1e

( 1
2
+4ML)T

]
= P

[{√
N‖ZN (t)‖2,Ne(

1
2
+LγN )T ≥

√
1 + c1e

( 1
2
+4ML)T e−LαNT

}⋂
{αN < 2M}

]
+ P

[{√
N‖ZN (t)‖2,Ne(

1
2
+LγN )T ≥

√
1 + c1e

( 1
2
+4ML)T )e−LαNT

}⋂
{αN ≥ 2M}

]
≤ P

[{√
N‖ZN (t)‖2,Ne(

1
2
+LγN )T ≥

√
1 + c1e

( 1
2
+2ML)T )

}]
+ P [αN ≥ 2M ]

= P
[{√

N‖ZN (t)‖2,Ne
1
2
T ≥
√

1 + c1e
( 1
2
+2ML)T )e−LγNT

}⋂
{γN < 2M}

]
+ P

[{√
N‖ZN (t)‖2,Ne

1
2
T ≥
√

1 + c1e
( 1
2
+2ML)T )e−LγNT

}⋂
{γN ≥ 2M}

]
+ P [αN ≥ 2M ]

≤ P
[√

N‖ZN (t)‖2,Ne
1
2
T ≥
√

1 + c1e
1
2
T
]

+ P [γN ≥ 2M ] + P [αN ≥ 2M ]

≤ 3M4K4

N
+

1

N2
+

5

N
≤ C̃1

N

for N large enough, where the penultimate inequality comes from Lemma 1, and where C̃1 :=

3M4K4 + 6. Recaling from (12) that ‖ζN (t)‖2,N ≤
√
T sups∈[0,T ] ‖ZN (s)‖2,N e(

1
2
+L(αN+γN ))T , we

obtain:

P
[
‖ζN (t)‖2,N ≤

C1(T )√
N

]
≤ C̃1

N
,

where C1(T ) :=
√
T
√

1 +M2K2e(
1
2
+4ML)T uniformly for t ∈ [0, T ], which concludes the proof by

continuity in t.

3 Networks on weighted random graphs generated by
deterministic sequences

In this section, we are now interested in weighted random graphs generated by deterministic se-
quences. Denoting for all i ∈ {1, · · · , N}, INi := [ i−1

N
, i
N

), we consider the deterministic sequence
XN = {xN1 , . . . , xNN}, where for all i ∈ {1, . . . , N}, xNi ∈ INi .

Definition 3. Let
q : I × I → P(R+)

(x, y) 7→ q(x, y; ·)
be a weighted random graph law. A q-weighted random graph on N nodes generated by the
deterministic sequence XN , denoted GN , is such that the weight of each edge (i, j), i 6= j, of GN
is randomly attributed, and its law is q(xNi , x

N
j ; ·).

The decision of the attribution of the weight of a pair (i, j) ∈ {1, . . . , N}2, i 6= j, is made independently
from the decision for other pairs.
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Thus, in this part, we consider the system of differential equation
d

dt
uNi (t) =

1

N

N∑
j=1

ξijD(uNj − uNi ), i ∈ {1, . . . , N}

uNi (0) = g(xNi ), i ∈ {1, . . . , N}
(Sr−d
N )

where L(ξij |XN ) = q(xNi , x
N
j , ·). As opposed to Section 2, system (Sr−d

N ) is only simply random:
the weights ξij are randomly attributed from the distribution q(xNi , x

N
j , ·), where (xNi , x

N
j ) are de-

terministic.
As in Section 2, we will prove that the solution to (Sr−d

N ) converges as N goes to infinity to the
solution to the Graph Limit equation∂tu(x, t) =

∫
I

(∫
R+

wq(x, y; dw)

)
D(u(y, t)− u(x, t))dy

u(x, 0) = g(x), x ∈ I,
(C)

in a sense to be determined.
From the particle system (uNi (t))i∈{1,··· ,N}, we construct a piecewise-constant bounded function

uN ∈ L∞(I × R) defined by

∀t ∈ R, ∀x ∈ I, uN (x, t) =

N∑
i=1

uNi (t)1INi (x), (13)

where 1INi denotes the indicator function of the interval INi . We can then proove the following:

Theorem 3. Let D satisfy Hyp. 1, and let g ∈ C0, 1
2 (I). Suppose that the weighted random graph

law satisfies Hypothesis 2 and that (x, y) 7→
∫
R+
wq(x, y; dw) is 1

2
−Hölder on I2. Then, the function

uN dedfined in (13) converges as N goes to infinity to the solution u of the continuous model (C).
More precisely,

P
[
‖uN − u‖C(0,T ;L2(I)) ≥

C2√
N

]
≤ C̃2

N
(14)

for some explicit constants C2, C̃2 > 0.

We start by introducing an auxiliary problem, the heat equation on the following deterministic
weighted graph G̃N : for all (i, j) ∈ {1, · · · , N}2, the edge (i, j) of G̃N is supplied with the weight

WN
ij = E [ξij ] = w̄(xNi , x

N
j ) =

∫
R+

wq(xNi , x
N
j ; dw),

and we study the following problem
d

dt
vNi (t) =

1

N

N∑
j=1

w̄(xNi , x
N
j )D(vNj (t)− vNi (t)), i ∈ {1, . . . , N}

vNi (0) = g(xNi ), i ∈ {1, . . . , N}.
(15)

Let us denote vN (t) = (vN1 (t), . . . , vNN (t)) the solution of (15). Let vN : I × R → R be the
piecewise-constant function defined by

∀t ∈ R, ∀x ∈ I, vN (x, t) =

N∑
i=1

vNi (t)1INi (x).

In the same spirit, we define a piecewise-constant function WN on I2 such that

∀(x, y) ∈ I2, WN (x, y) =

N∑
i=1

N∑
i=1

WN
ij 1INi (x)1INj (y).

Then, by construction, vN (x, t) solves the following system
∂tvN (x, t) =

∫
I

WN (x, y)D(vN (y, t)− vN (x, t))dy

vN (·, 0) =

N∑
i=1

g(xNi )1INi .
(16)

The convergence of the deterministic system (15) can then be obtained as a direct consequence of
Theorem 4 in [25], with additional regularity assumptions on g, and the first moment of the weighted
random graph law, w̄.
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Theorem 4. [25] Suppose that D is a Lipschitz continuous function satisfying Hyp. 1. Moreover,
suppose that there exists α ∈ (0, 1] such that g ∈ C0,α(I) and that the first moment (x, y) 7→ w̄(x, y)
of the weighted random graph law is also α−Hölder with respect to x and y. Then, the solution vN
to (16) converges to the solution u to (C) as N goes to +∞, and

‖vN (·, t)− u(·, t)‖L∞(I) ≤
2

Nα
(1 +H(g))e2tLG , (17)

where H(g) denotes the Hölder constant of g, H(w̄) the Hölder constant of w̄, and LG := max(H(w̄), L).

Using this intermediate result, we can now prove our main Theorem 3 by multiple uses of the
Bienaymé-Chebyshev inequality (or of its generalization).

Proof of Theorem 3. For all i ∈ {1, · · · , N}, we denote ηNi (t) = uNi (t) − vNi (t), and ηN (t) =
(ηN1 (t), . . . , ηNN (t)). We substract (Sr−d

N ) and (15) and obtain

d

dt
ηNi (t) =

1

N

(
N∑
j=1

ξijD(uNj − uNi )−
N∑
j=1

WN
ij D(vNj − vNi )

)

=
1

N

N∑
j=1

ξij
(
D(uNj − uNi )−D(vNj − vNi )

)
+

1

N

N∑
j=1

(ξij −WN
ij )D(vNj − vNi ).

We multiply the previous equation by 1
N
ηNi and we sum over i to obtain

1

2

d

dt
‖ηN‖22,N =

1

N2

N∑
i,j=1

ξij
(
D(uNj − uNi )−D(vNj − vNi )

)
ηNi + (ZN , ηN )N , (18)

where we denote Z̃N = (Z̃N1 , . . . , Z̃
N
N ) with Z̃Ni :=

1

N

N∑
j=1

(
ξij −WN

ij

)
D(vNj − vNi ).

Let us deal with the first term. As in the proof of Theorem 2,∣∣∣∣∣ 1

N2

N∑
i=1

(
N∑
j=1

ξij
(
D(uNj − uNi )−D(vNj − vNi )

))
ηNi

∣∣∣∣∣ ≤ ML

N2

N∑
i,j=1

|ηNj (t)− ηNi (t)||ηNi (t)|

≤ L(α̃N + γ̃N )‖ηN (t)‖22,N ,

with α̃N :=
(

1
N2

∑N
i=1

∑N
j=1 ξ

2
ij

) 1
2

and γ̃N = maxi∈{1,··· ,N}
1
N

∑N
j=1 ξij .

From the previous inequalities, we deduce that

d

dt
‖ηN‖22,N ≤ ‖Z̃N‖22,N + (1 + 2L(α̃N + γ̃N ))‖ηN‖22,N ,

and Gronwall’s lemma yields

‖ηN (t)‖22,N ≤ T sup
t∈[0,T ]

‖Z̃N (t)‖22,Ne(1+2L(α̃N+γ̃N ))T . (19)

As in the proof of Theorem (2), we aim to use the Bienaymé-Chebyshev inequality to bound α̃N
and γ̃N . Notice however the key difference introduced by the deterministic choice of the points
(xNi )i∈{1,··· ,N}. The random variables (ξ2ij)i,j∈{1,··· ,N} no longer have the same law, and for all
i, j ∈ {1, · · · , N},

E
[
ξ2ij
]

=

∫
I

w2q(xNi , x
N
j , dw), V

[
ξ2ij
]

=

∫
I

w4q(xNi , x
N
j , dw)−

(∫
I

w2q(xNi , x
N
j , dw)

)2

.

However, using the uniform bounds on the moments of q (Hyp. 2), we can follow the same arguments
as in Lemma 1, and prove

P [α̃N ≥ 2M ] ≤ 1

N2
, and P [γ̃N ≥ 2M ] ≤ 5

N
.

This allows us to obtain for N large enough, as in the proof of Theorem 2:

P
(√

N‖Z̃N (t)‖2,Ne(1+2L(γ̃N+α̃N ))T ≥
√

1 + c1e
( 1
2
+4ML)T )

)
≤ C̃1

N
,
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where c1 = M2K2 and C̃1 = 3M4K4 + 6 (see Appendix 6.2 for some details of the computations).
Moreover, it holds

‖uN − u‖C(0,T ;L2(I)) = sup
t∈[0,T ]

(∫
I

|uN (t, x)− u(t, x)|2dx
)1/2

≤ sup
t∈[0,T ]

‖uN − vN‖L2(I) + sup
t∈[0,T ]

‖vN − u‖L2(I)

= sup
t∈[0,T ]

(
N∑
i=1

∫
Ii

|uNi (t)− vNi (t)|2dx

)1/2

+ ‖vN − u‖C(0,T ;L2(I))

= sup
t∈[0,T ]

‖ηN‖2,N + ‖vN − u‖C(0,T ;L2(I)).

The second term is deterministic, and from Theorem 4, converges to zero with a rate of N−
1
2 : More

precisely, denoting c4 := 2(1 +H(g))e2TLG , it holds

P
[
‖vN − u‖C(0,T ;L2(I)) ≥

c4√
N

]
= 0.

Finally, denoting C2 := max
(

2c4, 2
√
T
√

1 + c1e
( 1
2
+4ML)T

)
, we obtain

P
[
‖uN − u‖C(0,T ;L2(I)) ≥

C2√
N

]
≤ P

[{
sup
t∈[0,T ]

‖η‖2,N ≥
C2

2
√
N

}⋃{
‖vN − u‖C(0,T ;L2(I)) ≥

C2

2
√
N

}]

≤ P

[
sup
t∈[0,T ]

‖η‖2,N ≥
C2

2
√
N

]
+ P

[
‖vN − u‖C(0,T ;L2(I)) ≥

C2

2
√
N

]
≤ P

[
sup
t∈[0,T ]

‖Z̃N‖2,N ≥
√
T

√
1 + c1√
N

e(
1
2
+4ML)T

]
+ P

[
‖vN − u‖C(0,T ;L2(I)) ≥

C2

2
√
N

]
≤ C̃1

N
,

which concludes the proof.

4 Blinking systems on weighted random graphs

In what we have done previously, the weighted random graph is fixed at t = 0 and stays constant
with time, even if the edges’ weights are randomly chosen. In this section, we will now be interested
in time-dependent random graphs.

We will focus on blinking systems in the context of a weighted random graph generated by a
random sequence. As in Section 2, let (Xi)i∈N be a sequence of i.i.d. random variables uniformly
distributed on I.
We now consider a time-dependent piecewise-constant random variable ξij(t) defined as follows : for
all k ∈ N, for all t ∈ [k, k+ 1), ξij(t) = ξkij with L(ξkij |X̃) = q(Xi, Xj , ·). We then study the following
blinking system : given T > 0, n ∈ N∗, and ε = T

n
,

d

dt
uN,εi (t) =

1

N

N∑
j=1

ξij

(
t

ε

)
D(uN,εj (t)− uN,εi (t)), i ∈ {1, . . . , N}

uN,εi (0) = g(XN
i ), i ∈ {1, . . . , N}

(SN,ε)

Hence, given ε > 0, the graph associated with (SN,ε) is redefined on each interval [kε, (k + 1)ε),
k ∈ {0, . . . , n− 1}. Applying results from Averaging theory (see [26, Section 3.2]), we can show that
as ε→ 0, the time-dependent system (SN,ε) converges to the averaged problem

d

dt
uN,Av
i (t) =

1

N

N∑
j=1

(∫
R+

wq(Xi, Xj ; dw)

)
D(uN,Av

j (t)− uN,Av
i (t)), i ∈ {1, . . . , N}

uN,Av
i (0) = g(XN

i ), i ∈ {1, . . . , N},
(SN,Av)

where
∫
R+
wq(Xi, Xj ; dw) = E

[
ξkij |Xi, Xj

]
for all k ∈ {1, · · · , n− 1}. The exact statement writes

Proposition 1. Let g ∈ L∞(I), D satisfying Hyp.1. Let N ∈ N, (Xi)i∈{1,··· ,N} be a sequence of
i.i.d. random variables, and uN,ε be the solution to (SN,ε). Then as ε goes to zero, it satisfies

P
{

lim
ε→0

sup
s≤T

∣∣∣uN,ε(s)− uN,Av(s)
∣∣∣ = 0

}
= 1,
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where uN,Av is the solution to (SN,Av).

Proof. The proof of Prop. 1 is a direct consequence of the averaging results presented in [26].

Remark 4.1. When directly applying the results of averaging theory from [26, Section 3.2] , it does
not provide a rate for the convergence of (SN,ε) to (SN,Av). A rate can be achieved in the case of
blinking systems taking a finite number of values (see [14]).

Notice that the limit system (SN,Av) is no longer defined on a time-varying network. Moreover,
it would be deterministic if the sequence (Xi)i∈{1,··· ,N} were deterministic. Thus, so far we have
considered four models :

• the system on a fixed weighted random graph (Sr−r
N )

• its limit as N goes to infinity, i.e. the graph limit equation (C)

• the blinking system (SN,ε)

• its limit as ε goes to zero, i.e. the associated averaged system (SN,Av).

Naturally, we are interested in the relation between them. Interestingly, we can prove that (SN,Av)
converges as N → +∞ to the same limit (C) as (Sr−r

N ) by seeing (SN,Av) as a specific case of (Sr−r
N )

where q(x, y; dw) = δ(w = w̄(x, y)). The known relations between all these various systems are
summarized in Figure 2. The question of linking (SN,ε) to (C) by taking first the limit in N remains
open, and the goal of this section is to answer it.

Figure 2: Existing and missing links between systems (SN,ε), (SN,Av), (Sr−rN ) and (C)

To study the convergence of (SN,ε) as N goes to infinity, a natural approach would be to apply
the convergence method from (Sr−r

N ) to (C) on each time interval [kε, (k+ 1)ε). On the first interval
[0, ε), the convergence (SN,ε) to (C) as N goes to infinity is indeed a direct application of Theorem
2. However, in subsequent intervals, the initial condition uN,εi (kε) does not match u(kε,XN

i ), as
required to apply Theorem 2 again. Thus, our approach consists in resetting the initial conditions
at the beginning of each time interval, hoping that the error that we commit by doing so is small
enough. In that purpose, we introduce the following intermediate system : ∀t ∈ (kε, (k + 1)ε],

d

dt
ũN,ε,ki (t) =

1

N

N∑
j=1

ξij

(
t

ε

)
D(ũN,ε,kj (t)− ũN,ε,ki (t)), i ∈ {1, . . . , N}

ũN,ε,ki (kε) = u(kε,XN
i ), i ∈ {1, . . . , N}.

(S̃N,ε,k)

We consider that on each time interval [kε, (k+1)ε), the systems (SN,ε) and (S̃N,ε,k) are constructed
using the same random variables. We can then show that the solutions to the two systems are indeed
close, in the following sense:

Lemma 3. For all k ∈ {0, . . . , n − 1}, for all t ∈ [kε, (k + 1)ε), the solutions uN,ε and ũN,ε,k to
(SN,ε) and (S̃N,ε,k) satisfy:

P
[
‖uN,ε(t)− ũN,ε,k(t)‖2,N ≤ e4LMε‖uN,ε(kε)− ũN,ε,k(kε)‖2,N

]
≥ 1− 6

N
,

where L is the Lipschitz constant of D and M is the uniform bound on the moments of q, as defined
in (4).

Proof. Let k ∈ {0, . . . , n − 1} and t ∈ [kε, (k + 1)ε). Let UN (t) := uN,ε − ũN,ε,k. Since uN,ε and
ũN,ε,k satisfy the same differential equation, following the computation (11) in the proof of Theorem
2, it holds with probability 1:

d

dt
‖uN,ε(t)− ũN,ε,k(t)‖22,N ≤ 2L(αkN + γkN )‖uN,ε(t)− ũN,ε,k(t)‖22,N ,
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where αkN :=

(
1

N2

N∑
i=1

N∑
j=1

(ξkij)
2

) 1
2

and γkN = max
i∈{1,··· ,N}

1

N

N∑
j=1

ξkij . From Gronwall’s lemma, for all

t ∈ [kε, (k + 1)ε),

‖uN,ε(t)− ũN,ε,k(t)‖22,N ≤ e2L(αk
N+γkN )ε‖uN,ε(kε)− ũN,ε,k(kε)‖22,N .

Since αkN + γkN ≤ 4M implies

‖uN,ε(t)− ũN,ε,k(t)‖22,N ≤ e8LMε‖uN,ε(kε)− ũN,ε,k(kε)‖22,N ,

it holds

P
[
‖uN,ε(t)− ũN,ε,k(t)‖22,N ≤ e8LMε‖uN,ε(kε)− ũN,ε,k(kε)‖22,N

]
≥ P

[
αkN + γkN ≤ 4M

]
.

Moreover,

P
[
αkN + γkN > 4M

]
≤ P

[
{αkN > 2M} ∪ {γkN > 2M}

]
≤ P

[
αkN > 2M

]
+ P

[
γkN > 2M

]
≤ 6

N

from Lemma 1. Thus,

P
[
‖uN,ε(t)− ũN,ε,k(t)‖22,N ≤ e8LMε‖uN,ε(kε)− ũN,ε,k(kε)‖22,N

]
≥ P

[
αkN + γkN ≤ 4M

]
≥ 1− 6

N
.

Using this intermediate system, we are able to prove the main result of this Section - as Nε
converges to infinity, the solution to (SN,ε) converges to the solution to (C), in the following sense:

Theorem 5. Let T > 0, ε > 0 be given. Let X = (Xi)i∈N be a sequence of i.i.d. random variables
and for all N ∈ N, let XN = (Xi)1≤i≤N . Let ξij(t) = ξkij for all t ∈ [kε, (k+ 1)ε), k ∈ {0, . . . , n− 1}
where L(ξkij |XN ) = q(Xi, Xj , ·). Let uN,ε be the solution to (SN,ε) and let u be the solution to (C).
Then,

P

[
sup
t∈[0,T ]

‖uN,ε(t)− PXNu(t, ·)‖2,N ≤
C3(T )√
Nε

]
≥ 1− C̃3(T )

Nε
.

where C3(T ) :=
√

1 +M2K2e(
1
2
+4ML)T e4MLT−1

4ML
and C̃3(T ) := (12 + 3M4K4)T .

Proof of Theorem 5. Let uN,ε be the solution to (SN,ε) and ũN,ε,k the solution to (SN,Av) on each
interval [kε, (k + 1)ε). We start by proving by induction that

P

[
sup

t∈[kε,(k+1)ε]

‖uN,ε(t)− PXNu(t, ·)‖2,N >
C1(ε)√
N

k∑
`=0

e4LMε`

]
≤ (k + 1)

N
(6 + C̃1), (20)

where C1 and C̃1 are the constants that appear in Theorem 2. For k = 0, Theorem 2 implies that

P

(
sup
t∈[0,ε]

‖uN,ε(t)− PXNu(t, ·)‖2,N ≥
C1(ε)√
N

)
≤ C̃1

N
≤ C̃1 + 6

N
.

Suppose that (20) holds for some k ∈ {0, . . . , n− 2}. We begin by taking t in the half-open interval
[(k + 1)ε, (k + 2)ε). Denoting UN (t) :=

∥∥uN,ε(t)− ũN,ε,k+1(t)
∥∥
2,N

, it holds

P

[
‖uN,ε(t)− PXNu(t, ·)‖2,N ≥

C1(ε)√
N

k+1∑
`=0

e4LMε`

]

≤ P

[
UN (t) + ‖ũN,ε,k+1(t)− PXNu(t, ·)‖2,N ≥

C1(ε)√
N

k+1∑
`=0

e4LMε`

]

≤ P

[
{UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`} ∪ {‖ũN,ε,k+1(t)− PXNu(t, ·)‖2,N ≥
C1(ε)√
N
}

]

≤ P

[
{UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`}

]
+ P

[
{‖ũN,ε,k+1(t)− PXNu(t, ·)‖2,N ≥

C1(ε)√
N
}
]
.

(21)
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We begin by examining the first term:

P

[
UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`

]

=P

[
{UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`} ∩ {UN (t) ≤ UN ((k + 1)ε)e4LMε}

]

+ P

[
{UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`} ∩ {UN (t) > UN ((k + 1)ε)e4LMε}

]
.

From Lemma 3, since for all t ∈ [(k + 1)ε, (k + 2)ε), P
[
UN (t) ≤ UN ((k + 1)ε)e4LMε

]
≥ 1− 6

N
,

P

[
{UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`} ∩ {UN (t) ≤ UN ((k + 1)ε)e4LMε}

]

≤ P

[
{UN ((k + 1)ε) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε(`−1)} ∩ {UN (t) ≤ UN ((k + 1)ε)e4LMε}

]

≤ P

[
UN ((k + 1)ε) ≥ C1(ε)√

N

k∑
`=0

e4LMε`}

]
≤ (k + 1)

N
(6 + C̃1),

where the last equality comes from the induction hypothesis, noticing that by definition of ũN,ε,k+1,

UN ((k+1)ε) =
∥∥∥uN,ε((k + 1)ε)− ũN,ε,k+1((k + 1)ε)

∥∥∥
2,N

=
∥∥∥uN,ε((k + 1)ε)− PXNu(·, (k + 1)ε)

∥∥∥
2,N

.

Moreover, still from Lemma 3,

P

[
{UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`} ∩ {UN (t) > UN ((k + 1)ε)e4LMε}

]

≤ P
[
UN (t) > UN ((k + 1)ε)e4LMε

]
≤ 6

N
.

Thus, for all t ∈ [(k + 1)ε, (k + 2)ε),

P

[
UN (t) ≥ C1(ε)√

N

k+1∑
`=1

e4LMε`

]
≤ (k + 1)

N
(6 + C̃1) +

6

N
.

Moreover, coming back to the second term of (21), from Theorem 2, for all t ∈ [(k + 1)ε, (k + 2)ε),

P
[
‖ũN,ε,k(t)− PXNu(t, ·)‖2,N ≥

C1(ε)√
N

]
≤ C̃1

N

Putting these last two convergence results together, and coming back to (21), for all t ∈ [(k+1)ε, (k+
2)ε),

P

[
‖uN,ε(t)− PXNu(t, ·)‖2,N ≥

C1(ε)√
N

k∑
`=0

e4LMε`

]
≤ (k + 1)

N
(6 + C̃1) +

6

N
+
C̃1

N
=

(k + 2)

N
(6 + C̃1).

By continuity of uN,ε and PXNu, we can extend this result to the full interval [(k + 1)ε, (k + 2)ε],
and finally obtain the desired result:

P

[
sup

t∈[(k+1)ε,(k+2)ε]

‖uN,ε(t)− PXNu(t, ·)‖2,N ≥
C1(ε)√
N

k+1∑
`=0

e4LMε`

]
≤ (k + 2)

N
(6 + C̃1)

By induction, (20) holds for all k ∈ {0, · · · , n− 1}.
Moreover, recalling that ε = T

n
, and that C1(ε) =

√
ε
√

1 +M2‖D‖2
L∞(Rd)

e(
1
2
+4ML)ε, it holds

k∑
`=0

e4LMε` =
e4LMε(k+1) − 1

e4LMε − 1
≤ e4LMT − 1

4LMε

and

C1(ε)√
N

k∑
`=0

e4LMε` ≤
√

1 +M2‖D‖2
L∞(Rd)

e(
1
2
+4ML)T e

4LMT − 1

4LM
√
Nε

=
C3(T )√
Nε

.
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Thus, we get for all k ∈ {0, · · · , n− 1} and all t ∈ [kε, (k + 1)ε):

P

[
sup

t∈[kε,(k+1)ε]

∥∥∥uN,ε(t)− PXNu(t, ·)
∥∥∥
2,N
≥ C3(T )√

Nε

]
≤ C̃3(T )

Nε
,

where C̃3(T ) = T (C̃1 + 6). Since the constants are independent of k, we obtain

P

[
sup
t∈[0,T ]

∥∥∥uN,ε(t)− PXNu(t, ·)
∥∥∥
2,N
≥ C3(T )√

Nε

]
≤ C̃3(T )

Nε

which concludes the proof.

Remark 4.2. As in section 3, we can construct a constant-by-part bounded function ũε,kN ∈ L∞(I×R)
defined by

for k ∈ N, ∀t ∈ [kε, (k + 1)ε], ∀x ∈ INi , ũε,kN (x, t) = ũN,ε,ki (t).

Noticing that ‖uN‖C(0,T ;L2(I)) = sup
t∈[0,T ]

∥∥∥uN (t)
∥∥∥
2,N

and ‖ũε,kN ‖C(kε,(k+1)ε;L2(I)) = sup
t∈[kε,(k+1)ε]

∥∥∥uN,ε,k(t)
∥∥∥
2,N

,

we can obtain an equivalent result for a blinking system on weighted random graphs generated by a de-
terministic sequence with a straightforward adaptation of the proof using this time Theorem 3 instead
of Theorem 2.

We can then complete the schematic linking the various systems of interest as shown in Fig. 3.
Thus, the graph limit equation (C) is the limit of the three systems (Sr−r

N ), (SN,Av) and (SN,ε) as
N goes to infinity.

Figure 3: Ergodicity

5 Numerical Simulations

5.1 Application to the Weighted Random Graph model of Gar-
laschelli

The Erdös-Rényi random graph is an unweighted graph constructed by randomly linking any two
nodes with a given probability p. In [13], Garlaschelli introduced a weighted version of the Erdös-
Rényi random graph as follows. Let p ∈ (0, 1). We generate between every pair of edges (i, j) an edge
with an integer weight w ∈ N, with probability pw(1 − p). Notice that this enters our framework,
defining a weighted random graph law q with support in N by

q(x, y; ·) = (1− p)
+∞∑
i=0

piδi, for all x, y ∈ R. (22)

We can easily check that for all x, y ∈ R, q(x, y; ·) is a probability distribution, since∫
R+

q(x, y; dw) = (1− p)
+∞∑
i=1

pi = (1− p) 1

1− p = 1.

Furthermore, its first moment (by definition constant in x, y) is given by

w̄(x, y) =

∫
R+

wq(x, y; dw) = (1− p)
+∞∑
i=1

ipi =
p

1− p ,

and all moments of higher order are bounded as well. In particular,∫
R+

(w − w̄(x, y))2q(x, y; dw) =

∫
R+

w2q(x, y; dw)−
(∫

R+

wq(x, y; dw)

)2

=
p

(1− p)2 .
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This model implies that all edges are statistically equivalent, as q(x, y; ·) does not depend on x, y.
The probability that no edge is drawn between a given pair of vertices given by (1−p)

∑+∞
i=0 p

iδi(0) =
(1− p), and consequently, the probability that an edge has a non-zero weight is given by p, as in the
Erdös-Rényi random graph.

In a refined version of the model, the parameter p is now allowed to depend on the nodes’ indices
x and y. For instance, setting p(x, y) = xy

2
, the weighted graph law becomes for all (x, y) ∈ I2

q(x, y; dw) = (1− xy

2
)

+∞∑
i=0

(
xy

2
)wδi(w), (23)

and its expected value and variance become

w̄(x, y) =
xy

2− xy ;

∫
R+

(w − w̄(x, y))2q(x, y; dw) =
2xy

(2− xy)2
.

Fig. 4 and 5 show the random matrices (ξij)i,j∈{1,··· ,N} generated respectively by a random or a
deterministic sequence, for various values of N .

Figure 4: Left and Center: Random interaction matrices generated by random sequences for N = 60
and N = 150, for the weighted random graph law (23). Right: Corresponding graphon (x, y) 7→ w̄(x, y).

Figure 5: Random interaction matrices generated by deterministic sequences for N = 20, N = 60 and
N = 150, for the weighted random graph law given by (23).

Applying Theorem 2, we expect that the microscopic system (Sr−r
N ) with such random weights

will converge to the graphon u(t, x) solution to the following integro-differential equation:∂tu(x, t) =

∫
I

xy

2− xyD(u(y, t)− u(x, t))dy

u(x, 0) = g(x), x ∈ I.
(24)

We illustrate this result numerically with initial data and interaction function respectively given
by

D(z) =
z

1 + ‖z‖2 and g : x 7→ sin(4x)2. (25)

Notice that the random matrices corresponding to the microscopic systems have a large proportion
of zero-weight edges (with probability 1 − xy

2
, as shown above), whereas the continuous graphon

satisfies w̄(x, y) > 0 as soon as xy 6= 0. Moreover, the edge weights (ξij)i,j∈{1,··· ,N} can theoretically
take any integer value, with no upper bound, and the higher the number of agents, the more likely it
becomes to randomly generate some edge weights of high value, as seen in Fig. 4 and 5. Conversely,
for small values of N , an agent can have very few outgoing or ingoing edges, which considerably
reduces its interaction with the group, and hence its convergence towards consensus.
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As a result, the microscopic system and the projected solution of the graph limit equation
(C) have noticeably different time evolutions. Fig. 6 shows the evolution of the agents’ positions
(ui(t))i∈{1,··· ,N}, for the microscopic system (Sr−r

N ) generated by a random sequence (Xi)i∈{1,··· ,N}
(left plots), compared to the projected graph limit solution to (C) (u(Xi, t))i∈{1,··· ,N} (right plots).

Interestingly, notice that in the microscopic system, some agents’ positions stay constant in time:
their corresponding nodes have no ingoing edges (which is increasingly likely as i is small), and they
do not feel any influence from the other agents. This behavior is not observed in the projected graph
limit’s evolution, as in the continuous graphon (x, y) 7→ w̄(x, y) = xy

2−xy , the only zero-weight edges
are found when XiXj is exactly equal to zero, which happens with probability zero.

Figure 6: Time evolution of the microscopic system (Sr−rN ) for N = 60 (left), and of the corresponding
projection of the graph limit (C) (right), for the weighted random graph law (23).

Fig. 7 shows the evolution of the graph limit u(·, t) (in red) for t = 0, t = 6 and t = 40 and of
the projection uN (·, t) of the microscopic system generated by a deterministic sequence (Sr−d

N ), for
N = 60 (in black). Observe that while u(·, t) converges to consensus in L2, it does not in L∞, as the
graphon is not strongly connected (as proven in [7]).

Figure 7: Evolution of the graph limit u(·, t) solution to (C) (red) and of uN (·, t) constructed from the
solution to (Sr−dN ) (black) for N = 60, at t = 0, t = 6 and t = 40, for the weighted random graph law
(23).

The convergence of both microscopic systems to the graph limit solution is illustrated in Fig. 8.

5.2 Weighted “small world” network

In [28], Watts and Strogatz introduced a model for a “small-world” network, to interpolate between
regular and random networks. The construction procedure for a finite set of N nodes is as fol-
lows. Connect each node with its k closest neighbors to form a ring lattice (this is the deterministic
underlying structure of the network). Then, rewire each edge at random with probability p. The con-
structed network reflects the well-known “small-world” property according to which each individual
has a small probability to be connected with another individual supposedly outside its circle.

We can refine this model by considering weighted edges. Given two nodes of the graph, we
connect them with an edge of weight 1 if they are among each other’s closest k neighbors, i.e. if

|Xi − Xj | ≤ r, where r := k
2N

. Then, with probability p =
|Xi−Xj |

r
, rewire each of these edges at

random, giving the new edge a weight drawn uniformly in the interval [0, 1]. The weighted random
graph law giving the edge weight distribution for each (i, j) is given by
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Figure 8: Convergence of (Sr−rN ) quantified by supt∈[0,T ] ‖uN (t) − PX̃N
u(·, t)‖2,N (left) and of (Sr−dN )

quantified by supt∈[0,T ] ‖uN (·, t)− u(·, t)‖L2 (right) for different values of N , with 20 runs for each value
of N (logarithmic scale), for the weighted random graph law (23).

q(x, y; dw) =

{
ρ(x,y)
r

dλ[0,1] + (1− ρ(x,y)
r

)δ1 if ρ(x− y) ≤ r
dλ[0,1] otherwise

(26)

where dλ[0,1] represents the Lebesgue measure restricted to the interval [0, 1] and ρ(x, y) = min{|x−
y|, |x− y − 1|, |y − x− 1|}.

Note that for all x, y ∈ [0, 1], the probability measure q(x, y; ·) is supported in [0, 1], hence all its
moments are finite. Its first moment satisfies

w̄(x, y) =

∫
R+

wq(x, y; dw) =

{
(1− ρ(x,y)

2r
) if ρ(x, y) ≤ r

1
2

otherwise.

Fig. 9 depicts examples of random interaction matrices (ξij)i,j∈{1,··· ,N} generated by a random
sequence (left) or by a deterministic sequence (center), for r = 0.3. Unlike in the previous example,
here, the limiting graphon (x, y) 7→ w̄(x, y) is bounded away from zero.

Figure 9: Values of the random interaction matrices generated from a random sequence (left) and a
deterministic sequence (right) according to the weighted random graph law (26) for N = 60. Right:
Corresponding continuous graphon (x, y) 7→ w̄(x, y).

Also unlike the previous example, the probability that an edge’s weight is exactly 0 is zero, which
means that the graph is fully connected, even for finite values of N , as seen in Fig. 9. Fig. 10 shows
the evolution of the microscopic system (Sr−r

N ) generated by a random sequence (left) and that of
the corresponding projected graph limit solution (u(Xi, ·))i∈{1,··· ,N}, for N = 60. The interaction
function and the initial data are given by (25). Convergence to consensus seems to happen at similar
rates in both cases.

Fig. 11 shows the evolution of the graph limit t 7→ u(·, t) solution to (C) (black) and that of the
solution to the microscopic system (Sr−d

N ) generated by a deterministic sequence t 7→ uN (·, t). Since
the graphon w̄ is strongly connected, convergence to consensus can be observed both in L2 and L∞

norms.
Convergence towards the graph limit in both cases is quantified in Fig. 12.
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Figure 10: Time evolution of the microscopic system (Sr−rN ) for N = 60 (left), and of the corresponding
projection of the graph limit (C) (right), for the random weighed graph law (26).

Figure 11: Evolution of the graph limit u(·, t) solution to (C) (red) and of uN (·, t) constructed from the
solution to (Sr−dN ) (black) for N = 150, at t = 0, t = 6 and t = 40, for the weighted random graph law
(26).

Figure 12: Quantification of the convergence of the microscopic systems (Sr−rN ) and (Sr−dN ) respectively
given by supt∈[0,T ] ‖uN (t)−PX̃N

u(·, t)‖2,N (left) and supt∈[0,T ] ‖uN (·, t)− u(·, t)‖L2 (right) for different
values of N , with 20 runs for each value of N (logarithmic scale), for the weighted random graph law
(26).

5.3 Blinking systems

We now illustrate the results presented in Section 4. Figure (13) shows the time evolution of the
solution to the blinking system (SN,ε), with blinking period respectively ε = 1 (left) and ε = 0.1
(right), and weighted random graph law q given by (23). As previously, the interaction function
and the initial data were chosen as given in equations (25). In comparison, in Fig. 14, we show the
solution to the averaged system (SN,Av), as well as the projected solution to the graph limit equation
(C). Notice that the solution to the averaged system (SN,Av) is almost undistinguishable from that
of the projected graph limit (C). As expected, for a fixed N , the smaller ε is, the closer the solution
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to the blinking system is to both the solution to the averaged system (SN,Av) and to the graph limit
(C). Convergence of the blinking system (SN,ε) towards the graph limit (C) for a fixed ε = 0.1 as N
goes to infinity is shown in Fig. 15.

Figure 13: Time evolution of blinking system (SN,ε) for N = 20, and ε = 1 (left) and ε = 0.1 (right) for
the random weighed graph given by (23).

Figure 14: Time evolution of averaged system (??) and of the corresponding graph limit solution
(u(Xi, ·))i∈{1,··· ,N} to (C) for N = 20, for the random weighed graph law given by (23).

Figure 15: Quantification of the convergence of the microscopic systems (SN,ε) given by
supt∈[0,T ] ‖uN,ε(t)−PX̃N

u(·, t)‖2,N for a fixed ε = 0.1, with 20 runs for each value of N , for the weighted
random graph law (23) (logarithmic scale).
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6 Appendix

6.1 Computations and bounds of variances in the random-random
case

We provide the proof of Lemma 2, which we recall for completeness.

Lemma 2. Given a solution u to the integro-differential equation (C), we consider the collection of
random variables (Y Ni )i∈{1,··· ,N}, defined for all i ∈ {1, · · · , N} by Y Ni (t) :=

√
NZNi (t), where ZNi (t)

is given by (9). Then for all i ∈ {1, · · · , N}, its variance satisfies: V
[
(Y Ni )

]
= E

[
(Y Ni )2

]
= σ2

Y (t),
where

σ2
Y (t) :=

∫∫
I2
w̄(x, y)D(u(y, t)− u(x, t))2dxdy −

∫
I

(∫
I

w̄(x, y)D(u(y, t)− u(x, t))

)2

dx.

For the random variables (Y Ni )2, it holds for all i ∈ {1, · · · , N},

E
[
(Y Ni )4

]
= 3σ4

Y (t) +O(
1

N
) and V

[
(Y Ni )2

]
= 2σ4

Y (t) +O(
1

N
).

Proof. Let us start with the computations of V
[
Y Ni
]
. Denoting ηij := ξijD(u(t,Xj)− u(t,Xi)) and

µ(Xi) := E [ηij |Xi] =
∫
I
w̄(Xi, y)D(u(t, y)−u(t,Xi))dy, the random variable Y 2

i (t) can be rewritten
as

Y 2
i (t) =

1

N

(
N∑
j=1

(ηij − µ(Xi))

)2

.

Then the term E
[
(Y Ni )2

]
can then be computed as follows:

E
[
(Y Ni )2

]
= E

[
E
[
(Y Ni )2 |Xi

]]
=

1

N
E

E
 ∑

1≤j,k≤N

(ηij − µ(Xi))(ηik − µ(Xi)) |Xi


= E

[
E

[
N∑
j=1

(ηij − µ(Xi))
2 |Xi

]]
+

2

N
E

E
 ∑

1≤j<k≤N

(ηij − µ(Xi))(ηik − µ(Xi)) |Xi

 .
By independence, we deduce that

E
[
(Y Ni )2

]
= E

[
E

[
N∑
j=1

(ηij − µ(Xi))
2 |Xi

]]
.

Since, we have

E
[
(ηij − µ(Xi))

2 |Xi
]

= E
[
η2ij |Xi

]
− 2µ(Xi)E [ηij |Xi] + µ(Xi)

2 = E
[
η2ij |Xi

]
− µ(Xi)

2,

we deduce that E
[
(Y Ni )2

]
= σ2

Y , where

σ2
Y (t) :=

∫∫
I2

∫
R+

w2D(u(y, t)−u(x, t))2q(x, y; dw)dxdy−
∫
I

(∫
R+

∫
I

w̄(x, y)D(u(y, t)− u(x, t))

)2

.

We continue with the computations of V
[
(Y Ni )2

]
. We have

V
[
(Y Ni )2

]
= E

[
((Y Ni )2 − σ2

Y )2
]

= E
[
(Y Ni )4

]
− σ4

Y . (27)

The term E
[
(Y Ni )4

]
can then be computed as follows:

E
[
(Y Ni )4 |Xi

]
= E

[
N2( 1

N

N∑
j=1

ηij − E(ηij |Xi)
)4 |Xi] = E

[
1

N2

( N∑
j=1

(ηij − µ(Xi))
)4 |Xi]

=E

[
1

N2

N∑
j1=1

N∑
j2=1

N∑
j3=1

N∑
j4=1

(ηij1 − µ(Xi))(ηij2 − µ(Xi))(ηij3 − µ(Xi))(ηij4 − µ(Xi)) |Xi

]

=E

[
1

N2

N∑
j=1

(ηij − µ(Xi))
4 |Xi

]
+ 3E

 1

N2

N∑
j1=1

∑
j2 6=j1

(ηij1 − µ(Xi))
2(ηij2 − µ(Xi))

2 |Xi

 .
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For the first term, it holds

E
[
(ηij − µ(Xi))

4 |Xi
]

= E
[
η4ij |Xi

]
− 4µ(Xi)E

[
η3ij |Xi

]
+ 6µ(Xi)

2E
[
η2ij |Xi

]
− 3µ(Xi)

4.

Using Hypothesis 2, each of these four quantities is bounded by (M‖D‖L∞)4, so

AN := E

[
E

[
1

N2

N∑
j=1

(ηij − µ(Xi))
4 |Xi

]]
=

1

N
E
[
E
[
(ηij − µ(Xi))

4 |Xi
]]

:=
µ4

N
= O

(
1

N

)
.

Secondly, by independence of the random variables that we consider, it holds

BN := EE

 1

N2

N∑
j1=1

∑
j2 6=j1

(ηij1 − µ(Xi))
2(ηij2 − µ(Xi))

2 |Xi

 =
N(N − 1)

N2
EE
[
(ηij − µ(Xi))

2 |Xi
]2

=
N(N − 1)

N2
E
[
(E
[
η2ij |Xi

]
− µ(Xi)

2)
]2

= (1− 1

N
)σ4
Y .

We then have

E
[
(Y Ni )4

]
= EE

[
(Y Ni )4 |Xi

]
= AN + 3BN = 3(1− 1

N
)σ4
Y +

µ4

N
. (28)

6.2 Computations and bounds of variances in the random-deterministic
case

Denoting WN
ij := w̄(xNi , x

N
j ), we study the convergence of the random variable

Z̃Ni :=
1

N

N∑
j=1

(
ξij −WN

ij

)
D(vNj − vNi ).

We denote Ỹ Ni :=
√
NZ̃Ni , which allows us to write ‖Z̃N‖2 = 1

N

∑N
i=1(Ỹ Ni )2. Then applying the

Bienaymé-Chebyshev inequality, it holds

P

[∣∣∣∣∣ 1

N

N∑
i=1

(Ỹ Ni )2 − E

[
1

N

N∑
i=1

(Ỹ Ni )2
]∣∣∣∣∣ ≥ 1

]
≤ V

[
1

N

N∑
i=1

(Ỹ Ni )2
]

We compute the expectation and variance of (Ỹ Ni )2. Denoting γNij := ξijf
N
ij where fNij := D(vNj −vNi ),

it holds

E
[
(Ỹ Ni )2

]
=

1

N
E

 ∑
1≤j,k≤N

(
(ξij −WN

ij )fNij

)(
(ξik −WN

ik )fNik

)
=

1

N
E

 ∑
1≤j≤N

(
(ξij −WN

ij )fNij

)2+
2

N
E

 ∑
1≤j<k≤N

(
(ξij −WN

ij )fNij

)(
(ξik −WN

ik )fNik

)
= (σNi )2

where

(σNi )2 :=
1

N
E

 ∑
1≤j≤N

(
(ξij −WN

ij )fNij

)2
=

1

N

N∑
j=1

(fNij )2
[∫

R+

w2q(xNi ;xNj ; dw)−

(∫
R+

wq(xNi ;xNj ; dw)

)2]
≤ K2M2.

Similarly,

E
[
(Ỹ Ni )4

]
=

1

N2
E

 ∑
1≤j1,j2,j3,j4≤N

((ξij1 −W
N
ij1)fNij1) . . . ((ξNij4 −W

N
ij4)fNij4)


=

6

N2

∑
1≤j<k≤N

E
[
((ξijN −WN

ij )fNij )2
]
E
[
((ξNik −WN

ik )fNik )2
]

+
1

N2

∑
1≤j≤N

E
[
((ξNij −WN

ij )fNij )4
]

=
6N(N − 1)

2N2
(σNi )4 +O(N−1) = 3(σNi )4 +O(N−1).

23



Thus, V
[
(Ỹ Ni )2

]
= 2(σNi )4 +O(N−1) ≤ 3K4M4 for N large enough.
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[25] T. Paul and E. Trélat. From microscopic to macroscopic scale equations: mean field, hydrody-
namic and graph limits, 2022.

[26] A. V. Skorokhod, F. C. Hoppensteadt, and H. Salehi. Random Perturbation Methods with
Applications in Science and Engineering, pages 88–113. Springer New York, New York, NY,
2002.

[27] R. Vizuete, F. Garin, and P. Frasca. The laplacian spectrum of large graphs sampled from
graphons. IEEE Transactions on Network Science and Engineering, PP:1–1, 03 2021.

[28] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature,
393(6684):440–442, 06 1998.

[29] D. A. Wiley, S. H. Strogatz, and M. Girvan. The size of the sync basin. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 16(1), 03 2006. 015103.

25


	Notations and preliminary concepts
	Networks on weighted random graphs generated by random sequences
	Networks on weighted random graphs generated by deterministic sequences
	Blinking systems on weighted random graphs
	Numerical Simulations
	Application to the Weighted Random Graph model of Garlaschelli
	Weighted ``small world'' network
	Blinking systems

	Appendix
	Computations and bounds of variances in the random-random case 
	Computations and bounds of variances in the random-deterministic case 


