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INVERSE DESIGN AND BOUNDARY CONTROLLABILITY FOR THE

CHROMATOGRAPHY SYSTEM

GIUSEPPE MARIA COCLITE, NICOLA DE NITTI, CARLOTTA DONADELLO, AND FLORIAN PERU

Abstract. We consider the prototypical example of the 2 × 2 liquid chromatography system and
characterize the set of initial data leading to a given attainable profile at t = T . For profiles that are

not attainable at time T , we study a non-smooth optimization problem: recovering the initial data

that lead as close as possible to the target in the L2-norm. We then study the system on a bounded
domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement

a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor
modifications of our arguments apply to the Keyfitz–Kranzer system.

1. Introduction

The aim of this paper is to generalize some of the recent results in [14, 25, 26] on the backward
reconstruction and inverse design for scalar conservation laws in one space dimension,

∂tu+ ∂xf(u) = 0, t > 0, x ∈ R,(1.1)

where the flux is strictly convex, to a special class of triangular systems, including the system of multi-
component chromatography. In the basic case where only two components are present, the system is
given by 

∂tu1 + ∂x

(
u1

1 + u1 + u2

)
= 0, t > 0, x ∈ R,

∂tu2 + ∂x

(
u2

1 + u1 + u2

)
= 0, t > 0, x ∈ R,

u1(0, x) = ū1(x), x ∈ R,
u2(0, x) = ū2(x), x ∈ R,

(1.2)

where u1, u2 ∈ R+ are the components’ concentrations. The interested reader can refer to [4, 5] for a
complete well-posedness analysis of this system that also applies in several space dimensions. However,
as we limit our attention to the one-dimensional setting, we strongly rely on the approach and the
results in [27], which we also recall briefly in Section 2.1. The results in [10], established in the more
general setting of Temple class systems, show that, for any initial condition in L∞(R), the Cauchy
problem for (1.2) admits a unique entropy admissible solution. In particular, the system admits a
continuous semi-group of solutions1

(1.3)
S+ : R+ × L∞(R;R2) → L1

loc(R;R2)
(t, U0 = (ū1, ū2)) 7→ S+

t (U0) .

The inverse design problem consists of the following steps:

(1) for any given T > 0, characterize the set of profiles UT = (uT
1 , u

T
2 ) ∈ L∞(R;R2) for which there

exists at least one initial condition (ū1, ū2) ∈ L∞(R;R2) such that S+
T (ū1, ū2) = (uT

1 , u
T
2 );

(2) for each of such attainable profiles, characterize the set of initial data leading to them, I(UT );

2020 Mathematics Subject Classification. 35L65.
Key words and phrases. Hyperbolic systems of conservation laws; triangular systems; 2× 2 chromatography system;

entropy solutions; renormalized solutions; inverse design; boundary controllability.
1The system is not strictly hyperbolic, therefore the semi-group is not Lipschitz continuous (see [12, Section 7]).
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(3) for profiles that cannot be attained by a trajectory of the system, recover the initial data
leading to their “best possible approximation”;

(4) find the element (or the elements) of I(UT ) that is optimal for the desired application in the
sense that it minimizes a suitable cost functional.

Of course, developing suitable numerical schemes is also relevant to compare the evolution of different
solutions and investigate the set of possible initial conditions.

In the case of scalar conservation laws with strictly convex flux, (1.1), the set of states in L∞(R)
attainable by Kružkov entropy solutions at time T > 0 was characterized in [1, 2, 8, 21] as follows:

(1.4) AT (R, f) =
{
u ∈ L∞(R) : ∃ρ : R → R, right continuous,

non-decreasing such that f ′(u) =
x− ρ(x)

T

}
Furthermore, for every uT ∈ AT (R, f), there exists a unique isentropic solution u : [0, T ]×R → R that
verifies u(T, ·) = uT . For general conditions toward the existence of isentropic solutions of conservation
laws (possibly in several space dimensions), see [23].

The full characterization of the set of inverse designs I(uT ) corresponding to a reachable target
uT ∈ AT (R, f) was given in [14, Theorem 4.1] and, by different arguments, in [26, Theorem 1].
Furthermore, in [14, Propositions 5.1 & 5.2], Colombo and Perrollaz studied the topological and
geometric properties of I(uT ). Finally, in [25], Liard and Zuazua computed the distance, with respect
to the L2-norm, between a possibly unattainable target profile and the set of attainable profiles at time
T for the Burgers’ equation, and proposed an algorithm to construct elements of I(uT ) containing any
fixed number of shock discontinuities.

More recently, in [15], Colombo, Perrollaz, and Sylla generalized the analysis of [14] to scalar
conservation laws whose flux may explicitly depend on the x variable (under suitable assumptions).

Some of the essential ingredients in the results above, such as the duality with Hamilton-Jacobi
equations and the Lax-Oleinik formula, do not apply to systems; thus, control results in this setting are
much less abundant. In [9], the authors characterized the set of attainable profiles at time T for a class
of triangular systems, called non-resonant systems, by means of a backward reconstruction procedure
relying on the entropies of the systems. For some systems endowed with a particular structure, such as
the chromatography system (1.2) and the Keyfitz–Kranzer system (2.19), the backward reconstruction
procedure can be performed on the system itself, without exploiting the entropies to write a companion
equation. In this setting, it is possible to further the analysis of inverse design, as we do in the present
paper (see Section 2.4). Section 2.3 summarizes the main results in [9]. It should be noticed, however,
that the set of attainable profiles for genuinely nonlinear hyperbolic systems in the Temple class defined
on a bounded domain and driven by boundary controls was first characterized by Ancona and Coclite
in [7]. In particular, they showed that the positive waves entering through the boundaries decay in
time, so that their density (expressed in terms of Riemann coordinates) is inversely proportional to
their distance from their entry point on the boundary.

In addition, in Section 3, we consider a (possibly unattainable) profile and study its projection onto
the set of attainable profiles. This extends the results in [25], where an analogous L2-minimization
problem was considered for scalar conservation laws. Moreover, in Section 4, we prove a theorem on the
boundary controllability to trajectories of (1.2) similar to the result of [17]. Finally, in Section 5, we
describe the implementation and prove the numerical convergence of a finite volume scheme inspired
from the one in [9] and the results in [25], which we used to produce all the examples throughout the
paper.

2. Preliminaries

2.1. Well-posedness of the Chromatography system. Using the change of variables

v := u1 + u2 and w := u1 − u2,
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the system (1.2) reduces to the coupling between a scalar conservation law and a linear continuity
equation: 

∂tv + ∂x

(
v

1 + v

)
= 0, t > 0, x ∈ R,

∂tw + ∂x

(
w

1 + v

)
= 0, t > 0, x ∈ R,

v(0, x) = ū1(x) + ū2(x), x ∈ R,
w(0, x) = ū1(x)− ū2(x), x ∈ R.

(2.1)

The well-posedness in L∞ of system (2.1) in one space dimension can be seen as an application of
the results in [27], where Panov considered the (more general) problem

(2.2)

{
∂t(Aρ) + ∂x(Bρ) = 0, t > 0, x ∈ R,
A(0, x)ρ(0, x) = A(0, x)ρ0(x), x ∈ R,

under the assumptions

(1) A and B in L∞(R+ × R);
(2) ∂tA+ ∂xB = 0 in D′((0,+∞)× R);
(3) there exists N : R → R such that εN(ε) → 0 as ε tends to zero and for all ε > 0, |B| ≤

N(ε)(A+ ε) a.e. in (0,+∞)× R;
(4) ess lim

t→0+
A(t, ·) = A(0, ·) in L1

loc(R) and A(0, ·) ∈ L∞(R).

For any given bounded initial condition ρ0, there exists a bounded function ρ, called generalized solution
of (2.2), such that, for any test function φ in C∞

0 ([0,+∞)× R),

(2.3)

∫ +∞

0

∫
R

(
(Aρ)∂tφ+ (Bρ)∂xφ

)
dx dt+

∫
R
A(0, x)ρ0(x)φ(0, x) dx = 0.

Moreover, every generalized solution ρ enjoys the following properties.

Strong traces: The initial condition is satisfied in the sense that in L1
loc(R)

ess lim
t→0+

A(t, x)ρ(t, x) = A(0, x)ρ0(x),

and for all T > 0, there exists ess lim
t→T−

A(t, x)ρ(t, x) in L1
loc(R).

Reversibility: If ρ is a generalized solution of problem (2.2) and the identity A(T, x)ρ(T, x) =
A(T, x)ρT (x) holds in the sense of strong traces, then t 7→ ρ(T − t) is a generalized solution of

(2.4)

{
∂t(Aρ)− ∂x(Bρ) = 0, t > 0, x ∈ R,
A(0, x)ρ(0, x) = A(0, x)ρT (x), x ∈ R.

Uniqueness: If A(0, x)ρ0(x) = 0 a.e. on R then A(t, x)ρ(t, x) = 0 a.e. on R+ × R.
Renormalization: for any function µ in C(R) the function µ ◦ ρ satisfies

(2.5)

{
∂t (A(µ(ρ))) + ∂x (B(µ(ρ))) = 0, t > 0, x ∈ R,
(µ(ρ)) (0, x) = µ (ρ0(x)) , x ∈ R,

in the sense of (2.3).

In the case of system (2.1), the scalar equation

(2.6) ∂tv + ∂x

(
v

1 + v

)
= 0, t > 0, x ∈ R,

admits a unique entropy solution in L∞(R+ × R) starting from any initial condition v0 ∈ L∞(R).
This allows us to define the divergence-free vector field t 7→ (A(t, x), B(t, x)), for A(t, x) = v(t, x) and

B(t, x) =
v(t, x)

1 + v(t, x)
, satisfying all of the hypothesis above.
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Owing to the strict concavity of the flux, the solution’s profiles v(t, ·) are of bounded variation at
any t > 0, which also ensures the existence of traces along time-like curves (e.g., the sides boundaries
of the domain if we work in (0, T ) × [0, L], as in Section 4), and are in C(R+;L

1
loc(R)), so that we

also have strong traces at t = 0 and t = T . Then Panov’s theorem guarantees that, for any given
z0 ∈ L∞(R), there exists a unique generalized solution in L∞(R+ × R) of

(2.7)

∂t(vz) + ∂x

(
vz

1 + v

)
= 0, t > 0, x ∈ R,

z(0, x) = z0(x), x ∈ R.

From this, we can recover the solution for the chromatography system in the form (2.1) and (1.2):

– the solution w of the transport equation appearing in (2.1) can be seen as w = vz if we set
z0 = (ū1 − ū2)/v0;

– the solution (u1, u2) of (1.2) can be seen as (u1 = vz1, u2 = vz2) if zi (for i ∈ {1, 2}) is the
solution of (2.7) corresponding to the initial condition z0,i = ūi/v0.

In both cases, since the z satisfies the maximum principle and we consider v0 = ū1 + ū2 with ūi ≥ 0,
we have that ∥z∥L∞(R) ≤ 1.

To summarize, we are referring to the concept of solution introduced in the following definition,
which was initially proposed in connection with the Keyfitz–Kranzer system (see [18, 28]).

Definition 2.1 (Solution of the chromatography system in the form (1.2)). Let Ū = (ū1, ū2) ∈
L∞(R;R2) be the initial conditions imposed to the system (1.2). A function U = (u1, u2) ∈ L∞((0, T )×
R;R2) is a strong generalized entropy solution for the system (1.2) if U =

(
v + w

2
,
v − w

2

)
, where

– the function v is the Kružkov entropy solution of

(2.8)

∂tv + ∂x

(
v

1 + v

)
= 0, t ∈ (0, T ), x ∈ R,

v(0, x) = ū1(x) + ū2(x), x ∈ R ;

– the function w is given by w = vz, where z is the solution of (2.7) in the weak sense with

initial datum z0(x) =
ū1(x)− ū2(x)

ū1(x)− ū2(x)
and coefficients A = v and B =

v

1 + v
.

In the above definition, the value of
ū1(x)− ū2(x)

ū1(x)− ū2(x)
can be taken arbitrary ±1 at points where Ū = 0.

Owing to the renormalization property, the definition above is equivalent to the definition of renor-
malized entropy solution used in [5], which we write here for completeness.

Definition 2.2 (Renormalized entropy solution of the chromatography system in the form (1.2)). The
function U ∈ L∞((0, T )× R;R2) is a renormalized entropy solution for the system (2.1) if

– the function v is the Kružkov entropy solution of (2.8);
– the function w is given by w = zv where, for any test function φ ∈ C∞

0 ([0, T ) × R) and any
continuous function µ, z satisfies∫ T

0

∫
R

(
vµ(z)∂tφ+

1

1 + v
µ(w)∂xφ

)
dxdt+

∫
R
v(0, x)µ(z0(x))φ(0, x) dx = 0.

By direct computations (see also [9]), the entropy/entropy-flux pairs for the systems (2.1) take the
following form:

E(v, w) := η(v) + vµ
(w
v

)
,(2.9)

Q(v, w) := q(v) +
v

1 + v
µ
(w
v

)
,(2.10)

where η is any entropy function for (2.8) and µ ∈ C(R). Therefore, the strong generalized entropy
solutions coincide with the entropy solutions for the system.
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2.2. Backward semigroups. In what follows, we shall denote S+
t (V0) the (forward) semigroup as-

sociated with the system (2.1), S+
t (v0) the (forward) Kružkov semigroup associated with the scalar

conservation law in (2.1), by S +
t [v](w0) the (forward) semigroup associated to the linear continuity

equation (2.1) for a given v. Using the change of variables (t, x) 7→ (T − t,−x) and (2.4), we also define
the backward semigroup S −

t [v](wT ). Additionally, we define S−
t (vT ) the backward Kružkov semi-

group associated with the scalar conservation law in (2.1). The solutions S+
t (v0) and S−

t (vT ) are the

zero-viscosity limits of the solutions S+,ε
t (v0) and S−,ε

t (vT ), defined as follows: vε,+(t, ·) = S+,ε
t (v0)

is the solution of the (forward) viscous conservation law

(2.11)

{
∂tv

ε,+(t, x) + ∂xf(v
ε,+(t, x)) = ε∂2

xxv
ε,+(t, x), t > 0, x ∈ R,

vε,+(0, x) = v0(x), x ∈ R,

and vε,−(t, ·) = S−,ε
t (vT ) is the solution of

(2.12)

{
∂tv

ε,−(t, x) + ∂xf(v
ε,−(t, x)) = −ε∂2

xxv
ε,−(t, x), 0 < t < T, x ∈ R,

vε,−(T, x) = vT (x), x ∈ R.

Using the change of variable (t, x) 7→ (T − t,−x), the backward equation above is well-defined as
it coincides with the equation in (2.11). We consider now a convex entropy η ∈ C2(R) and the
corresponding entropy-flux q ∈ C2(R) satisfying η′(ξ) = q′(ξ)f ′(ξ) for all ξ ∈ R. For any ε > 0 and
any positive test function φ ∈ C1

c ((0, T ) × R), the solution of (2.12) satisfies the reverse-direction
entropy inequality:

(2.13)

∫ T

0

∫
R

(
η(vε,−)∂tφ+ q(vε,−)∂xφ

)
dxdt ≤ ε

∫ T

0

∫
R
η(vε,−)∂2

xxφdx dt,

which means that, in the limit ε → 0, the sequence (vε,−)ε converges (in the strong topology of L1
loc

and up to a subsequence) to a limit point v− satisfying

(2.14) ∂tη(v
−) + ∂xq(v

−) ≥ 0, 0 < t < T, x ∈ R,

in the sense of distributions. This condition allows us to characterize the limits of the vanishing viscosity
approximation (2.12) and define the semigroup S−

∗ (vT ). Whenever the limit solution v− = S−
∗ (vT )

is isentropic, i.e. satisfies (2.14) as an equality, it is also the unique limit of the solutions of (2.11)
corresponding to the initial condition x 7→ v0(x) = v−(T, x) = S−

T (vT ) (x). Therefore, we have

vT (x) = S+
T

(
S−
T (vT )

)
(x).

If, on the contrary, the solution v− strictly produces entropy, in the sense that

∂tη(v
−) + ∂xq(v

−) > 0, 0 < t < T, x ∈ R,

holds in the sense of distributions for any convex entropy η, then we can conclude that v− contains
at least one entropy-producing jump discontinuity, i.e. a discontinuity propagating along the time-
like curve t 7→ (t, s(t)) which satisfies the Rankine-Hugoniot condition but such that v−(t, s(t)−) >
v−(t, s(t)+). Of course, in this definition, we take into account the fact that the flux function of the
nonlinear conservation law in (2.1) is concave.

Whenever the initial condition v0 of (2.11) contains a jump discontinuity of this kind at x = x̄, with
v0(x̄

−) > v0(x̄
+), the corresponding limit solution v+ would develop a rarefaction wave centered at

x = x̄. This means that, for any vT such that v− strictly produces entropy, the function S+
T

(
S−
T (vT )

)
does not necessarily coincide with vT . The results on the characterization of attainable profiles at
time T for scalar nonlinear conservation laws allow us to say that actually vT ̸= S+

T

(
S−
T (vT )

)
; indeed,

vT ∈ AT (R, f) if and only if there exists an initial condition from which an isentropic solution of
the equation reaches vT at time T . By Kružkov’s uniqueness theorem, such an isentropic solution,
whenever it exists, must coincide with v−.

Remark 2.1 (Characterization of the backward semigroup). In [9], the authors call backward semi-
group for the nonlinear conservation law the operator defined in terms of the forward semigroup as
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follows:

(2.15)
K− : R+ × (L∞(R)) → L∞(R)

(t, vT ) 7→ S+
t (vT (r)) (r(x)),

where r(x) = −x. If vT ∈ A(R, f), this gives the isentropic solution reaching the profile vT at time T .
A direct comparison of Riemann problems shows that K− and S− coincide.

We exploit the characterization above in the definition of our numerical scheme in Section 5.

2.3. Attainable profiles for triangular systems. In this section, we summarize the main results
in [9]. The authors consider triangular systems of the form{

∂tu+ ∂xf(u) = 0, t > 0, x ∈ R,
∂tv + ∂x(g(u)v) = 0, t > 0, x ∈ R,

(2.16)

where the f : R → R and g : R → R satisfy the following assumptions.

(F1) Regularity of the flux : f ∈ C2(R).
(F2) Local uniform convexity of the flux : for all compact sets K ∈ R, there exists αK > 0 such that

f ′′
|K ≥ αK .

(G1) Regularity of the transport coefficient : g ∈ C1(R).
The main theoretical result applying under the hypothesis above is the following theorem (see [9,
Theorems 3.1 and 4.2]).

Theorem 2.1 (Characterization of reachable profiles). Let us assume that f satisfies (F1)–(F2) and
g satisfies (G1). Given T > 0, we consider a target state UT = (uT , vT ) in L∞(R;R2).

Non attainable states: The condition uT ∈ AT (R, f) is necessary for the target state UT =
(uT , vT ) being attainable at time t, for any vT ∈ L∞(R).

Non resonant case: If the system additionally satisfies the condition
(NR) Non-resonance: f ′(ξ) ̸= g(ξ) for all ξ ∈ R,
then the condition uT ∈ AT (R, f) is also sufficient to establish the attainability of UT at time
T for any vT ∈ L∞(R). More precisely, there exists a unique initial datum U0 = (u0, v0) and
a unique isentropic solution U = (u, v) on (0, T )× R with U(0, ·) = U0 and U(T, ·) = UT .

Resonant case: If the system does not satisfy (NR) and uT ∈ AT (R, f), then
– for any given ε > 0 there exist an initial datum Uε

0 = (uε
0, v

ε
0) and an isentropic solution

Uε = (uε, vε) on (0, T )× R with Uε(0, ·) = Uε
0 and ∥Uε(T, ·)− UT ∥L1

loc(R) ≤ Cε;

– if uT belongs to the set AT = W 1,∞(R) ∩
(⋃

δ>0 AT+δ(f,R)
)
, which is a dense subset of

AT (R, f), then there exists a unique initial datum U0 = (u0, v0) and a unique function
U = (u, v) on (0, T ) × R with U(0, ·) = U0 and U(T, ·) = UT such that2 u is the unique
isentropic solution of the first equation of (2.16) such that u(T, ·) = uT and v is the unique
DiPerna–Lions renormalized solution (see [16, 3]), of the second equation of (2.16) such
that v(T, ·) = vT .

In particular, under the assumptions (F1), (F2), (G1), and (NR), the set of states in L∞(R) that
are attainable by entropy solutions of system (2.16) is given by

AT (R) = AT (R, f)× L∞(R).(2.17)

As already noticed in [9], the chromatography system in the form (2.1) satisfies all of these conditions.
We should stress, however, that a generic element of the set of the attainable profiles for (2.1) at time
T > 0,

AT (R) =
{
(vT , wT ) : v ∈ AT

(
R, v 7→ v

1 + v

)
and w ∈ L∞(R)

}
,

2When the condition (NR) is violated the systems only admits entropies which are linear with respect to the second

component of the solution. Therefore, the uniqueness of entropy solutions is not guaranteed.
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does not correspond to an attainable profile for the system (1.2) because it might happen that
((vT + wT )(x), (vT − wT )(x)) is not in R2

+ for almost every x ∈ R, while all physically relevant solutions
of (1.2) are in L∞(R+ × R;R2

+). Therefore, we define

AT (R) =

(vT , wT ) :
v ∈ AT

(
R, v 7→ v

1 + v

)
and there exists

z ∈ L∞(R+ × R; [−1, 1]) such that wT = zvT


and we say that UT = (uT

1 , u
T
2 ) is attainable for system (1.2) if and only if (vT := uT

1 + uT
2 , wT =

uT
1 − uT

2 ) ∈ AT .
For completeness and because the analysis in the next sections fully applies to this case, we briefly

recall the result in [9] about the Keyfitz–Kranzer system, introduced in [22]:

(2.18) ∂tU + ∂x(ϕ(|U |)U) = 0, t > 0, x ∈ R,

where ϕ : R+ → R is a smooth function such that limr→0+ rϕ(r) = 0 and U(t, x) ∈ Rm+1 (with m ≥ 1).
Introducing the variables (r, n) as r = |U | and n = U/|U |, the system (2.18) is formally equivalent to
a triangular system endowed with a constraint:

(2.19)


∂tr + ∂x(ϕ(r)r) = 0, t > 0, x ∈ R,
∂t(rn) + ∂x(ϕ(r)rn) = 0, t > 0, x ∈ R,
|n| = 1, t > 0, x ∈ R.

Strong generalized entropy solution for the first two equations of (2.19) associated with the initial
conditions r0 = |U0| and n0 = U0/|U0| automatically satisfy the constraint |n| = 1 a.e. on {(t, x) :
r(t, x) > 0} as a consequence of the renormalization property; therefore, they correspond to entropy
solutions of the system in the form (2.18). We collect the result in the following theorem (see [9,
Theorem 3.9]).

Theorem 2.2 (Attainable profiles for the Keyfitz–Kranzer system). Let us assume that r 7→ rϕ(r)
in system (2.18) is strictly convex on [a, b] ⊂ [0,+∞). Given T > 0, the target datum UT ∈ Rm+1 is
attainable by a unique strong generalized entropy solution for the Keyfitz–Kranzer system (2.18) if and
only if rT = |UT |, taking values in the interval [a, b], belongs to the set AT (R, r 7→ rϕ(r)).

Analogously, the target datum (rT , nT ) ∈ L∞(R+×R; [a, b]×Sm+1) is attainable by a unique strong
generalized entropy solution for the Keyfitz–Kranzer system (2.19) if and only if rT belongs to the set
AT (R, r 7→ rϕ(r)).

2.4. Inverse design for the chromatography system. Given an attainable target state UT =
(uT

1 , u
T
2 ) we identify the set of possible initial conditions U0 = (ū1, ū2) which lead to UT at time t = T

through the following procedure. We first notice that if both components of the target state UT =
(uT

1 , u
T
2 ) are null functions on an interval [a, b] of positive measure, then all backward characteristics

of the equation for v, (2.6), issued from points in [a, b] are classical and have slope 1. This means that
all the initial conditions associated with solutions of (2.6) which reach the profile vT = uT

1 + uT
2 must

coincide (and take the value zero) on the interval [a− T, b− T ].
Wherever vT is not null, we solve the initial data identification problem for the equation (2.6) and

target state vT as in [14, 25]. We call I(vT ) the set of initial conditions leading to vT at t = T .
Given v0 in I(vT ), we consider its evolution (t, x) 7→ S+

t (v0)(x) = v(t, x) and we set ZT = (zT1 =
uT
1 /v

T , zT2 = uT
2 /v

T ). Then we solve (2.7) backward from the final condition zT1 and zT2 , using v in
the velocity coefficient. This produces a unique couple of initial data(

ū1 = v0S
−
T [v](zT1 ), ū2 = v0S

−
T [v](zT2 )

)
.

We observe that, by linearity,

zT2 =
uT
2

vT
= 1− uT

1

vT
, ū2 = v0S

−
T [v](zT2 ) = v0

(
1− S −

T [v](zT1 )
)
.
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The same procedure allows us to describe the set of inverse designs associated with a reachable
target (vT , wT ) ∈ AT (R) for the system (2.1). The results in [14] on the geometrical and topological
properties of I(vT ) immediately imply the following theorem.

Theorem 2.3 (Characterization and properties of the set of inverse designs).

1) Given UT = (uT
1 , u

T
2 ) ∈ L∞(R;R2

+) such that VT = (vT = uT
1 + uT

2 , wT = uT
1 − uT

2 ) ∈ AT (R),
the set of inverse design

i(UT ) = {U0 = (u0
1, u

0
2) ∈ L∞(R;R+)× L∞(R;R+) : S

+
T (U0) = UT }

can be characterized as follows:

i(UT ) =

{
U0 = (u0

1, u
0
2) ∈ L∞(R;R+)× L∞(R;R+) :

u0
1 + u0

2 ∈ I(vT ) and u0
i = v0S

−
T [S∗(v0)](u

T
i /v

T ), i = 1, 2

}
.

2) Given VT = (vT , wT ) ∈ AT (R), the set of inverse design

I(VT ) = {V0 ∈ L∞(R)× L∞(R) : S+
T (V0) = VT }

can be characterized as follows:

I(VT ) = {(v0, w0) ∈ L∞(R)× L∞(R) : v0 ∈ I(vT ) and w0 = S −
T [S∗(v0)](wT )}.

In both of the above cases, the 1–to–1 correspondence between the elements of I(vT ) and the elements
of i(UT ) and I(VT ), together with the results on I(vT ) proved in [14, Propositions 5.1 & 5.2] yield the
following properties:

(T1) the set I(VT ) is closed with respect to the L1
loc × L1

loc topology;
(T2) the set I(VT ) has empty interior with respect to the L1

loc × L1
loc topology;

(G1) the sets I(VT ) and i(UT ) reduce to a singleton if and only if vT ∈ C(R).

To conclude this section, we recall following explicit characterization of I(vT ), which was first
introduced in [25]

Theorem 2.4 (Inverse design for scalar conservation laws). Let us consider a strictly convex scalar
conservation law of the form (1.1), fix T > 0, and let vT ∈ AT (R, f). Then, the initial data ũ0 ∈ L∞(R)
verifies S+

T (ũ0) = uT if and only if the following statement holds:

1) for any (x, y) ∈ X(uT )× R

(2.20)

∫ y

x−Tf ′(uT (x))

S−
T (uT )(s) ds ≤

∫ y

x−Tf ′(uT (x))

ũ0(s) ds,

2) for any (x, y) ∈ X(uT )
2

(2.21)

∫ y−Tf ′(uT (y))

x−Tf ′(uT (x))

S−
T (uT )(s) ds =

∫ y−Tf ′(uT (y))

x−Tf ′(uT (x))

ũ0(s) ds,

where X(uT ) is the set of points of approximate continuity of uT .

3. Unreachable profiles and optimization problem

In this section, we fix T > 0 and consider a target profile Vtar = (vtar, wtar) which is not attainable
in time T for the system (2.1). We assume that Vtar ∈ L∞(R;R2) and that both of its components
are constant outside a compact interval [a, b], more precisely

vtar(x) =


v−, for x < a,

v̄(x), for x ∈ [a, b],

v+, for x > b,

wtar(x) =


w−, for x < a,

w̄(x), for x ∈ [a, b],

w+, for x > b,

for some essentially bounded functions v̄, w̄. In the following we write C for ∥Vtar∥L∞(R) =
max{∥vtar∥L∞(R), ∥wtar∥L∞(R)}.
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We want to characterize the initial conditions which drive the system as close as possible to Vtar

with respect to the L2 norm. These are the minima of

J0(Q0) = ∥S+
T (Q0)− Vtar∥L2(R;R2),

where S+
T (Q0) belongs to the subset of AT (R) defined as

UT (Vtar) =
{
Q = (q1, q2) ∈ L∞(R;R2) : q1 ∈ AT (R, f), ∥Q∥L∞(R) ≤ C, and Q− Vtar ∈ L1(R)

}
.

Since the constants, such as v± and w±, are always attainable, without loss of generality we can
strengthen the last assumption and say that q1, q2 are constant, taking the values v± and w±, outside
a compact interval K containing [a, b].

Due to the definition of AT in (2.17), this optimization problem is equivalent to the one studied in
[25], namely finding q1, opt such that

∥q1, opt − vtar∥L2(R) = min
q∈UT

1 (Vtar)
∥q − vtar∥L2(R) ,(3.1)

where the admissible set UT
1 (Vtar) is defined by

UT
1 (Vtar) =

{
q ∈ L∞(R) : q ∈ AT

(
R, v 7→ v

1 + v

)
, ∥q∥L∞(R) ≤ C, and supp(q − vtar) ⊂ K

}
.

It has been shown in [25, Theorem 2.1] that q1, opt = S+
T (S−

T (vtar)).

Remark 3.1. To be more precise, the statement of [25, Theorem 2.1] focuses on the set of initial
conditions eventually leading to q1, opt in time T , and which L∞-norm is bounded by the L∞-norm of
the non-reachable target vtar. However, this second condition seems not to be necessary (the L∞-norm
of the solution to scalar conservation laws may decrease during the evolution). The proof consists of
two steps:

(1) proving that q1, opt is the solution to the minimization problem (3.1);
(2) applying the characterization of I(q1, opt) from Theorem 2.4.

It should be noticed, however, that (q1, opt, wtar) does not necessarily belong to AT (R) as q1, opt−wtar

is not everywhere positive.
Therefore, if we fix T > 0 and consider a target profile Utar = (utar

1 , utar
2 ) ∈ L∞(R,R2

+) which is
not attainable in time T for the system (1.2), we need to slightly modify the problem above and its
solution.

First, we associate to Utar the profile Vtar = (vtar = utar
1 +utar

2 , wtar = utar
1 −utar

2 ). Then we apply
the strategy above to find q1, opt. Finally, we consider q2, opt = min {q1, opt, wtar} so to obtain a second
component which is as close as possible to wtar, under the constraint that q1, opt − q2, opt ≥ 0. The
couple Qopt = (q1, opt, q2, opt) is in AT (R), so that the profile attainable at time T for (1.2) which is
the closest to Utar in L2 is

Uopt =

(
1

2
(q1, opt + q2, opt),

1

2
(q1, opt − q2, opt)

)
.

The following numerical examples are designed to illustrate the above considerations.

Example 3.1 (Optimization problem). Given the initial conditions V0 = (v0, w0), with

v0(x) =

{
0.5, if − 1 < x < 0,

0.25, otherwise,
w0(x) =

{
0.5, if − 1 < x < 0,

0.15, otherwise,

we let them evolve for time t = 3/4 and we consider as target profile at time 1, Vtar = S+
3/4(V0) =

(vtar, wtar). The profile vtar does not belong to A1(R, v/(1 + v)) because the evolution of the piecewise

constant profile v0 is a rarefaction wave (which is isentropic), so that S−
3/4(vtar) = S−

3/4

(
S+
3/4(v0)

)
=

v0, which means that backward characteristics focus at one point at T = 1/4, before reaching T = 0.
There are a few attainable profiles that are very natural to compare to Vtar.

(1) From the construction above it is evident that S+
1/4(Vtar) = S+

1 (V0) belongs to A1(R).
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ṽ(1)
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1 (v0)

Figure 1. The profiles vtar,
ṽ(1, ·) and S+

1 (v0).

−0.5 0 0.5 1 1.5

0.2

0.3

0.4

0.5

x

wtar

w̃(1)

S +
1 [S+

∗ (v0)](w0)

Figure 2. figure

The profiles wtar, w̃(1) and S +
1 [S+

∗ (v0)](w0).

(2) Following the procedure in [25], we apply the backward and the forward semigroups to vtar

S+
t

(
S−
1 (vtar)

)
= ṽ(t, ·).

The function ṽ satisfies

∥ṽ(1, ·)− vtar∥L2(R) = min
s∈A1(R,v/(1+v))

∥s− vtar∥L2(R).(3.2)

In particular, we can observe that the shock in ṽ is exactly in the same location as the one
in vtar. We can use ṽ to construct an attainable profile for the system in the following three
ways.
(a) We apply an analogous backward-forward approach to the transport equation and compute

S +
t [ṽ]

(
S −

1

[
S−
∗ (vtar)

]
(wtar)

)
= w̃(t, ·).

The profile Ṽ = (ṽ(1, ·), w̃(1, ·)) is in A1(R).
(b) Since wtar ∈ L∞(R), the profile V̄ = (ṽ(1, ·), wtar) ∈ A1(R). However, this couple does

not belong to A1(R) as ṽ(1, ·)− wtar is not everywhere positive, see Figure 3.
(c) We can define wmin(x) = min{ṽ(1, x), wtar(x)} and take Vmin = (ṽ(1, ·), wmin) ∈ A1(R).

In this simple example, we can compute numerically all the profiles above and their L2-distance from
V1. For the computation, we take ∆x = 7.8 × 10−4 and ∆t = ∆x/2. The closest profile in A1(R) is
V̄ , while the closest one in A1(R) is Vmin.

4. Boundary controllability via Lyapunov methods

In this section, we consider the evolution of the system (2.1) in a bounded interval, (0, L).

∂tv + ∂x

(
v

1 + v

)
= 0, t > 0, x ∈ (0, L),

∂tw + ∂x

(
w

1 + v

)
= 0, t > 0, x ∈ (0, L),

v(0, x) = v0(x), x ∈ (0, L),

w(0, x) = w0(x), x ∈ (0, L),

v(t, 0) = vb(t), t > 0,

w(t, 0) = wb(t), t > 0.

(4.1)
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−1 −0.5 0 0.5 1

0

5 · 10−2
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x

ṽ(1)− wtar

Figure 3. The function
ṽ(1, ·) − wtar is not everywhere
positive.

p r ∥p− r∥L2

vtar ṽ(1) 0.01469

vtar S+
1 (v0) 0.10972

wtar w̃(1) 0.01417

wtar S +
1 [S+

∗ (v0)](w0) 0.12873
min{ṽ(1), wtar} wtar 0.00624

Table 1. Distances in the L2

norm.

We rely on the well-posedness results for the initial boundary value problem established by Choud-
hury, Crippa, and Spinolo in [13]. In particular, to ensure the existence of a unique renormal-
ized entropy solution (v, w) ∈ L∞(R+ × (0, L); (R+)

2) we need to assume that both the initial
and the boundary conditions are not only essentially bounded, but also of bounded variation:
(v0, w0) ∈ L∞((0, L); (R+)

2) ∩ BV((0, L); (R+)
2), (vb, wb) ∈ L∞(R+; (R+)

2) ∩ BV(R+; (R+)
2).

An important ingredient of the analysis in [13] is a trace renormalization result, namely [13, Theorem
2.2], originally proved in [6]. In our simple setting, it reduces to the fact that if v ∈ L∞(R+ ×
(0, L);R+) ∩ BV(R+ × (0, L);R+) and z ∈ L∞(R+ × (0, L);R+) are such that (v, w = vz) provides a
renormalized entropy solution to (4.1), then, for any given h ∈ C1(R) and C2-curve t 7→ (t, γ(t)) in
R+ × [0, L] we have

(4.2) tr±(h(z)v, γ(t)) = h

(
tr±(zv, γ(t))
tr±(v, γ(t))

)
tr±(v, γ(t)),

where the value of
tr±(zv, γ(t))
tr±(v, γ(t))

can be set arbitrarily whenever tr±(v, γ(t)) vanishes.

Our final theorem concerns the boundary controllability to trajectories of (4.1). We can impose
boundary conditions only at x = 0 due to the strict increasing monotonicity of the fluxes. In the
following, we call

f(ξ) =
ξ

1 + ξ
, g(ξ) =

1

1 + ξ
.

Proposition 4.1 (Finite-time stabilization). Given a couple of entropy solutions of (4.1) (v, w) and
(v̄, w̄) corresponding respectively to the initial conditions (v0, w0), (v̄0, w̄0) ∈ L∞((0, L); (R+)

2) ∩
BV((0, L); (R+)

2), and the common boundary data (vb, zb) ∈ L∞(R+; (R+)
2) ∩ BV(R+; (R+)

2), we
have that for any T > T̄ := L/c, v(T, x) = v̄(T, x) and w(T, x) = w̄(T, x) for a.e. x ∈ (0, L) with

c := inf
ξ∈[0,M̄ ]

f ′(ξ) := inf
ξ∈[0,M̄ ]

(ξ/(1 + ξ))′ = inf
ξ∈[0,M̄ ]

1/(1 + ξ)2,(4.3)

where M̄ := max{sup(0,L) v0, sup(0,L) v̄0, sup[0,T ] vb}.
Proof of Proposition 4.1. This result is classical for hyperbolic systems of conservation laws. It suffices
to notice that the eigenvalues of the two (genuinely nonlinear) characteristic families of the system in
(4.1) are λ1(ξ, ζ) = f ′(ξ) and λ2(ξ, ζ) = g(ξ). From the analytical expression of f and g, we have that
λ1(ξ, ζ) ≤ λ2(ξ, ζ). The system is not strictly hyperbolic, so that for the umbilical value ξ = 0 the two
eigenvalues take 1 as the common value. However, as soon as we have at our disposal an upper bound



12 G. M. COCLITE, N. DE NITTI, C. DONADELLO, AND F. PERU

for ξ, as it is M̄ in our case, the propagation speed of all waves in any Riemann problem is bounded
from below by c = infξ∈[0,M̄ ] f

′(ξ). Therefore any two solutions of the initial boundary value problem

(4.1) coincides in the triangular region T = {(t, x) ∈ R2 : t ≥ 0, 0 ≤ x ≤ tc}.
Since T̄ is defined as L/c, this is enough to prove the theorem. □

Corollary 4.1 (Boundary controllability to trajectories). Let (ṽ, w̃) be a solution of (4.1) with initial
data (ṽ0, w̃0) ∈ L∞((0, L); (R+)

2) ∩ BV((0, L); (R+)
2) and boundary data (ṽb, w̃b) ∈ L∞(R+; (R+)

2) ∩
BV(R+; (R+)

2). For any (v0, w0) ∈ L∞((0, L); (R+)
2) ∩ BV((0, L); (R+)

2) and T1, T2 ≥ T̄ := L/c,
there exists a boundary control (vb, wb) ∈ L∞(R+; (R+)

2) ∩ BV(R+; (R+)
2) which leads to a solution

(v, w) satisfying

(v, w)(0, x) = (v0, w0)(x), (v, w)(T1, x) = (ṽ, w̃)(T2, x), for a.e. x ∈ (0, L).

Proof of Corollary 4.1. Following the strategy in [17], we split the proof into two cases to build suitable
boundary data (controls) steering (v, z) to (ṽ, z̃).
Case 1: T2 ≥ T1.

We solve the IBVP (4.1) for the data (ṽ0, w̃0) and (ṽb, w̃b) in [0, T2] × (0, L). Then we use the
genuine nonlinearity of f and the trace renormalization formula (4.2) to motivate the definition of the
auxiliary function

s 7→ Ub(s) = (hb(s), ℓb(s)) :=
(
ṽ
(
T2 − T1 + s, 0+

)
, w̃

(
T2 − T1 + s, 0+

) )
,

and we consider the IBVP

∂th(s, x) + ∂xf(h(s, x)) = 0, (s, x) ∈ (0, T1)× (0, L),

∂tℓ(s, x) + ∂x (g(h(s, x))ℓ(s, x)) = 0, (s, x) ∈ (0, T1)× (0, L),

h(0, x) = ṽ (T2 − T1, x) , x ∈ (0, L),

ℓ(0, x) = w̃ (T2 − T1, x) , x ∈ (0, L),

h(s, 0) = hb(s), s ≥ 0,

ℓ(s, 0) = ℓb(s), s ≥ 0.

(4.4)

The unique renormalized entropy solution of (4.4) is given by

U(s, x) =
(
h(s, x) = ṽ (T2 − T1 + s, x) , ℓ(s, x) = w̃ (T2 − T1 + s, x)

)
.

By Proposition 4.1, we deduce that the IBVP (4.1) with initial conditions (v0, w0) and boundary
condition Ub admits a unique renormalized entropy solution (v, w), which satisfies (since T1 ≥ T̄ )

v (T1, x) = h (T1, x) , w (T1, x) = ℓ (T1, x) x ∈ (0, L),

which means
v (T1, x) = ṽ (T2, x) , w (T1, x) = w̃ (T2, x) , x ∈ (0, L).

Case 2: T1 ≥ T2.
We solve the IBVP (4.1) for the data (ṽ0, w̃0) and (ṽb, w̃b) in [0, T1] × (0, L). Then we use the

genuine nonlinearity of f and the trace renormalization formula (4.2) to motivate the definition of the
auxiliary function

s 7→ Ūb(s) = (h̄b(s), ℓ̄b(s)) :=
(
ṽ
(
T2 − T̄ + s, 0+

)
, w̃

(
T2 − T̄ + s, 0+

))
,

and we consider the IBVP

∂th(s, x) + ∂xf(h(s, x)) = 0, (s, x) ∈ (0, T1)× (0, L),

∂tℓ(s, x) + ∂x (g(h(s, x))ℓ(s, x)) = 0, (s, x) ∈ (0, T1)× (0, L),

h(0, x) = ṽ
(
T2 − T̄ , x

)
, x ∈ (0, L),

ℓ(0, x) = w̃
(
T2 − T̄ , x

)
, x ∈ (0, L),

h(s, 0) = h̄b(s), s ≥ 0,

ℓ(s, 0) = ℓ̄b(s), s ≥ 0.

(4.5)
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We have that the unique renormalized entropy solution of (4.5) is given by

Ū(s, x) =
(
h(s, x) = ṽ

(
T2 − T̄ + s, x

)
, ℓ(s, x) = w̃

(
T2 − T̄ + s, x

))
.

Given any couple of constant values µ1 and µ2 ∈ [0, M̄ ], we can solve the IBVP (4.1) with the
initial condition (v0, w0) and the constant boundary conditions (µ1, µ2) on [0, T1 − T̄ ] × (0, L). We
call V ∗ = (v∗, w∗) the unique renormalized entropy solutions obtained. We use its profile at time
t = T1 − T̄ as the initial condition to the IBVP

∂th
∗(s, x) + ∂xf(h

∗(s, x)) = 0, (s, x) ∈ (0, T1)× (0, L),

∂tℓ
∗(s, x) + ∂x (g(h

∗(s, x))ℓ∗(s, x)) = 0, (s, x) ∈ (0, T1)× (0, L),

h∗(0, x) = v∗(T1 − T̄ , x), x ∈ (0, L),

ℓ∗(0, x) = w∗(T1 − T̄ , x), x ∈ (0, L),

h∗(s, 0) = h̄b(s), s ≥ 0,

ℓ∗(s, 0) = ℓ̄b(s), s ≥ 0.

(4.6)

Applying Proposition 4.1 yields that the renormalized entropy solutions of (4.5) and (4.6) coincide
for all times t ≥ T̄ . This means that by using the given initial condition (v0, w0) and the boundary
conditions

t 7→ (vb(t), wb(t)) =

{
(µ1, µ2), 0 < t ≤ T1 − T̄ ,

Ūb(t), otherwise,

we obtain a renormalized entropy solution (v, w) of (4.1) such that

v(T1, x) = ṽ(T2, x), w (T1, x) = w̃ (T2, x) , x ∈ R.

□

Example 4.1 (Controllability to trajectories). In Figures 4,5,6, and 7, we present a numerical ex-
periment illustrating Case 2 of the proof of the Corollary 4.1: T1 > T2. We fix L = 1, T̄ = 2.89,
T2 = T̄ + 1, T1 = T2 + 1, µ1 = 0.4 and µ2 = 0.25, consider the initial conditions

(4.7) v0(x) = 0.5 + 0.2 sin(2πx), v̄0(x) =


0.5, for x < 0.25,

0.8× (x− 0.25) + 0.35, for x ∈ [0.25, 0.75],

0.6, otherwise,

(4.8) w0(x) = 0.2 + 0.1 cos(2πx), w̄0(x) =


0.45, for x < 0.15,

−1.5× (x− 0.15) + 0.45, for x ∈ [0.15, 0.3[,

0.225, for x ∈ [0.3, 0.5[,

0.4− 0.1 sin(4πx), otherwise,

and the boundary controls

(4.9) v̄b(t) = 0.3 + 0.2 cos(πt), w̄b(t) =
(0.3 + 0.2 cos(πt))× | sin(2πt)|

1.5
.

In Figure 7, we show at the same scale the portion of the evolution of v and v̄ in which they have the
same boundary conditions.

5. Numerical analysis

In this section, we present some results on the numerical backward reconstruction of system (2.1)
on [0, T ]×J , where J is a given closed interval [A1, A2] ⊂ R, A1 < A2, T > 0 and where the final state
VT = (vT , wT ) belongs to AT × L∞(J).

Let us describe the numerical method:

(1) first, we use the entropic solver for the backward problem (2.15), which gives the isentropic
solution of the first equation;
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Figure 4. Profile v at time T1

and v̄ at time T2.
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Figure 5. Profile w at time T1

and w̄ at time T2.

(2) then, the numerical backward resolution of the transport equation is based on considering the
auxiliary forward problem

(5.1) ∂tw + ∂x (−g(v)w) = 0, t > 0, x ∈ R,

where v is an entropic solution of the first equation.

To perform the computations, we need to determine the domain of dependence of the system, which
is given by I = [C1, C2], where

C1 = min{A1, B1,1, B2,1}, C2 = max{A2, B1,2, B2,2},
and

B1,1 = A1 − Tf ′(vT (A1)), B1,2 = A2 + Tf ′(vT (A2)),
B2,1 = A1 − Tg(vT (A1)), B2,2 = A2 + Tg(vT (A2)).

We shall rely on a finite volume scheme. We introduce a regular grid,

C1 = x1/2 < x3/2 < · · · < xm−1/2 < xm+1/2 = C2,

and define the cells Kj = [xj−1/2, xj+1/2] with centers at xj = 1
2 (xj−1/2 + xj+1/2), for 1 ≤ j ≤ m,

and a constant space step ∆x = x3/2 − x1/2. We define a time discretization (tn)N+1
n=0 , where t0 = 0,

tN+1 = T , and tn = n∆t for a constant time-step ∆t.
With this notation in place, we define vnj and wn

j as the approximations of the averages v(tn, ·) and
w(tn, ·) on Kj . Namely,

vnj ≃ 1

∆x

∫
Kj

v(tn, x) dx,

vN+1
j ≃ 1

∆x

∫
Kj

v(T, x) dx,

wn
j ≃ 1

∆x

∫
Kj

w(tn, x) dx,

wN+1
j ≃ 1

∆x

∫
Kj

w(T, x) dx.

For the first equation, we consider the numerical backward solver K−,n
(
vT , (xj)

M
j=1

)
= (vN+1−n

j )Mj=1,

which gives us an approximation of of the semigroup K−, i.e. of the isentropic solution of the first
equation, such that

vnj = vn+1
j − ∆t

∆x

(
F(vn+1

j , vn+1
j−1 )−F(vn+1

j+1 , v
n+1
j )

)
,



INVERSE DESIGN AND CONTROL FOR CHROMATOGRAPHY 15

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.2

0.4

Figure 6. Left: the evolution of the component v (top) and w (bottom) of the
solution of (4.1) on [0, T1] × (0, 1) with initial data (v0, w0) as in (4.7)–(4.8) and
boundary control given by the strategy of Corollary 4.1.
Right: the evolution of the component v̄ (top) and w̄ (bottom) of the solution of (4.1)
on [0, T2]×(0, 1) with initial data (ṽ0, w̃0) as in (4.7)–(4.8) and boundary control given
by (4.9).
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Figure 7. Zoom of the evolution of v and v̄ (from Figure 6) in the time interval in
which they share the same boundary conditions.
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F being the Godunov numerical flux (see [19, 24])

F(vl, vr) =


min

v∈[vl,vr]
f(v), if vl ≤ vr,

max
v∈[vl,vr]

f(v), otherwise.

Then, K−,n
(
vT , (xj)

M
j=1

)
= (K+,n

(
vT ◦ r, (xj)

M
j=1

)
gives us the approximation of the isentropic solution

of the first equation.
Having obtained vnj , we then update wn

j by using an upwind-type scheme (see [20]):

wn
j = wn+1

j − ∆t

∆x
[{(−gn+1

j+1/2)
+wn+1

j − (−gn+1
j−1/2)

+wn+1
j−1 }

+ {(−gn+1
j+1/2)

−wn+1
j+1 − (−gn+1

j−1/2)
−wn+1

j }],
where

gn+1
j+1/2 = (1− θ)g(vn+1

j ) + θg(vn+1
j+1 ),

where θ ∈ (0, 1) (in particular, for the numerical simulations in Section 5.1, we take θ = 1/2), ξ+ =
max{0, ξ}, and ξ− = min{0, ξ}.

For the boundary conditions, we set

(vn1 , w
n
1 ) = (vT (A1), wT (A1)), (vnM , wn

M ) = (vT (A2), wT (A2)), 1 ≤ n ≤ N + 1.

This procedure yields the isentropic solution V = (v, w) of the system corresponding to the attain-
able profile VT = (vT , wT ).

In order to find other initial data leading to VT , we rely on Theorem 2.4, which gives a geometrical
way to describe the set of initial states which leads to the state vT (cf. [26]).

Remark 5.1 (Geometric interpretation of Theorem 2.4). Let vT an admissible state for the conser-
vation law in (2.1), with a discontinuity at x ∈ R, vL < vR such that vT (x

−) = vL and vT (x
+) = vR,

T > 0 and f : v 7→ v
1+v . We introduce the notation BT

L = x − Tf ′(vL) and BT
R = x − Tf ′(vR). We

call DT the interval [BT
L , B

T
R]. We introduce the set Γ(vL, vR, x, T ) such that γ ∈ Γ(vL, vR, x, T ) if

(1) γ : DT → R ∈ W 1,1(R);
(2) γ′ ∈ BV(DT ) the space of functions with bounded variations;
(3) γ(BT

L ) = 0;
(4) γ(BT

R) = T (vLf
′(vL)− f(vL)− uRf

′(vR) + f(vR));
(5) for every x ∈ DT ,

γ(x) ≥ γ∗(x) = −T

∫ (f ′)−1( x−x
T )

vL

sf ′′(s) ds;

(6) for every x ∈ DT , 0 < γ′(x) ≤ 1.

Then, to find an initial state ṽ0, we pick a path γ ∈ Γ(vL, vR, x, T ), and the initial data ṽ0 corresponding
to γ is defined by

ṽ0(x) =

{
γ′(x), for a.e. x ∈ DT ,

v0(x), for every x /∈ DT ,

where v0 is the isentropic solution. Then, we know ṽ for almost every (t, x) ∈ [0, T ]× R.

In light of Theorem 2.4 and Remark 5.1, we have a new profile ṽ, which we can use to solve the
second equation backward and obtain, in conclusion, another set of initial data Ṽ0 = (ṽ0, w̃0) that
leads to VT .

The convergence results in [20] for the upwind scheme described above hold in the more general
framework of duality solution for one-dimensional transport and continuity equations with discontin-
uous coefficients (see [11]).

For systems endowed with the very special structure we are considering in this paper the convergence
to a duality solution of the second equation is equivalent to the convergence to its unique generalized
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Figure 8. Paths γ∗ and γ1
leading to v0 and ṽ0.
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Figure 9. Initial data v0 and ṽ0.

solution in the sense of Panov. We can recall, in passing, that in [9] the numerical scheme above was
also applied to resonant systems (see Theorem 2.1) in cases where the DiPerna–Lions theory does not
provide uniqueness for the second equations.

5.1. Numerical experiments. We now present a numerical experiment illustrating the backward
reconstruction of (2.1) posed on the domain [0, 1]× [−2, 2]. We consider

vT (x) =


0.25, if x < −0.5,

0.25 + 0.5(x+ 0.5), if − 0.5 ≤ x < 0,

0.75− 0.5, if 0 ≤ x < 0.5,

0.5, if 0.5 ≤ x,

as a final state for the conservation law and

wT (x) =


0.1, if x ≤ −1,

0.25(x+ 1) + 0.1, if − 1 < x ≤ 0,

0.25(x− 1) + 0.4, if 0 < x ≤ 1,

0.4, if 1 < x,

as a final state for the transport equation. We choose ∆x = 7.8× 10−4 and ∆t = ∆x/2.
First of all, we construct a random path γ1 ∈ Γ(0.5, 0.75, 0, 1) and perform the backward algorithm

for vT described in the previous section, which leads us to the initial state ṽ0 in Figure 9.
The iterative construction to have a random path is initiated with (X0, Y0) = (x − Tf ′(vL), 0).

Then, we construct randomly (Xi, Yi)i=1,...,k−2, where k is the number of jumps that we want, such

that for all i, Xi < Xi+1. For (Yi)i=1,...,k−2 we pick randomly Yi+1 such that 0 < Yi+1−Yi

Xi+1−Xi
≤ 1, the line

with slope Yi+1−Yi

Xi+1−Xi
have to be below γ∗(x) for x ∈ [Xi, Xi+1] and Yi ≥ min{0,−(Xi−BT

R)+γ∗(BT
R)};

see Figures 10 and 11 (noticing that, in 10, there is a non reachable part on the top right of the figure).
After that, there are two cases to consider in order to construct (Xk−1, Yk−1).

Case 1: Yk−2 ≤ γ′
∗(B

T
R)(Xk−2 − BT

R) + γ∗(BT
R) , which means that (Xk−2, Yk−2) is below

the line of slope γ′
∗(B

T
R) going through (BT

R, γ∗(B
T
R)); see Figure 12. We can pick Xk−1 ∈

(Xk−2, B
T
R) and Yk−1 such that
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Figure 10. Left: Admissible choices for (Xi+1, Yi+1) if (Xi, Yi) is above the line
of slope γ′

∗(B
T
R) going through (BT

R, γ∗(B
T
R)). Right: Zoom for x in the interval

[−0.36,−0.33].
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Figure 11. Admissible choices for (Xi+1, Yi+1) is below the line of slope γ′
∗(B

T
R)

going through (BT
R, γ∗(B

T
R)).

(1) Yk−1 ≤ (Xk−1 − BT
R), which means that Yk−1 has to be below the line of slope γ′

∗(B
T
R)

going through (BT
R, γ∗(B

T
R));

(2) 0 < Yk−1−Yk−2

Xk−1−Xk−2
≤ 1;

(3) Yk−1 ≥ max{Yk−2, Xk−1 − BT
R + γ∗(BT

R)}, which means that Yk−1 has to be above the
line of slope 1 going through (BT

R, γ∗(B
T
R)).

Case 2: Yk−2 > γ′
∗(B

T
R)(Xk−2 −BT

R) + γ∗(BT
R), which means that (Xk−2, Yk−2) is above the

line of slope γ′
∗(B

T
R) going through (BT

R, γ∗(B
T
R)); see Figure 13. We consider the tangent of
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for (Xk−1, Yk−1) in Case 1.
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Figure 13. Admissible choices
for (Xk−1, Yk−1) in Case 2.

the path γ∗ at a point x ∈ (Xk−2, B
T
R) going through the point (Xk−2, Yk−2) of slope p. We

can pick Xk−1 ∈
(

Yk−2−γ∗(B
T
R)

γ′
∗(B

T
R)

+BT
R,

Yk−2−pXk−2−BT
R

1−p

)
and Yk−1 such that

(1) Yk−1 ≥ max{Yk−2, Xk−1 − (BT
R) + γ∗(BT

R)};
(2) Yk−1 > Yk−2;
(3) Yk−1 ≤ min{Yk−2 + p(Xk−1 −Xk−2), γ∗(BT

R) + γ′
∗(B

T
R)(Xk−1 − (BT

R))}.
We finish the iterative construction with (Xk, Yk) = (BT

R, γ∗(B
T
R)).

With this new initial state ṽ0, we can compute a classical forward Godunov scheme to have ṽ in the
entire domain, and we perform the backward algorithm for the transport equation with ṽ and wT .

This gives us a new initial state w̃0 for the transport equation and we may check that the datum
ṽ0 and w̃0 lead to a good approximation of the target (vT , wT ); see Figure 14. To that end, we define
the following relative L1-discrete error norms:

ev =

m∑
j=1

|vT (xj)− vNj |
m∑
j=1

|vT (xj)|
, ew =

m∑
j=1

|wT (xj)− wN
j |

m∑
j=1

|wT (xj)|
.

and observe that they tend to zero as ∆x goes to zero; see Table 2.
Owing to Remark 5.1, we may choose the number of discontinuities that we want in DT . For

instance, considering the paths in Figure 20 yields the initial states illustrated in Figures 16, 17, 18,
and 19.
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ṽ0

−0.6 −0.5 −0.4 −0.3 −0.2
0

0.1

0.2

0.3

0.4

x

w̃0

Figure 17. Initial state with 5 discontinuities (zoom around DT ).



22 G. M. COCLITE, N. DE NITTI, C. DONADELLO, AND F. PERU

−0.6 −0.5 −0.4 −0.3 −0.2

0.2

0.4

0.6

0.8

1

x

ṽ0
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