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ALMOST SHARP COVARIANCE AND WISHART-TYPE MATRIX ESTIMATION

Let X 1 , ..., X n ∈ R d be independent Gaussian random vectors with independent entries and variance profile (b ij ) i∈[d],j∈ [n] . A major question in the study of covariance estimation is to give precise control on the deviation of j∈[n] X j X T j -E X j X T j . In this paper, we improve the results in [4, 2] and we show that under mild conditions, we have E

Introduction

The study of the norm of random matrices has increased significantly over the years, and bounding the operator norm has been proved one central topic in the field [START_REF] Bai | Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix[END_REF][START_REF] Van Handel | On the spectral norm of Gaussian random matrices[END_REF][START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF]. Particularly, several applications coming from statistics require a precise sharp control on the deviations of the empirical covariance problem [START_REF] Koltchinskii | Concentration inequalities and moment bounds for sample covariance operators[END_REF][START_REF] Minasyan | Statistically Optimal Robust Mean and Covariance Estimation for Anisotropic Gaussians[END_REF][START_REF] Zhivotovskiy | Dimension-free bounds for sums of independent matrices and simple tensors via the variational principle[END_REF]. For instance, it is well-known [START_REF] Vershynin | High-dimensional probability: An introduction with applications in data science[END_REF] that an i.i.d sample X 1 , ..., X n ∈ R d of isotropic Gaussian random vectors satisfies the following deviation

E 1 n j∈[n] X j X T j -E X 1 X T 1 d n ∨ d n . (1) 
Much less is known, however, when the identically distributed condition is removed and we only require independence. Our contribution comes precisely in this direction. In particular, we improve the results in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF] and we shed light on the 4th-moment parameter and its graph interpretation that was before unclear.

Let X be a random d × n Gaussian matrix with independent entries X ij = b ij g ij , where b ij ≥ 0 and {g ij : i ∈ [d], j ∈ [n]} are independent standard Gaussian random variables N (0, 1). Our goal is to bound the quantity

E XX T -E XX T = E j∈[n] X j X T j -E X j X T j ,
where X j = Xe j is the jth column of X. One of the first dimension-free results improving bound [START_REF] Bai | Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix[END_REF] was given in the i.i.d setting in [START_REF] Koltchinskii | Concentration inequalities and moment bounds for sample covariance operators[END_REF]. Their result states that whenever Y 1 , ..., Y n are i.i.d Gaussian random vectors in R d , we have

E Y Y T -E Y Y T Σ nrk(Σ), rk(Σ) ,
where rk(Σ) = tr(Σ) Σ

is the effective rank of the covariance matrix Σ = E Y 1 Y T 1 . The dependency on the sample size n is sharp in all i.i.d cases, but much less is evident when the vectors are not identically distributed.

In an orthogonal direction, Bandeira and van Handel [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF] proved that

E X σ C + σ R + Cσ * log(n ∧ d),
where σ C is the maximum Euclidean norm of columns of B = (b ij ), σ R is the maximum Euclidean norm of rows of B and σ * is the maximum entry of B, that is,

σ 2 C = max j∈[n] i∈[d] b 2 ij ; σ 2 R = max i∈[d] j∈[n] b 2 ij ; σ * = max (i,j)∈[d]×[n] |b ij |.
To prove such a result, they compared the moments E tr(XX T ) p to the moments of a standard Gaussian matrix E tr(GG T ) p with reduced dimensions. This comparison method turned out to be also efficient to prove the estimations for the covariance problem as well.

In [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF], T. Cai, Han and Zhang applied these techniques to XX T -E XX T and they proved that

E XX T -E XX T σ C σ R + σ 2 C + C(σ C σ * + σ R σ * ) log(n ∧ d) + C σ 2 * log(n ∧ d). The leading term σ C σ R + σ 2
C is not always sharp. Indeed, studying the case b ij = b j , that is, the rows are i.i.d, the authors of [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF] proved that

E XX T -E XX T d j b 4 j + d max j b 2 j = d j b 4 j + σ 2 C .
Our main contribution shed light on this 4th-moment parameter and how it appears from the moment method. We begin our results for the operator norm. Define the parameters:

• σ2 ∞ = max i,l:i =l j∈[n] b 2 ij b 2 lj ; • σ2 ∞ = max i∈[d] j∈[n] b 4 ij ; • σ 2 ∞ = max i∈[d] j∈[n] l:l =i b 2 ij b 2 lj ; • β ∞ = σ∞ σ C σ ∞ σ * .
Notice in particular that σ∞ ≤ σ∞ , by Cauchy-Schwarz inequality.

Theorem 1.1. Let X be a d × n Gaussian matrix with independent entries such that

X ij = b ij g ij where {g ij : (i, j) ∈ [d] × [n]} are i.i.d standard Gaussian r.v. Then, if β ∞ ≤ 1, we have E XX T -E XX T = E j∈[n] X j X T j -E X j X T j ≤ (1 + ε) 2σ ∞ + σ 2 C + C(ε)σ * σ C + σ ∞ σ C log(n ∧ d) + C 2 (ε)σ 2 * log(n ∧ d) ,
for any 0 < ε ≤ 1/2. Otherwise, β ∞ > 1 and we have

E XX T -E XX T ≤ (1 + ε) 2σ ∞ σ C σ * + σ 2 C + C(ε) (σ C σ * + σ∞ ) log(n ∧ d) + C 2 (ε)σ 2 * log(n ∧ d) .
The constant C(ε) is

C(ε) = C(1 + ε) log(1 + ε) ,
where C is a universal constant.

Theorem 1.1 improves Theorem 2.1 from [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]. When β ∞ ≤ 1, we get the sharp constant 2σ ∞ on the right-hand side. Moreover, if β ∞ = O(1), our result still gives the correct order of magnitude.

Since the method of proof uses the moment method, we can extend Theorem 1.1 to estimate Schatten norms. Recall that the p-Schatten norm is defined by A p Sp = Tr(A) p , for a positive matrix A. It is also the same as the p-norm of the singular values of A. This time, we define the more involved parameters

• σ p =      i∈[d]   j∈[n] l∈[d] b 2 ij b 2 lj   p/2      1/p ; • σ p =      i∈[d]   j∈[n] b 4 ij   p/2      1/p ; • b p =    i∈[d] max j∈[n] b 2p ij    1/(2p) ; • β p = σp σ C σ p b p .
Our second main theorem is the following.

Theorem 1.2. Let X be a d × n Gaussian matrix with independent entries such that

X ij = b ij g ij where {g ij : (i, j) ∈ [d] × [n]} are i.i.d standard Gaussian r.v. Then, if β p ≤ 1,
we have

(E Tr[XX T -E XX T ] p ) 1/p ≤ d 1/p 2σ p + σ 2 C + C √ p σ C σ * + σ p σ * σ C + C pb 2 p .
Otherwise, β p > 1 and

(E Tr[XX T -E XX T ] p ) 1/p ≤ d 1/p 2σ p σ C σ * + σ 2 C + C √ p (σ C σ * + σ p ) + C pb 2 p .
1.1. Main ideas of the proof. The proof relies on the moment method and a careful analysis of paths. We will first remove the diagonal Diag(XX T ), so that

E XX T -E XX T ≤ E ∆XX T + E Diag(XX T ) -E XX T ,
where ∆XX T is the matrix of off-diagonal elements of XX T . It turns out that the contribution of the diagonal is sufficiently small and can be added as an error factor (see Theorem 2.5). On the other hand, the combinatorics of ∆XX T are much easier to deal with. In particular, all paths in the complete bipartite graph over [d] [n] have all right vertices with at least two neighbors.

We then proceed with the moment method. Note that

E Y ≤ E Y Sp ≤ d 1/p E Y , for any symmetric d × d matrix. Hence, E Y ≤ (E Y p Sp ) 1/p
, by Jensen's Inequality. We apply this for Y = ∆XX T and our goal is to obtain a comparison lemma such as

E Tr(∆XX T ) p ≤ κ E Tr(∆GG T ) p ,
where κ > 0 and G is a Gaussian matrix with reduced dimensions as in [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF].

1.2. Outline of the paper. The paper is organized as follows. In section 2, we will provide the main proofs of theorems 1.1 and 1.2. In section 3, we will give examples to illustrate the improvement from the previous results. Finally, in section 4, we will prove almost sharp matching lower bounds for our main theorems. Acknowledgments. We thank Olivier Guédon for pointing out this problem and helpful discussions.

Proofs

2.1. Preliminaries. We begin by recalling the Gaussian integration by parts lemma. Lemma 2.1. Let g ∼ N (0, 1) be a standard Gaussian r.v. and f ∈ C 1 (R), then

E gf (g) = E f (g).
The authors of [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF] deduced from this lemma a simple property of the joint moments of g and g 2 -1.

Lemma 2.2. Let a n,m = E g n (g 2 -1) m , where g ∼ N (0, 1). Then a n,m ≥ 0 and a n,m = 0 if and only if n is odd or (n, m) = (0, 1).

We also recall the sharp bound on the operator norm for a standard Gaussian matrix shown in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]. Proposition 2.3. Let G be a d × n Gaussian matrix with i.i.d standard Gaussian r.v. entries. Then, for any p ≥ 2 we have

(E GG T -E GG T p ) 1/p ≤ 2 √ dn + d + 4 √ p( √ d + √ n) + 2p.
Note that

E Diag(GG T ) -E GG T p = E max i∈[d]   j∈[n] (g 2 ij -1)   p .
Bernstein's Inequality [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry[END_REF] implies then that

(E Diag(GG T ) -E GG T p ) 1/p √ pn + p.
Consequently, we end this subsection with a corollary for the off-diagonal part.

Corollary 2.4. Let G be a d × n Gaussian matrix with i.i.d standard Gaussian entries. Then, for any p ≥ 2 we have

(E ∆(GG T ) p ) 1/p ≤ 2 √ dn + d + C √ p( √ d + √ n) + C p.
2.2. The diagonal part. In this section, the main result is the following.

Theorem 2.5. For any p ≥ 2, we have

E Tr[Diag(XX T ) -E XX T ] p 1/p √ pσ p + pb 2 p . Proof. For the upper bound, note that E Tr(Diag(XX T ) -E XX T ) p = i∈[d] E   j∈[n] b 2 ij (g 2 ij -1)   p .
Since g 2 ij -1 are independent, centered, and subexponential, we can use Bernstein's Inequality to deduce that

P   j∈[n] b 2 ij (g 2 ij -1) ≥ t   ≤ 2 exp -c min t 2 a 2 , t b ,
where

a = j∈[n] b 4 ij ; b = max j∈[n] b 2 ij , hence   E   j∈[n] b 2 ij (g 2 ij -1)   p   1/p √ p   j∈[n] b 4 ij   1/2 + p max j∈[n] b 2 ij .
We then have

E Tr(Diag(XX T ) -E XX T ) p 1/p    i∈[d]    √ p   j∈[n] b 4 ij   1/2 + p max j∈[n] b 2 ij .    p    1/p √ pσ p + pb 2 p
, where the last inequality follows by the triangle inequality.

For the lower bound, let j i be the index such that

max j∈[n] b ij = b ij i .
Since the joint moments of g and g 2 -1 are always positive, we deduce that

E Tr(Diag(XX T ) -E XX T ) p 1/p ≥   i∈[d] E b 2p ij i (g 2 ij i -1) p   1/p
. Now, the estimate

E(g 2 -1) p 1/p p,
that follows the lower bound on the double factorial (see Lemma 5.2 in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]) implies that

E Tr(Diag(XX T ) -E XX T ) p 1/p p   i∈[d] max j∈[n] b 2p ij   1/p = pb 2 p .
On the other hand, Theorem 6 in [START_REF] Zhang | On the non-asymptotic and sharp lower tail bounds of random variables[END_REF] yields that

Z = j∈[n] b 2 ij (g 2 ij -1) satisfies exp(-Ct 2 /a) P(Z ≥ t); exp(-Ct 2 /a) P(Z ≤ -t),
for all t ≥ 0. Therefore, its moments are lower bounded by the ones of the Gaussian h ∼ N (0, a), hence

(E |Z| p ) 1/p √ ap, so we conclude that E Tr(Diag(XX T ) -E XX T ) p 1/p √ pσ p .
2.3. The off-diagonal part. The proof of the bounds for the off-diagonal part follows the moment method. First, we open the trace so that

E Tr(∆XX T ) p = u∈[d] p E p k=1 (XX T ) u k u k+1 1 u k =u k+1 = u∈[d] p v∈[n] p E p k=1 X u k v k X u k+1 v k 1 u k =u k+1 ,
where u p+1 := u 1 . We view the path r) , where (l) and (r) indicate left and right vertices (we will remove the indexes if the context is clear). For a path (u, v), we define its shape s(u, v) as relabelling its vertices in order of appearance. For instance, the path

u 1 → v 1 → u 2 → • • • → u p → v p → u 1 as a cycle in the complete bipartite graph over [d] (l) [n] (
3 → 2 → 4 → 1 → 3 → 1 → 4 → 5 → 3 has shape 1 → 1 → 2 → 2 → 1 → 2 → 2 → 3 → 1.
Note that each edge u k v k and u k+1 v k must appear at least twice in the path (u, v), by the independence of the Gaussian r.v. and symmetry. Call the shapes that satisfy this even.

Let then S be the set of even shapes s = (u, v) such that u k = u k+1 for all k = 1, ..., p. Moreover, the product

L(s) := E p k=1 g u k v k g u k+1 v k (2)
only depends on the shape of (u, v), therefore we have

E Tr(∆XX T ) p = s∈S L(s) (u,v)∈[d] p ×[n] p s(u,v)=s p k=1 b u k v k b u k+1 v k . Let (m 1 , m 2 ) = (m 1 (s), m 2 (s)
) be the quantity of right and left vertices that appear in the shape s. The key proposition to prove Theorem 1.1 is to bound

W (s) := (u,v)∈[d] p ×[n] p s(u,v)=s p k=1 b u k v k b u k+1 v k (3) 
according to the number of vertices visited by the path.

Proposition 2.6.

Assume σ * = 1. If β ∞ ≤ 1, we have W (s) ≤ d σ ∞ σ C 2m 1 σ 2(m 2 -1) C ∧ n σ ∞ σ C 2(m 1 -1) σ 2m 2 C .
Otherwise, β ∞ > 1 and we have

W (s) ≤ dσ 2m 1 ∞ σ 2(m 2 -1) C ∧ nσ 2(m 1 -1) ∞ σ 2m 2 C .
Let us prove Theorem 1.1 given Proposition 2.6.

Proof of Theorem 1.1. Assume σ * = 1 (by homogeneity) and

β ∞ ≤ 1. Let a := σ ∞ σ C ; b := σ C .
Then, using the first bound on Proposition 2.6, we have

E Tr(∆XX T ) p ≤ d s∈S L(s) σ ∞ σ C 2m 1 σ 2(m 2 -1) C
.

On the other hand, for a standard Gaussian r 2 × r 1 matrix G, we have

E Tr(∆GG T ) p = s∈S L(s) r 1 ! (r 1 -m 1 )! r 2 ! (r 2 -m 2 )! ,
for any r 1 , r 2 > p/2 (see [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]). In particular, if 1) .

r 1 = a 2 + p/2 and r 2 = b 2 + p/2, we have r 1 ! (r 1 -m 1 )! ≥ r 1 • • • (r 1 -m 1 + 1) m 1 ≥ a 2m 1 , and r 2 ! (r 2 -m 2 )! ≥ r 2 b 2(m 2 -
Hence E Tr(∆XX T ) p ≤ d r 2 E Tr(∆GG T ) p ≤ d E ∆GG T p .
Now we estimate the latter by Corollary 2.4 so that

(E ∆GG T p ) 1/p ≤ 2 √ r 1 r 2 + r 2 + C √ p( √ r 1 + √ r 2 ) + C p.
Together with Theorem 2.5, we deduce that

E XX T -E XX T ≤ d 1 p 2σ ∞ + σ 2 C + C √ p σ C + σ ∞ σ C + σp + Cpb 2 p . Choose p = α log d . Since β ∞ ≤ 1, we have that σp ≤ d 1 p σ∞ ≤ d 1 p σ ∞ σ C . Moreover, b p ≤ d 1 2p b ∞ , thus E XX T -E XX T ≤ e 1 α 2σ ∞ + σ 2 C + Ce 1 α α log d σ C + σ ∞ σ C + Cαe 1 2α log d . Finally, set 1 + ε = e 1 α , hence α = 1 log(1 + ε) ,
and we get Proof of Proposition 2.6. To simplify the notation, for a graph G, we will denote e ∈ G if an edge e belongs to

E XX T -E XX T ≤ (1 + ε) 2σ ∞ + σ 2 C + C(ε) log d σ C + σ ∞ σ C + C 2 (ε) log d .
E(G), v ∈ G if v ∈ V (G) and G = G \ {v} is the subgraph of G induced by the vertices V (G) \ {v}.
We use a similar notation to G \ {e} and an edge e ∈ E(G). Given a shape s ∈ S, we define a bipartite graph G over 

[m 2 ] [m 1 ] so that E(G) = {(u k v k ) : k ∈ [p]}.
W (s) = w 1 =••• =wm 2 t 1 =••• =tm 1 e=ij∈E(G) b ke w i t j =: W k (G),
where the notation w 1 = • • • = w m 2 means that all w k are different, similarly for t k . Note that, by the assumption on s ∈ S, every right vertex has at least 2 neighbors. Now, fix

u 1 = w 1 = z ∈ [d]
and define the following first-time arrivals:

i 1 (k) := inf{l : u l = k}; k = 2, ..., m 2 ; i 2 (k) := inf{l : v l = k}; k = 1, ..., m 1 .
Let also e

(1)

k = u i 1 (k) v i 1 (k)-1 and e (2) 
k = u i 2 (k) v i 2 (k)
. Then all these m 1 + m 2 -1 edges are distinct, and the subgraph H generated by them is a spanning tree of G.

The crucial distinction to [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF] is that we want to preserve the property that every right vertex has at least two neighbors. Call this property P. Let us divide in two cases whether this is true.

Case I. Suppose the tree H satisfies property P. Assume v, v are extreme right vertices, that is,

d(v, v ) = max r,r ∈[m 1 ] d(r, r ). (In case m 1 = 1, the result is trivial). Then v has exactly one neighbor u ∈ [m 2 ] such that |N (u)| ≥ 2 and it satisfies d(v , u) = d(v , v) -1,
that is, the unique path from v to v passes through u. Indeed, if there are two of such vertices u, u and u is connected to both v and a different v , we would have that

d(v , v ) = d(v , v) + d(v, v ) = d(v , v) + 2,
which contradicts the maximal distance of v and v . Therefore, if

L(v) = {u ∈ N (v) : |N (u)| = 1} ∪ {v} we have that the graph H = H \ L(v)
is still a tree with the property P. Without loss of generality, we can assume that v = m 1 . Since σ * = 1 and k e ≥ 2 for all e ∈ G, we have

W k (G) ≤ d w 2 =••• =wm 2 t 1 =••• =tm 1 e=ij∈E(H) b 2 w i t j ≤ d   w 2 =••• =wm 2 t 1 =••• =t m 1 -1 e=ij∈E(H ) b 2 w i t j   max w∈[d] j∈[n] b 2 wj   l∈[d]:l =w b 2 lj   |N (m 1 )|-1
.

For the second term, we further estimate

max w∈[d] j∈[n] b 2 wj   l∈[d]:l =w b 2 lj   |N (m 1 )|-1 ≤ σ 2 ∞ σ 2(|N (m 1 )|-2) C
.

We then proceed by induction over the right vertices as we did for H. Here, induction is justified as H is still in case I. In particular, that yields

W k (G) ≤ dσ 2m 1 ∞ σ 2 v∈[m 1 ] (|N (v)|-2) C . Since |E(H)| = v∈[m 1 ] |N (v)| = m 1 + m 2 -1, we get that W k (G) ≤ d σ ∞ σ C 2m 1 σ 2(m 2 -1) C .
Case II. In case the tree H does not satisfy property P, we then add for each

v ∈ H∩[m 1 ] with |N (v)| = 1 in H one extra edge uv ∈ E(G) from G.
This creates a graph H that is not a tree, but it satisfies property P.

Let

V = {v ∈ H ∩ [m 1 ] : |N (v)| = 1 in H}.
Then for each v ∈ V we have |N (v)| = 2 in H and v belongs to a cycle in H . In particular, we can remove v from H and H = H \ {v} is still connected. Assume v = m 1 , then we have

W k (G) ≤ d   w 2 =••• =wm 2 t 1 =••• =t m 1 -1 e=ij∈E(H ) b 2 w i t j   max i =l∈[d] j∈[d] b 2 ij b 2 lj .
We deduce that

W k (G) ≤ dσ 2 ∞ w 2 =••• =wm 2 t 1 =••• =t m 1 -1 e=ij∈E(H ) b 2 w i t j .
By induction, we have

W k (G) ≤ dσ 2|V | ∞ w 2 =••• =wm 2 t 1 =••• =t m 1 -|V | e=ij∈E(H\V ) b 2 w i t j .
By assumption, H \ V = H \ V is a tree satisfying property P. Therefore, case I implies that

W k (G) ≤ dσ 2|V | ∞ σ ∞ σ C 2(m 1 -|V |) σ 2(m 2 -1) C
.

By definition of β ∞ , we have 

W k (G) ≤ dβ 2|V | ∞ σ ∞ σ C 2m 1 σ 2(m 2 -1) C . If β ∞ ≤ 1,
k = u i 1 (k) v i 1 (k)-1 and e (2) k = u i 2 (k) v i 2 (k)
. The same argument done before implies that these m 1 + m 2 -1 edges are distinct, and the subgraph H generated by them is a spanning tree of G. We then repeat the proof as in the first bound, but now the first choice of vertex v 1 will contribute with a factor of n.

2.4.

Proof of Theorem 1.2. To get the correct parameters for the Schatten norm, we must improve Proposition 2.6 and the bound on W (s). The main proposition of this subsection is the following. Proposition 2.7. For any shape s ∈ S, if β p ≤ 1, we have

W (s) ≤ dσ 2p * σ p σ * σ C 2m 1 (s) σ C σ * 2(m 2 (s)-1)
.

Otherwise β p > 1 and

W (s) ≤ dσ 2p * σ p σ 2 * 2m 1 (s) σ C σ * 2(m 2 (s)-1)
.

As soon as Proposition 2.7 is available, the proof of Theorem 1.2 follows similarly as the proof of Theorem 1.1 and the bound for the diagonal in Theorem 2.5.

Proposition 2.7 follows the same argument shown in [START_REF] Latała | The dimension-free structure of nonhomogeneous random matrices[END_REF]. On the other hand, we did not try to optimize the argument to our setting, instead, we prefer to prove it directly.

We start by the reduction to tree argument done in [START_REF] Latała | The dimension-free structure of nonhomogeneous random matrices[END_REF] for W k (G). In this case, however, we want to keep track of the exponents for each right leaf that appears in the final reduction. We hence present the proof for completeness. Lemma 2.8. Let G be a graph generated by a shape s ∈ S and k e ≥ 2 for each e ∈ E(G). Then, there exist k 2 , ..., k m 1 +m 2 -1 ≥ 2 such that i k i = e k e and

W k (G) ≤ max T ∈span(G) W k (T ),
where span(G) is the set of spanning trees of G. Moreover, the maximum can be taken such that whenever T has a right leaf v ∈ [m 1 ] with unique edge e = uv ∈ T we have k e ≥ 4.

Proof. If G is a tree, the equality is rather trivial, so suppose G is not a tree. In this case, let r ∈ [m 1 ] be a right vertex in a cycle in G. In particular, there exist two distinct edges e 1 = l 1 r and e 2 = l 2 r such that

G s = (V (G), E(G) \ {e s }) is still connected for s = 1, 2. Let k = k e 1 + k e 2 . Then W k (G) = w 1 =••• =wm 2 t 1 =••• =tm 1 s=1,2 b k w ls tr e=ij =e 1 ,e 2 b ke w i t j ke s / k .
Holder's Inequality implies that

W k (G) ≤ max s=1,2 w 1 =••• =wm 2 t 1 =••• =tm 1 b k w ls tr e=ij =e 1 ,e 2 b ke w i t j = max s=1,2 W k s (G s ). Notice that G s runs over all vertices of G, |E(G s )| = |E(G)| -1 and G i is still connected.
Moreover, the neighborhood of v = r is preserved and so are the weights for all v ∈ [m 1 ], namely,

(k s ) v := u∈N (v,Gs) (k s ) (uv) = u∈N (v,G) k (uv) = k v ≥ 4,
where N (v, G) denotes the neighborhood of v in G, and the last inequality follows as v has at least two neighbors in G. The result follows by induction (see [8, Lemma 2.9]).

Let T m 1 ,m 2 be the set of bipartite trees over [m 2 ] [m 1 ]. By Lemma 2.8, we can assume that G ∈ T m 1 ,m 2 . In [START_REF] Latała | The dimension-free structure of nonhomogeneous random matrices[END_REF], the authors developed a method to prune leaves of G iteratively. In our case, however, we will prune the right vertices. To keep the notation clean, let

W (G) = w∈[d] m 2 = t∈[n] m 1 = e=ij∈E(G) b (e) w i t j ,
where (b (e) ) e∈E(G) is a family of d × n matrices and

[m] I = := {w ∈ [m] I : w k = w l , ∀k = l ∈ I}.
We can easily recover W k (G) by setting b (e) wt = b ke wt . We have the analog of Lemma 2.10 in [START_REF] Latała | The dimension-free structure of nonhomogeneous random matrices[END_REF]. Let L(G) be the set of leaves of G and for each v ∈ L(G) ∩ [m 1 ], let u v be its only neighbor. Lemma 2.9. For any G ∈ T m 1 ,m 2 and p v ≥ 1 such that

v∈[m 1 ] 1 p v = 1,
we have

W (G) ≤ v∈L(G)∩[m 1 ]    i∈[d]   j∈[n] b (uvv) ij   pv    1 pv × v∈L(G) c ∩[m 1 ] u∈N (v)∩L(G) c    i∈[d]   j∈[n] b (uv) ij a∈N (v)\{u} l =i b (av) lj   pv    1 pv 1 αuv , where α uv satisfies u∈N (v)∩L(G) c 1 α uv = 1, for all v ∈ L(G) c ∩ [m 1 ].
Before proving this result, we will use the following easier version. Let u = u(v) be the choice u ∈ N (v) ∩ L(G) c that maximizes the second term in the bound, then the following holds.

Corollary 2.10. For any

G ∈ T m 1 ,m 2 and p v ≥ 1 such that v∈[m 1 ] 1 p v = 1,
we have

W (G) ≤ v∈L(G)∩[m 1 ]    i∈[d]   j∈[n] b (uvv) ij   pv    1 pv × v∈L(G) c ∩[m 1 ]    i∈[d]   j∈[n] b (uv) ij a∈N (v)\{u} l =i b (av) lj   pv    1 pv
.

Proof of Lemma 2.9. The proof follows by induction. If m 1 = 1, then it is easy to check that p v = 1 and 

W (G) ≤ i∈[d] j∈[n] a∈N (1 )\{1} b (11 ) ij l =i b (a1 ) lj . Therefore, if |N (1 )| > 1, W ( 
Let L = L(G) and v 1 , v 2 ∈ [m 1 ] be such that d(v 1 , v 2 ) = max r,r ∈[m 1 ] d(r, r ),
where the distance is the graph distance. Therefore, both v 1 and v 2 have only one neighbor u 1 ∈ N (v 1 )∩L c and u 2 ∈ N (v 2 )∩L c . This follows the argument shown in Proposition 2.6. Let then H be the subgraph generated by removing v 1 , v 2 and all leaves (N (v 1 )∪N (v 2 ))∩L.

Denote H = (I J, E(H)). Then we have

W (G) ≤ w∈[d] I = t∈[n] J =   j∈[n] b (u 1 v 1 ) wu 1 j a∈N (v 1 )\{u 1 }   l =wu 1 b (av 1 ) lj     ×   j∈[n] b (u 2 v 2 ) wu 2 j a∈N (v 2 )\{u 2 }   l =wu 2 b (av 2 ) lj     e=ab∈E(H) b (ab) wat b ,
where we define

a∈N (v)\{u} l =wu b (av) lj = 1, if N (v) \ {u} = ∅.
Using Holder's Inequality, we can estimate

W (G) ≤      w∈[d] I = t∈[n] J =   j∈[n] b (u 1 v 1 ) wu 1 j a∈N (v 1 )\{u 1 }   l =wu 1 b (av 1 ) lj     1+ pv 1 pv 2 e=ab∈E(H) b (ab) wat b      pv 2 pv 1 +pv 2 ×      w∈[d] I = t∈[n] J =   j∈[n] b (u 2 v 2 ) wu 2 j a∈N (v 2 )\{u 2 }   l =wu 2 b (av 2 ) lj     1+ pv 2 pv 1 e=ab∈E(H) b (ab) wat b      pv 1 pv 1 +pv 2 . ( 4 
)
Note that this inequality preserves the number of summations of right and left vertices, and also the homogeneity. Note also that if v ∈ J, the neighbors of v in H and G are the same.

The induction will be based on inequality [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]. Suppose, for some r > 1 that

W (G) ≤ H h=1      w∈[d] I h = t∈[n] J h =   j∈[n] b (u h v h ) wu h j a∈N (v h )\{u h }   l =wu h b (av h ) lj     q h e=ab∈E(G h ) b (ab) wat b      1 α h , where H < ∞, N (v) is the neighbor of v in G, (1) For every h, u h ∈ I h , v h / ∈ J h and av h / ∈ E(G h ) for every a ∈ N (v h ) \ {u h }; (2) For every h, G h is a tree over I h J h and |J h | = r;
(3) The inequality is 1-homogeneous in all the variables b (e) and it preserves the number of left and right summations; (4) The exponents q h satisfies

q h = v∈[m 1 ]\J h p v h p v ,
and α h ≥ 1. We aim to show that if this holds for r > 1, so does it for r -1. Indeed, fix one of the terms

T h :=      w∈[d] I h = t∈[n] J h =   j∈[n] b (u h v h ) wu h j a∈N (v h )\{u h }   l =wu h b (av h ) lj     q h e=ab∈E(G h ) b (ab) wat b      .
Since G h is a tree and r > 1, there exists r h such that u h is not a leaf of r h and r h has only one neighbor l h such that N (l h ) > 1 in G h . Let then H h be the subgraph (a tree) of G h where we remove r h and all of its leaves and let

H h = (I h J h , E(H h )), then T h ≤ w∈[d] I h = t∈[n] J h =   j∈[n] b (u h v h ) wu h j a∈N (v h )\{u h }   l =wu h b (av h ) lj     q h ×   j∈[n] b (l h r h ) w l h j a∈N (r h )\{l h }   l =w l h b (ar h ) lj     e=ab∈E(G h ) b (ab) wat b .
We can thus estimate by Holder's Inequality that

T h ≤      w∈[d] I h = t∈[n] J h =   j∈[n] b (u h v h ) wu h j a∈N (v h )\{u h }   l =wu h b (av h ) lj     q h e=ab∈E(G h ) b (ab) wat b      1/α h ×      w∈[d] I h = t∈[n] J h =   j∈[n] b (l h r h ) w l h j a∈N (r h )\{l h }   l =w l h b (ar h ) lj     q e=ab∈E(G h ) b (ab) wat b      1/q
, where q h /q h and q are conjugate exponents. Again, the inequality is 1-homogeneous in all the variables it involves, and it preserves the number of summations. Moreover, we can set

q h = v∈[m 1 ]\J h p v h p v q = v∈[m 1 ]\J h p l h p v ,
and it is easy to check that indeed q h /q h and q are conjugate exponents. Note that each new term has the same form as in the induction step with |J h | = r -1, therefore the induction is proved. The previous argument also shows that the induction holds for r = 0. Since the choice of u ∈ L c ∩ N (v) is arbitrary for each v, we deduce

W (G) ≤ H h=1      w∈[d] I h = t∈[n] J h =   j∈[n] b (u h v h ) wu h j a∈N (v h )\{u h }   l =wu h b (av h ) lj     q h e=ab∈E(G h ) b (ab) wat b      1 α h ≤ e=uv∈E(G):u∈L c    i∈[d]   j∈[n] b (e) ij a∈N (v)\{u} l =i b (av) lj   pv    1 αe
.

The conclusion of the lemma follows by the renormalization α uv ← p v α uv and splitting the product over v ∈ L and v / ∈ L.

Now we can prove Proposition 2.7.

Proof of Proposition 2.7.

Let |k| = v k v = 2p and L = L(G) ∩ [m 1 ]
. By Lemma 2.8 and Corollary 2.10 with

p v = |k|/k v , we get W k (G) ≤ W k (T ) ≤ v∈L      i∈[d]   j∈[n] b kv ij   |k| kv      kv |k| × v∈L c      i∈[d]   j∈[n] b kuv ij a∈N (v)\{u} l =i b kav lj   |k| kv      kv |k| ,
where T is the spanning tree of G that maximizes

W k (T ) in Lemma 2.8. Since k v ≥ 4 and b kuv ij ≤ b 2 ij σ kuv-2 *
, we get

W k (G) ≤σ |k|-4|L|-2 v∈L c |N (v)| * v∈L      i∈[d]   j∈[n] b 4 ij   |k| kv      kv |k| × v∈L c      i∈[d]   j∈[n] b 2 ij a∈N (v)\{u} l =i b 2 lj   |k| kv      kv |k| .
As T is a spanning tree, we have

v∈L c |N (v)| + |L| = m 2 + m 1 -1; v∈L c |N (v)| -2|L c | = m 2 -m 1 -1 + |L|.
Moreover, we can remove σ C from each term in the second product to get that

W k (G) ≤σ |k|-2(m 1 +m 2 -1)-2|L| * σ 2(m 1 +m 2 -1)+2|L| C v∈L      i∈[d]   j∈[n] b 4 ij   |k| kv      kv |k| × v∈L c      i∈[d]   j∈[n] b 2 ij l =i b 2 lj   |k| kv      kv |k| .
Finally, the inequality of the norms in R d implies that

• |k| kv ≤ d kv -4 |k| • |k| 4 , so we deduce W k (G) ≤ dσ |k|-2(m 1 +m 2 -1)-2|L| * σ 2(m 1 +m 2 -1)+2|L| C σ 2|L| p σ2|L c | p .
The proof of Proposition 2.7 follows by a straightforward computation and the fact that 0 ≤ |L| ≤ m 1 .

Remark 2.11. Note that we rather proved Theorem 1.2 with a parameter σ p instead of σ p , where σ p only takes l = i, that is,

σ p =      i∈[d]   j∈[n] l =i b 2 ij b 2 lj   p/2      1/p
. This minor change is only important for cases where the contribution of a column X j appears only in the diagonal part, that is, when X j = b ij e i for some i.

Examples

Let us start by recalling the previous known results in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF][START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF].

Theorem 3.1 (Theorem 2.1 in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]). In the setting of Theorem 1.1, we have

E XX T -E XX T ≤ (1 + ε) 2σ R σ C + σ 2 C + C(ε)(σ C σ * + σ R σ * ) log(n ∧ d) + C 2 (ε)σ 2 * log(n ∧ d) .
Theorem 3.2 (Theorem 3.12 in [START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF]). Let X be a d × n Gaussian matrix with independent entries and

X ij = b ij g ij , for b ij ≥ 0. Then E XX T -E XX T ≤ X free X T free -E XX T ⊗ 1 + C σ(X)ṽ(X) log 3/4 (nd) + ṽ2 (X) log 3/2 (nd) .
Corollary 3.3. In the setting of Theorem 3.2, we have

X free X T free -E XX T ⊗ 1 ≤ 2 max i∈[d]   j∈[n] l∈[d] b 2 ij b 2 lj   1/2 + σ 2 C = 2σ ∞ + σ 2 C and σ(X) = max(σ C , σ R ); ṽ(X) 2 σ * σ(X).
Therefore, we have

E XX T -E XX T ≤ 2σ ∞ + σ 2 C + C σ 1/2 * σ 3/2 C + σ 1/2 * σ 3/2 R log 3/4 (nd) + C [σ * σ C + σ * σ R ] log 3/2 (nd). (5) 
Proof. Let X j be the jth column of X. Then

Σ j = E X j X T j = diag(b 2 ij ). Hence j∈[n] Σ j = max i∈[d] j∈[n] b 2 ij = σ 2 R ; max j∈[n]
Tr(Σ j ) = max

j∈[n] i∈[d] b 2 ij = σ 2 C .
The computation for the parameters ṽ(X) and σ(X) then follows by Lemma 3.8 in [START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF].

On the other hand, denote

X = i,j g ij b ij E ij = k g k A k ,
where E ij is the canonical basis of the space of d × n matrices. Then the authors of [START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF] computed that X free = U + V , where

U = k A k ⊗ l(e k ); V = k A k ⊗ l * (e k ),
and l is the creation operator of the free Fock space over C nd . In particular, we have l * (e k )l(e j ) = δ kj 1. Therefore,

V V * = k A k A * k ⊗ 1 = E XX T ⊗ 1; U * U = k A * k A k ⊗ 1 = E X T X ⊗ 1.
Hence they deduced that

X free X T free -E XX T ⊗ 1 ≤ U V * + V U * + U U * ≤ 2 U V * + U U * . The second one follows easily as U U * = E X T X = σ 2
C . On the other hand, in [START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF], they used U V * ≤ U V = σ R σ C to bound the first term. However, in the case of independent entries, it is a straightforward computation to check that 

U V * = σ ∞ ,
• σ C = b 2 ; • σ R = √ n b ∞ ; • σ * = b ∞ ; • σ∞ ≤ √ n b 2 ∞ ; • σ∞ = √ n b 2 ∞ ; • σ ∞ ≤ √ n b ∞ b 2 .
In particular,

σ∞ σ C σ * ≤ √ n b ∞ b 2 .
Hence, both bounds shown in Theorem 1.1 yield

E XX T -E XX T √ n b 2 b ∞ + b 2 2 + C b 2 b ∞ + √ n b 2 ∞ log(n ∧ d)+ C b 2 ∞ log(n ∧ d).
The leading term agrees with the sharp bound derived in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF][START_REF] Koltchinskii | Concentration inequalities and moment bounds for sample covariance operators[END_REF].

Example 3.5. Let X be a Gaussian matrix with i.i.d rows, that is, b ij = b j . In this case, we have

• σ C = √ d b ∞ ; • σ R = b 2 ; • σ * = b ∞ ; • σ ∞ = √ d -1 b 2 4 ; • σ∞ = σ∞ = b 2 4 . In particular, σ∞ σ C σ * = √ d b 2 4 .
Hence, Theorem 1.1 implies that

E XX T -E XX T √ d b 2 4 + d b 2 ∞ + C √ d b 2 ∞ + b 2 4 log(n ∧ d)+ C b 2 ∞ log(n ∧ d).
In this case, the error factor is smaller than the leading one, hence

E XX T -E XX T √ d b 2 4 + d b 2 ∞ .
This agrees with the sharp result in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]. However, they had to derive a different method to prove this case, whereas we deduce directly from our main result that covers all cases. Moreover, [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry[END_REF] gives

E XX T -E XX T √ d b 2 4 + d b 2 ∞ + C b 3/2 2 b 1/2 ∞ + d 3/4 b 2 ∞ log 3/4 (nd)+ C √ d b ∞ + b 2 b ∞ log 3/2 (nd).
Here, we observe that the error factor is not necessarily smaller than the leading one.

Example 3.6. Consider b ij = a i b j . Then • σ C = a 2 b ∞ ; • σ R = a ∞ b 2 ; • σ * = a ∞ b ∞ ; • σ∞ ≤ b 2 4 a 2 ∞ ; • σ∞ = b 2 4 a 2 ∞ ; • σ ∞ ≤ b 2 4 a 2 a ∞ . We observe that σ∞ σ C σ * ≤ b 2 4 a 2 a ∞ .
Therefore, Theorem 1.1 implies that

E XX T -E XX T b 2 4 a 2 a ∞ + a 2 2 b 2 ∞ + C a 2 a ∞ b 2 ∞ + b 2 4 a 2 ∞ log(n ∧ d)+ C a 2 ∞ b 2 ∞ log(n ∧ d).
The result in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF] yields

E XX T -E XX T b 2 b ∞ a 2 a ∞ + a 2 2 b 2 ∞ + C a 2 a ∞ b 2 ∞ + b 2 b ∞ a 2 ∞ log(n ∧ d)+ C a 2 ∞ b 2 ∞ log(n ∧ d).
And finally, [START_REF] Chafaï | Interactions between compressed sensing random matrices and high dimensional geometry[END_REF] gives

E XX T -E XX T b 2 4 a 2 a ∞ + a 2 2 b 2 ∞ + C a 3/2 2 a 1/2 ∞ b 2 ∞ + b 3/2 2 b 1/2 ∞ a 2 ∞ log 3/4 (nd)+ C [ a 2 b ∞ + b 2 a ∞ ] a ∞ b ∞ log 3/2 (nd).
In this case, Theorem 1.1 strictly improves both and sheds light on the 4th-moment appearing for b j .

Our final example is where all columns have approximately the same norm. By Theorem 1.1, we have

E XX T -E XX T ≤ (1 + ε) 2Kσ ∞ + σ 2 C + C(ε)σ * (σ C + σ R ) log(n ∧ d) + C 2 (ε)σ 2 * log(n ∧ d) .
Here, we do not require any additional structure on B and the previous known results only show the leading term with σ C σ R in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF] and a large error factor in [START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF].

Lower bounds

We first begin the lower bounds for the p-moment of the Schatten norm. For the leading factor, note that the Schatten norm is always lower bounded by the mixed l 2 (l p ) norm (see Lemma 2.12 in [START_REF] Latała | The dimension-free structure of nonhomogeneous random matrices[END_REF]), then Jensen's Inequality implies that The latter can be estimated as Finally, let j * be the column with the largest Euclidean norm, that is, b j * 2 = σ C , then E Tr(XX T -E XX T ) p 1/p ≥ E Tr(X j * X T j * -E X j * X T j * ) p 1/p . The sharp result for the i.i.d case proved by Koltchinskii and Lounici in [START_REF] Koltchinskii | Concentration inequalities and moment bounds for sample covariance operators[END_REF] implies that E Tr(X j * X T j * -E X j * X T j * ) p 1/p ≥ E X j * X T j * -E X j * X T j * σ 2 C , where we assume p is even for the first inequality.

E(XX T -E XX T ) 2 il = j∈[n] E(X j X T j -E X j X j ) 2 il = j∈[n] E (b ij b lj (g ij g lj -1 i=l )) 2 ≥ j∈[n]
For the operator norm, we have the following result. Lemma 4.2. Let X be a random matrix satisfying the assumptions of Theorem 1.1. Then

E XX T -E XX T 2 1/2 σ ∞ + σ 2 C .
Proof. Let S j = X j X T j -E X i X T i , then Tropp's result in [START_REF] Tropp | The expected norm of a sum of independent random matrices: an elementary approach[END_REF] implies that

(E XX T -E XX T 2 ) 1/2 j∈[n] E S j S T j 1/2 + (E max j∈[n] S j 2 ) 1/2 .
The matrix in the first bound can then be computed as

j∈[n] E X j X T j X j X T j -(E X j X T j ) 2 .
This can easily be seen as a diagonal matrix (a similar argument was proved in [START_REF] Cai | On the non-asymptotic concentration of heteroskedastic Wishart-type matrix[END_REF]) and lower bounded by

j∈[n] E X j X T j X j X T j -(E X j X T j ) 2 ≥ σ 2 ∞ ,
hence

(E XX T -E XX T 2 ) 1/2 σ ∞ .
On the other hand, the second term can be bounded as

(E max j∈[n] S j 2 ) 1/2 ≥ max j∈[n] (E S j 2 ) 1/2 σ 2 C ,
where we again use the lower bound of [START_REF] Koltchinskii | Concentration inequalities and moment bounds for sample covariance operators[END_REF].

Notation.

  Let us clarify some notation used throughout the paper. We denote a b or a = O(b) if there exists an absolute constant C such that a ≤ Cb. We also denote it as b a. If a b and b a hold, we denote a b. We write a ∧ b = min(a, b) and a ∨ b = max(a, b). We denote [n] = {1, . . . , n} and A B is the disjoint union of two sets A and B. Finally, we use C, c, C , . . . for universal numerical constants.

  This gives the upper bound with log d. The second bound in Proposition 2.6 yields the general bound for β ∞ ≤ 1. The case β ∞ > 1 follows similarly. Indeed, we now set (a, b) to be a = σ∞ ; b = σ C , and then the previous proof follows straightforwardly. Now we prove Proposition 2.6.

  Here, [m 2 ] denotes the left vertices and [m 1 ] denotes the right vertices. Let k e be the number of times each edge e ∈ E(G) is traversed by the shape s, then e k e = 2p = |k|. According to (3), we get an alternative expression for W (s):

  we choose |V | = 0, otherwise we choose |V | = m 1 . A straightforward computation yields the bounds of Proposition 2.6 with factor d. For the second bound, instead of fixing u 1 = w 1 = z, we fix v 1 = t 1 = z. Define the following first-time arrivals: i 1 (k) := inf{l : u l = k}; k = 1, ..., m 2 ; i 2 (k) := inf{l : v l = k}; k = 2, ..., m 1 , and let also e (1)

  G) has the second form on the bound shown in the lemma. Otherwise, |N (v)| = 1 and the bound has the first form. Hence, we can assume that m 1 > 1.

  and the result follows. Now we discuss various examples and present how Theorem 1.1 improves upon Theorems 3.1 and 3.2. Example 3.4. Assume the columns of X are i.i.d, namely, b ij = b i . In this case, we have

Example 3 . 7 . 1 K b k 2 ≤ b j 2 ≤ K b k 2 ,

 371222 Suppose there exists K ≥ 1 such that for all k, l ∈ [n]. Then it is easy to compute β ∞ ≤ K.

Proposition 4 . 1 .

 41 For any even p ≥ 2 and X satisfying the assumptions in Theorem 1.1, we haveE Tr(XX T -E XX T ) p 1/p σ p + σ 2 C + √ pσ p + pb 2 p .Proof. By Lemma 2.2, the joint moments of g and g 2 -1 are always positive, thus it follows that E Tr(XX T -E XX T ) p 1/p ≥ E Tr(Diag(XX T ) -E XX T ) p 1/p √ pσ p + pb 2 p .

E

  Tr(XX T -E XX T ) p 1/p ≥

E

  Tr(XX T -E XX T ) p 1/p ≥
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