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Abstract

What type of delegation contract should be offered when facing a risk of the magnitude of
the pandemic we are currently experiencing and how does the likelihood of an exogenous early
termination of the relationship modify the terms of a full-commitment contract? We study
these questions by considering a dynamic principal-agent model that naturally extends the
classical Holmstrom-Milgrom setting to include a risk of shutdown before the maturity of the
contract. We obtain an explicit characterization of the optimal wage along with the optimal
action provided by the agent when the shutdown risk is independent of the inherent agency
problem. The optimal contract is linear by offering both a fixed share of the output which
is similar to the standard shutdown-free Holmstrom-Milgrom model and a linear prevention
mechanism that is proportional to the random lifetime of the contract. We then extend the
model in two directions. We first allow the agent to control the intensity of the shutdown risk.
We also consider a structural agency model where the shutdown risk materializes when the
state process hits zero.

Keywords: Principal-Agent problems, shutdown risk, Hamilton-Jacobi Bellman equations.

1 INTRODUCTION

Without seeking to oppose public health and economic growth, there is no doubt that the manage-
ment of the Covid crisis had serious consequences on entire sectors of the economy. The first few
months of 2020 will go down in world history as a period of time characterized by massive layoffs,
forced closures of non-essential companies, disruption of cross-border transportation whilst popu-
lations were subject to lockdown and/or social distancing measures and hospitals and the medical
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world struggled to get a grasp on the Sars-Cov-2 pandemic. Whilst the immediate priority was
saving lives, decongesting hospitals and preventing the spread of the disease, many extraordinary
economic support measures were taken to help businesses and individuals stay afloat during these
unprecedented times and in the hope of tempering the economic crisis that would follow. Although
the world has lived through many crises over the past centuries, from several Panics in the 1800s and
the Great Depression of the 1930s to the more recent Financial Crisis of 2008, never before has the
global economy as a whole come to such a standstill due to an external event. Such large shutdown
risks do not only materialize during pandemics but throughout many major other large events. The
massive bushfires that affected Australia towards the end of 2019, temporarily halting agriculture,
construction activity and tourism in some areas of the country are another recent example. As we
begin to see a glimpse of hope for a way out through vaccination, the focus is turning to building
the world of tomorrow with the idea that we must learn to live with such risks. This paper tries
to make its contribution by focusing on a simple microeconomic issue. In a world subject to moral
hazard, how can we agree to an incentive contract whose obligations could be made impossible or
at least very difficult because of the occurrence of a risk of the nature of the Covid19 pandemic?
Including such a shutdown risk-sharing in contracts seems crucial going forward for at least two
reasons. First, it is not certain that public authority will be able to continue to take significant
economic support measures to insure the partners of a contract if the frequency of such global risks
were to increase. On the other hand, the private insurance market does not offer protection against
the risk of a pandemic which makes pooling too difficult. It therefore seems likely that we will have
to turn to an organized form of risk sharing between the contractors.

Since the foundational work of Holmstrom and Milgrom [13], contract theory has a well-developed
set of mathematical tools to analyze incentive and risk-sharing problems using expected-utility the-
ory. The model considered by Holmstrém and Milgrom has subsequently been widely extended?,
and some important contributors are Schéttler and Sung [24] and [25], Sannikov [23] and Cvitanic
et al [6] and [7]. Ome can distinguish two distinct methods for dealing with the principal-agent
problem. The first, developed by Sung [27], [28]; Miiller [18] and Hellwig and Schmidt [12], extends
the popular first-order approach to solving discrete-time problems. More recently, Williams [29] and
Cvitani¢, Wan and Zhang [5] used the stochastic maximum principle and a coupled system of direct
and backward stochastic differential equations (SDEs). This rigorous approach is very general, but
results in complicated systems from which it is difficult to extract an explicit shape for the optimal
contract. The second method was introduced by Sannikov [23] who extended to continuous time
the approach developed by Spear and Srivastava [26] in discrete time. This extension leads to a
control problem for the principal. The main idea of this approach is to take the agent’s continuation
utility as a state variable for the principal problem. More precisely, by using the martingale opti-
mality principle, it is possible to associate the agent’s continuation utility to a backward stochastic
differential equation (BDSE). In contrast to the first method, this one allows to focus without loss
of generality on a particular form of contract, which reduces the principal problem to a stochastic
control problem the solution of which can be characterized through a Hamilton-Jacobi-Bellman
equation. We followed the second approach in this paper and solved the HJB equation which has,
in our context, an explicit solution that is closely linked to a Bernouilli ODE yielding to an optimal
linear contract.

In this paper, we extend the Holmstrom-Milgrom framework by introducing an uncontrolled shut-

IFor a detailed review of the literature, one refers to the book by Cvitani¢ and Zhang [4].



down risk upon which the whole of the output process comes to a halt. Unlike previous studies
that introduced jump risks in the Principal-agent problem as Biais et al. [2] and Capponi and
Frei [3], the shutdown time is first assumed to not be a stopping time with respect to the output
process filtration. However, because the failure time is contractible, this leads us to consider the
principal-agent problem in the framework of the enlargement of filtration. A model close to ours
is that of Pagés and Possamai [20] which studies the contagion in bank loan shutdowns. In [20],
the principal and the agent are assumed to be risk-neutral and the uncertainty is only modeled
by the failure counting process. Similarly to [3], our work considers a risk-averse principal and
agent with exponential utility and combine a Brownian diffusion with a jump risk. To the best of
our knowledge, our toy model is the first to study intensity-based principal-agent problems with a
Brownian diffusion, in both a first-best (also called full Risk-Sharing) and second-best (also called
Moral Hazard) setting. We do not claim that this model with CARA preferences is general enough
to come up with robust economic facts, but it has the remarkable advantage of being explicitly
creditworthy, which allows us to find an explicit optimal contract that disentangles the incentives
from external risk-sharing and allows us to understand the sensitivity of the optimal contract to the
different exogenous parameters of the model. A key feature of our study is that the shape of the
optimal contract is linear both in the output and the random lifetime of the production process.
While the linearity in the output process is in line with the existing literature on continuous-time
Principal-Agent problems without shutdown under exponential utilities, the linearity in the lifetime
deserves some clarification. The contract exposes both agents to a risk of exogenous interruption but
it has two different regimes that are determined by an explicit relation between the risk-aversions
and the agent’s effort cost. Under the first regime, the agent is more sensitive to the risk of shut-
down than the principal. In this case, the principal deposits on the date 0 a positive amount onto
an escrow account whose balance will then decrease over time at a constant rate. It is crucial to
observe that the later the shutdown arrives, the more the amount in the escrow account decreases
to a point where it may even become negative. If the shutdown occurs, the principal transfers the
remaining balance to the agent. Under the second regime, the principal is more sensitive to the
risk of shutdown. In this case, the principal deposits a negative amount into the escrow account,
which now grows at a constant rate and symmetrical reasoning applies.

Finally, this paper proposes two extensions that are very different in nature. In the first one, the
agent can control the intensity of the shutdown time by exerting an additional effort in the spirit
of the paper by Capponi and Frei [3]. Interestingly, the insurance part of the optimal contract
has different regimes depending on the distance to contract maturity. In the second extension, we
characterize explicitly the optimal contract when the shutdown risk is the first time the output
process hits zero. Unlike the previous models, the shutdown risk is now a stopping time whose
distribution depends on the effort that drives the output.

The rest of the document is structured as follows. In Section 2, we present the model and the
Principal-Agent problems that we consider. In Section 3, we analyse the first-best case where the
principal observes the agent’s effort. Then in Section 4, we give our main results and analysis. In
Section 5, we extend our model to include a possibility for mitigation upon a halt.

2 THE MODEL



The model is inherited from the classical work of Holmstrém and Milgrom [13]. A principal contracts
with an agent to manage a project she owns. The agent influences the project’s profitability by
exerting an unobservable effort. For a fixed effort policy, the output process is still random and the
idiosyncratic uncertainty is modeled by a Brownian motion.

We assume that the contract matures at time 7" > 0 and both principal and agent are risk-averse
with CARA preferences. The departure from the classical model is as follows: we assume the
project is facing some external risk that could interrupt the production at some random time 7.
The probability distribution of 7 is first assumed to be independent of the Brownian motion that
drives the uncertainty of the output process and also independent of the agent’s actions. Finally,
we assume that the contract offers a transfer W at time T from the principal to the agent that is
a functional of the output process.

2.1 PROBABILITY SETUP

Let T > 0 be some fixed time horizon. The key to modeling our Principal-Agent problems under
an agency-free external risk of shutdown is the simultaneous presence over the interval [0,7] of a
continuous random process and a jump process as well as the ability to extend the standard math-
ematical techniques used for dynamic contracting to this mixed setting. Thus, we shall deal with
two kinds of information : the information from the output process, denoted as F = (F;);>0 and the
information from the shutdown time, i.e. the knowledge of the time where the shutdown occurred
in the past, if the shutdown has appeared. This construction is not new and occurs frequently in

mathematical finance?.

The complete probability space that we consider will be denoted as (2, G, P?), with two independent
stochastic processes :

e B a standard one-dimensional F-Brownian motion,

e N the right-continuous single-jump process defined as N; = 1,<4, ¢ in [0, T] where 7 is some
positive random variable independent of B that models the shutdown time.

N will also be referred to as the shutdown indicator process. We therefore use the standard approach
of progressive enlargement of filtration by considering G = {G;,t > 0} the smallest complete right-
continuous extension of F that makes 7 a G-stopping time. Because 7 is independent of B, B is a
G-Brownian motion under P° according to Proposition 1.21 p 11 in [1]. We also suppose that there
exists a bounded deterministic compensator of N, A; = fot A(s) ds for some bounded function A(.)
called the intensity implying that:

M, = N, — /t As)(1 = Ny)ds, te[0,T]
0

is a G-compensated martingale. Note that through knowledge of the function A, the principal and
agent can compute at time 0 the probability of shutdown happening over the contracting period
[0,T]. Indeed :

P(r <T)=1-exp(—Ar).

2We refer the curious reader to the two important references [1] and [10].



We first suppose for computational ease that the intensity A is a constant but our results may easily
be generalized to general deterministic compensators.

Remark 2.1. Here we will suppose that the compensator of N is common knowledge to both the
Principal and the Agent. We could imagine settings where the Principal and Agent’s beliefs regarding
the risk of shutdown may differ : this natural extension of our work would call for analysis of the
dynamic contracting problem under hidden information which is left for future research.

2.2 PRINCIPAL-AGENT PROBLEM

We suppose that the agent agrees to work for the principal over a time period [0,7] and provide
up to the shutdown time a costly action (at):ej0,7) belonging to B, where B denotes the set of
admissible F-predictable strategies that will be specified later on. The Principal-Agent problem
models the realistic setting where the principal cannot observe the agent’s effort. As such the
agent chooses his action in order to maximize his own utility. The principal must offer a wage
based on the information driven by the output process up to the shutdown time that incentivizes
the agent to work efficiently and contribute positively to the output process. Mathematically, the
unobservability of the agent’s behaviour is modeled through a change of measure. Under P? | we
assume that the project’s profitability evolves as

t
X = xg +/ (1 — N4)dB;.
0

Thus, PY corresponds to the probability distribution of the profitability when the agent makes no
effort over [0,7]. When the agent makes an effort a = (a;):, we shall assume that the project’s
profitability evolves as

‘ t
X; = Io+/ as(lng)dSJr/ (1= Ny)dBg,
0 0

where B® is a F-Brownian motion under some measure P* that will be specified later. The agent
fully observes the decomposition of the production process under a measure P® whilst the principal
only observes the realization of X;. In order for the model to be consistent, the probabilities P°
and P* must be equivalent for all (a¢)ic[o,7r7] belonging to B. Therefore, for a fixed A > 0 that
can be as large as we need, we introduce the following set of actions.

B= {a = (at)¢ : F-predictable and taking values in [—A4, A]}

For a € B, we define P* as
dPe T 1 /T
Solor=e ( [ a.0-NpaB— 5 [la0-Nods) = .
dP 0 2 o

Because EO(Ly) = 1, (B{')se(0,7] With B = By —fg as(1—N)ds,t € [0,7T] is a G-Brownian motion
under P* according to Proposition 3.6 ¢) p 55 in [1]. It is key to note that if halt occurs, i.e. if
7 < T, then the production process is halted® before T' meaning that : X2, = X, t€[0,T]. Let

30ur study falls within the framework of random horizon agency problems. However, contrary to the paper [16],
the horizon here is not a control variable that the principal can choose.



us then observe that an action a = (a;); of B can be extended to a G-predictable process (a¢)¢co,1]
by setting @ = a;M¢<,.

The cost of effort for the agent is modeled through a quadratic cost function : x(a) := m%, for
k > 0 some fixed parameter. As a reward for the agent’s effort, the principal pays him a wage W
at time 7. W is assumed to be a Gra, random variable which means that the payment at time T’
in case of an early shutdown is known at time T'A 7. The principal and the agent are considered
to be risk averse and risk aversion is modeled through two CARA utility functions :

Up(z) := —exp(—7ypx) and Ua(z) := — exp(—yaz),

where yp > 0 and v4 > 0 are two fixed constants modeling the principal’s and the agent’s risk
aversion.

In this setting and for any given wage W, the agent maximizes his own utility and solves :

Ua (W - /OT k(as(1 — NS))ds>] . (2.1)

A wage W is said to be incentive compatible if there exists an action policy a*(W) € B that

maximises (2.1) and thus satisfies
T
Ua (W —/ k(aX(W)(1 — Ns))d8>] )
0

When the principal is able to offer an incentive compatible wage W, she knows what the agent’s best
reply will be. As such the principal establishes a set A*(W) C B of best replies for the agent for any
incentive compatible W. Therefore, the first task is to characterize the set of incentive-compatible
wages Wie. Only then may the principal consider maximizing his own utility by solving :

Vi (W) = sup E*
a€B

Vg (W) =B (V)

sup sup  ET W) [Up (X;*(W) - W)] (2.2)
WeWrc a*eA* (W)

under the participation constraint

E* V) > Ua(yo), (2.3)

Ua (W —/0 rlag(W)(1 - Ns))d8>

where g9 is a monetary reservation utility for the agent.

Remark 2.2. Problem (2.2) has been thoroughly analyzed in a setting where the output process
may not shutdown (see the pioneer papers [13], [24] ). Setting k = 1 for simplicity, the optimal
action is constant and given by :

CL* . Yp + 1

P Fya+
and the optimal wage s linear in the output:

—1
W =yo+a* X7 + <%‘é(a*)2> T.

We may naturally expect to encounter an extension of these results in our setting.



3 OPTIMAL FIRST-BEST CONTRACTING

We begin with analysis of the first-best benchmark (the full Risk-Sharing problem) which leads to a
simple optimal sharing rule. Of course this problem is not the most realistic when it comes to mod-
eling dynamic contracting situations. However it provides a benchmark to which we can compare
the more realistic Moral Hazard situation. Indeed, the principal’s utility in the full Risk-Sharing
problem is the best that the principal will ever be able to obtain in a contracting situation as he
may observe (and it is thus assumed that he may dictate) the agent’s action.

To write the first-best problem, we assume that both the principal and the agent observe the
variations of the same production process (X{*)e(o,7] under P°:

t t
Xp = xo—l—/ as(l—Ns)ds—F/ (1 - N;)dBs. te€[0,T] (3.1)
0 0

The agent is guaranteed a minimum value of expected utility through the participation constraint :

T
Ua (W 7/0 k(as(l — Ns))d5>

but has no further say on the wage or action. Consider the admissible set :

E > UA(y0)7 (32)

Apc = {(W,a) such that W is Gra, measurable with E [exp(—2y4W)] < 400, (a;): € B, and (3.2) is satisfied} .

The full Risk-Sharing problem involves maximizing the principal’s utility across Apc :

sup E[Up (X3 —W)]. (3.3)
(W,a)eEApc

3.1 TACKLING THE PARTICIPATION CONSTRAINT

A first step to optimal contracting in this first-best setting involves answering the following question:
can we characterize the set Apc? Following the standard route, we will first establish a necessary

condition. For a given pair (W, a) € Apc, let us introduce the agent’s continuation utility (Ut(W’a))t
as follows:
T
v =R, |Ua (W —/ k(as(1 — NS))ds> ,
¢
where we use the shorthand notation : E;[.] := E[.|G;]. We may write the Agent’s continuation value

process as the product :
Ut(W,a) _ M,EW’G)Dt(W’a),

where :

MgW,a) = Et

Ua (W - /OT K(as(l — Ns))dsﬂ and DM = exp (-m /Ot r(as(l — Ns))ds> .

Observe that for any admissible pair (W,a) € Apc, the process M = (MEW’G))t is a G-square

integrable martingale. According to the Martingale Representation Theorem for G-martingales



(see [1], Theorem 3.12 p. 60), there exists some predictable pair (z,,1s) in H? x H?, where H? is
the set of F-predictable processes Z with E UOT|Zt|2dt} < +00, such that :

MWD = p (W) /0 t zs(1 — N,)dB, + /0 t Is(1 — Ny)dM,.
Integration by parts yields the dynamic of U, noting that D has finite variation :
AU = —yak(a(1 = NP dt + DM 2, (1 — No)dB, + D1, (1 — Ny)dM,.
Setting 2" := D'z, € H2 and K := D", € H2, we obtain:
AU = —yak(a(1 = NP dt + 209 (1 = N)dB + K™ (1 — Ny)dM.

By construction, we have that U}W’a) = Ua(W). It follows that (Ut(W’a),Zt(W’a),Kt(W’a)) is a
solution to the BSDE:

—au™® =~z (1 — N)dB, — K" (1 — Ny)dM; + var(a,(1 = NV dt,  (3.4)
with U;W’a) = Ua(W). Therefore, (3.2) is satisfied if and only if Uéw’a) > Ua(yo)-
Remark 3.1. Let S? be the set of G—adapted RCLL processes U such that

E[ sup |U:]?] < 4oo0.
0<t<T

Through Proposition 2.6 of [8], the solution to (3.4) is unique in (S*> x H2 x H?). Indeed, the driver
9w, U) = vak(as(1 — Ny))U is uniformly Lipschitz in U because (a); is bounded and the terminal
condition is in L2.

To sum up, we have the following necessary condition for admissibility.

Lemma 3.1. If (W,a) € Apc then there exists a unique solution (Ut(W’a),Zt(W’a),Kt(W’a)) m
(S? x H2 x H2) to the BSDE (3.4) such that U™ > Ua(yo).

To obtain a sufficient condition, we introduce, for 7 = (y,a,3, H) € R x B x H? x H?, the wage
process (W]); defined as

W=y +/0 Bs(1 — Ny)dB, +/0 H,(1— N,)dM, +/0 {%‘53(1 — N,) + k(as(1 — Ny))
%[exp(i’YAHs) - 1 + 'YAHQ](I - Ne)} d57 (35)

and consider the set
I:={(y,a,5,H) € Rx B x H? x H? such that y > yo and E [exp(—2y4WF)] < +00.}.

We have the following result.



Lemma 3.2. For any w € T, the pair (W, a) belongs to Apc.
Proof. We apply Itd’s formula to the process Y™ = U4 (W/) to obtain

AY] = =AY Bi(1 — Ny) dBy + Y{ (e7741 — 1) (1 = Ny) dMy — yar(a(1 — Ny))Y[ dt.
Moreover, because m € T', Y = Ua(WF) is square-integrable. Remark 3.1 yields the triplet

(Y7, —vaY{ By, Y (e774H: — 1)) is the unique solution in (S* x H? x H?) to BSDE (3.4) with
terminal condition Uy (W7) when 7w € T'. Therefore,

T
Ua (W;r—/o m(as(l—Ns))ds>

and thus (3.2) is satisfied. O

Yy =Ua(y) =E > Ua(yo),

Remark 3.2. The admissible contracts are essentially the terminal values of the controlled processes
(3.5) for m € T'. The difficulty is that we do not know how to characterize the 8 and H processes
that guarantee that m belongs to I'. Nevertheless, it is easy to check by a standard application of the
Gronwall lemma that if 8 and H are bounded then w € I'. This last observation will prove to be
crucial in the explicit resolution of our problem.

3.2 FIRST-BEST DYNAMIC CONTRACTING

Using Lemma 3.2, the full Risk-Sharing problem under shutdown writes as the Markovian control
problem :

VEBi=  sup E [Up (X;””O*“) - W}T)} , (3.6)
r=(y,a,Z,K)€T
where X" is given by :
dX®0® — ¢ (1 — Ny)ds + (1 — N,)dBs,
with Xémo’a) = xo and the wage process is given by :

AWT = Z,(1 — N,)dB, + K,(1 — N,)dM,

+ {”21423(1 — N,) + r(as(1 = Ny)) + %[exp(—mKs) — 1+l (1 - Ns)} ds,

with Wi = y. We have the following key theorem for the first-best problem.

Theorem 3.1. Let a; = l,Zt* = 77P’ and let :
K TP+ A
P = log(®0(1)),
TP+ A
where : i
c1 + co YA Co YA
Dy (t) := ( o exp (cl A T— t)) - 01) , (3.7



with : )
1 ::&_LP_,\M and c2::)\m.
2(vp+74) 2k YA YA
Then 7* = (yo,a*, Z*,K*) € T parameterizes the optimal contract (W ,a*) for the first-best

problem.

The rest of this subsection is dedicated to the proof of this Theorem. We first make the following
observation. As X remains constant after 7, the principal has no further decision to make after
the shutdown time. Thus, its value function is constant and equal to Up(X, — W) on the interval
[r,T].

We now focus on the control part of the problem (i.e. computation of the optimal control triplet
7 = (a,Z,K) for a given pair (zg,y)). To do so, we follow the dynamic programming approach
developed in [21], Section 4 to define the value function

T
V(0,z0,10) = supE UP(X%—W}T)(l—NT)Jr/ Up(X¢ =W e Mat|, (3.8)
) 0

el

where R
I={feBxH xH},

Because I' € R x T, we have
VIEB < sup V(O,J)o, y)
Y=o
According to stochastic control theory, the Hamilton-Jacobi-Bellman equation associated to the
stochastic control problem (3.8) is the following (see [19]):

A
O (t,x,y) + sup {&w(t, z,y)a+ 0yv(t,z,y) J4 72 + k(a) + —[exp(—yaK) — 1] ]
a.Z,K 2 YA
2

Z
A [UP(:E B K) - ’U()(t,.’l,',y)] + ayy”(t»fﬁvy)

5 181951)(1? x,y) + Opyv(t, @ y)Z} 0, (3.9)

with the boundary condition :

’U(T,SC,y) = UP(I - y)

It happens that the HJB equation (3.9) is explicitly solvable by exploiting the separability property
of the exponential utility function.

Lemma 3.3. The function v(t,x,y) = Up(x — y)Po(t) with :

Ip+yA
YA
Bo(t) (Mexp <01“<T _ t)) _ @) ,
1 TP t+7a 1
where : )
o = —JPYA _ap _\aptoa o 02:)\’7P+'YA’
2(yp +74) 2k YA YA
solves (in the classical sense) the HJB partial differential equation (3.9).

«_ P

Furthermore af = —, Z = n and K} = P log(®g(t)) are the optimal controls.
k TP+ A P T7A

10



Proof. We search for a solution to Equation (3.9) for a v of the form :

’U(t,.’l?,y) = UP(J" - y)‘bo(t),

with ®q a positive mapping. Such a v satisfies (3.9) if and only if ®g(¢) solves the PDE :

20+ gt { e+ 1p20(t) (L2 4 w0) + 2 fexp(-am) - 1)

Z2 2
+7123‘I’0(t)7 + 7713‘1)0(75) —7p®o(1)Z + A (exp(ypK) — %(t))} =0,
with the boundary condition ®o(7T") = 1. As @, is a positive mapping, the infimum is well defined.

We derive the following first-order conditions that must be satisfied by the optimal controls :

1P Po(t) = yprao(t)
YpPo(t)Z(va + vp) = V5 Po(t)
Yp®o(t) A exp(—vaK) = vpAexp(ypK),

equating to :
1 log(®
R L AR 1C 1)}
K TPt 74 TP+ A
It follows that :

inf {—vpfbo(t)a +vp®o(t) (WQAZQ + k(a) + % {exp(—yaK) — 1})

a,7,
2

ZQ
'W}Qv‘bo(t)? + r%P

= pBo(t)a” +1po(t) (”;Z*? T r(a®) + % {exp(~—7aK") — 1})

Bot) — V2®o()Z + M (exp(vpK) — %(t))}

*2

7 2
+7p®o (1) +12

5 5 Do(t) —7pPo(t)Z* + A (exp(ypK™) — Po(t))

2 Y
= Bo(t)PTA ()12 ,)\m%(t) 4 )\m%(f)ﬁfm,
2(vp +74) 2K YA YA

terms with a* terms with K*

terms with Z*

We may inject this expression back into the PDE on ®j. Doing so yields the following Bernoulli
equation :

Bl (t) + e1Bo(t) + ca®o(t)TPra =0, Bo(T) = 1,

where )
B 7 S VR 1 7 WG e e 71
2(vp +74) 2K YA YA
The unique solution to this equation is (see for instance [30]) :
Ypt+va
YA
Bo(t) = (Wexp <017A<T _ t)> _ Cz) ,
€1 TP+ 74 c1
and the result follows. O
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PROOF OF THEOREM 3.1. The value function v(¢, x,y) = Up(xz — y)Po(t) is a classical solution
to the HIB equation (3.9). A standard verification theorem yields that v = V. Through Lemma
3.3, the optimal controls for the full Risk-Sharing problem are :

1 P 1
a = —, 74 = ——— and K] = —— log(®q(¥)),
! KT Yp + 74 ¢ TP+ 74 g(®o(t))

with ®y as defined in Lemma 3.3. These controls are free of y and it follows that :
V(0,20,90) = E {Up (Xq(fo’a*) - W;yo’a*’z*’K*))} ;
is a decreasing function of yy. Thus we obtain

sup ‘/O(O,xO,yO) - B |:UP (Xéfno,a*) _ W;yPC,a*,Z*7K*)>:| .

Yo2yprc

Finally, we observe that the optimal controls are bounded and thus Remark (3.2) yields 7* =
(ypo,a*, Z*, K*) € T'. As a consequence,

sup V(O,xo,y) ) |:UP (X’}xo,a) _ W,Z(}J)ya*,Z*,K*)>:| < VI_}:B

Y>Yo

Because the reverse inequality holds, the final result follows. O

4 OPTIMAL CONTRACTING UNDER SHUTDOWN RISK

4.1 MAIN RESULTS

The following is dedicated to our main result for the Moral Hazard problem. We shall state our
main theorem with the explicit optimal contract before turning to some analysis of the effect of the
shutdown on dynamic contracting. In the case of moral hazard, one is forced to make a stronger
assumption about the nature of a contract. This stronger hypothesis will naturally appear to
justify the martingale optimality principle. In our setting, a contract is a G, measurable random
variable W such that for every § € R, we have

E [exp(BW)] < +oo.

A first step to optimal contracting involves answering the preliminary question: can we characterize
incentive compatible wages and if so what is the related optimal action for the agent? The charac-
terization of incentive compatible contracts relies on the martingale optimality principle (see [14]
and [22]) that we recall below.

Lemma 4.1 (Martingale Optimality Principle). Given a contract W, consider a family of stochastic
processes RY(W) := (R{).ep0,r) indexed by a in B that satisfies :

1. R = Ua(W — [ k(as(1 = N,))ds) for any a in B

2. R* is a P*-supermartingale for any a in B

12



3. R is independent of a.
4. There exists a* in B such that R* is a P* -martingale.
Then,

RS* _ g

T
UA(Wf/O m(a:)ds)] > E*®

T
UA(W */0 /—1((15(1 - Ns))ds)] )

meaning that a* is the optimal agent’s action in response to the contract W.

We will construct such a family following the standard route. Consider a given contract W, we
define the family R*(W) := (R{)icjo,1] by

Ry o= —oxp (s (i) - [ (sl - Nojas ) ).

where (Y/(W), Z(W), K(W)) in (S? x H? x H?) is the unique solution of the following BSDE under
PO

Y, (W) :W—/Tf(zs(W),KS(W))(l—NS)ds_/T ZS(W)(l—NS)dBS—/TKS(W)(l—NS)dMS,
' ' ' (4.1)
with

- 1 2 i —vak ;
J(zk) = 57az" + Ak + o~ (e 1) + inf {x(a) —az}.

Remark 4.1. The theoretical justification of the well-posedness of the BSDE (4.1) deserves some
comments. The first results were obtained in [15] and [9] when the contract W is assumed to be
bounded. The necessary extension in our model when W admits an exponential moment has been
treated recently in the paper [17].

By construction, R% = Ua(W — fOT k(as(1 — Ng))ds) for any a in B. Moreover, R} = Yo(W) is
independent of the agent’s action a. We have

dR% = —yaAR%Zs(1 — N)dB, + R2(e” 4K+ — 1)(1 — Ny)d M,

1 A
+ R { G2 = F(20 K+ (1= M)+ AR+ 2 (e - - s

YA
= —yaR%Zs(1 — Ny)dB% + R (e "%+ — 1)(1 — N,)dM,
1 A
+ Riva {QVAzf — f(Zs,Ks) + k(as(1 — Ng)) + MK + T(e—’YAKs —1)— asZs} (1 — N;)ds.
A

Thus R® is a P*-super-martingale for every a in B, the function
z
a*(z) = _A]]-zgan + E]langzgnA + AI]-ZZHA
is a unique minimizer for f and R* is a P* -martingale. As a consequence, every contract W

is incentive compatible which a unique best reply a*(Z(W)). Finally, a contract W satisfies the
participation constraint if and only if Yo(WW) > yo.

13



Relying on the idea of Sannikov [23] and its recent theoretical justification by Cvitanic, Possamai
and Touzi [7], we will consider the agent promised wage Y (W) as a state variable to embed the
principal’s problem into the class of Markovian problems, by considering the sensitivities of the
agent’s promised wage Z (W) and K (W) as control variables. For m = (y, Z, K) € [yo; +00) x H? x
H?2, we define under P°, the control process called the agent continuation value

t t t
W 2K — +/ Z4(1 — N,)dB, +/ K, (1 — N,)dM, +/ f(Zs, K)(1 — Ny)ds.  (4.2)
0 0 0
Under P* := P(@"(2)) | we thus have
t t
W 2K — +/ Z4(1— N,)dB* +/ K, (1= N,)dM, (4.3)
0 0
" va A
[ {222 w2+ Dew(ak) - 14k - Noas
0 A
t t
=y +/ Z,(1— N,)dB* +/ K,(1— N,)dN,
0 0
A

! YA 2 *
—l—/o {QZS + k(a*(Zs)) + va[eXp(—WAKs) - 1]} (1= Ny)ds

Now, we consider the set

¢ = {77 = (Z,K) € H? x H? such that V3 € R, E [exp(ﬂWé«y’Z’K))} < toofory € R} .

By construction, Wq(wy’ﬂ) is a contract that satisfies the participation constraint for every = € (
and y > yo. Moreover, by the well-posedness of the BSDE (4.1) , every contract W that satisfies

the participation constraint can be written W:(FYO(W)’Z(W)’K(W)) with #(W) = (Z(W), K(W)) € (.
Therefore, the problem of the principal can now be rewritten as the following optimisation problem

VP ‘= sup ’U(O,.’E,y),
Y2>Yo

where

v(0,z,y) = sup E* [Up(Xznr = WTL,)] (4.4)
TE

To characterize the optimal contract, we will proceed analogously as in the full risk sharing case
by constructing a smooth solution to the HJB equation associated to the Markov control problem
(4.4) given by

A A
0= 0w(t,z,y) + sup {azv(t,x,y) + oyv(t, x,y) 7—A22 + k(a*(Z)) + —[exp(—va K) — 1]}
7K K 2 YA

VAR
+A[Up(x —y — K) —v(t, 2, y)] + ayyUO(ta €, y)? + iamv(tv T,y) + 8xy”(ta z, y)Z} )
(4.5)
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Lemma 4.2. Assume the constant A in the definition of the set of admissible efforts B satisfies

Yp + kL

A> — ——— |
k(yp +7v4) +1

Then, the function Up(xz — y)®o(t), with

Ipt+ya
YA
Bo(t) (Mexp <017A(T _ t)> _ Cz) ,
c1 TPt 4 1
where
VEYA e tp+ R ypta 7P +7a
cL = =~ T - A and cg = A\———.
20p+ya+ K71 2(vp+ya+ KT YA YA
‘ . . ‘ . vp+ k! .
solves in the classical sense the HJB equation (4.5). In particular Z; = ——————— and K; =
TP+ YA+ KT

— log(Py(t)),
NP+ 4 g(Po(1))

Proof. Because the assumption on A implies a*(z) = z/k, the proof of this lemma is a direct
adaptation of the proof of Lemma 3.3 to which we refer the reader. O

We are in a position to prove the main result of this section

Theorem 4.1. We have the following explicit characterizations of the optimal contracts. Let A as
-1
Yp + K

in the Lemma 4.2 and let Z; = PO and K} = m log(®o(t)), where ®g is defined
as in (3.7) with the constants :
2 -1 -1
c1 = Tp7A == ypr (p R 1) LS +7a and cg = AP OA +7A.
2vp +ya+ w71 2(vp+yat+ w7 o VA

Then (yo, Z*, K*) parametrizes the optimal wage for the Moral Hazard problem. The Agent performs
the optimal action %

Proof. Because the function Up (z—y)®Pg(t) is a classical solution to the HJB equation (4.5) and the
optimal controls are bounded and free of y, we proceed analogously as in the proof of Theorem 3.1.
— ngyo,Z KT

Finally, we have to prove that the optimal wage W* admits exponential moments to

close the loop. According to (4.3), we have

1 1 X
W* =yo+ Z* B + 3 (7,4 + K) (Z)HTAT)+ K 1<t +/ o [exp(—vaK¥) —1](1 — Ny)ds.
0 A

Because (Bj); is a Brownian motion and K is deterministic, it is straightforward to check that
W* admits exponential moments. O
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4.2 MODEL ANALYSIS

The optimal contract includes two components. One is linear in the output with an incentivizing
slope that is similar to the classical optimal contract found in [13]. This is necessary to implement
a desirable level of effort. The other is unrelated to the incentives but linked to the shutdown risk
sharing. It is key to observe that this second term is nonzero even if the shutdown risk does not
materialize before the termination of the contract.

The characterization of the optimal contracts in Theorem 4.1 sparks an immediate observation: the
two parties only need to be committed to the contracting agreement up until 7" A 7. Therefore in
this simple model, using an expected-utility related reasoning and without considering mechanisms
such as employment law, the occurence of the agency-free external risk, halting production, leads
to early contract terminations. This is in line with what actually happened during the Covid
pandemic. Indeed in the USA and in eight weeks of the pandemic, 36.5 million people applied for
unemployment insurance. In more protective economies, mass redundancies were only prevented
through the instauration of furlough type schemes allowing private employees’ wages to temporarily
be paid by gouvernements. This phenomena makes fundamental sense : a principal whose output
process is completely halted cannot enforce the agent to work hard because she has no revenue to
provide the incentives. Let’s focus on the second term:

T
A
K; 1.<r +/ T[QXP(_’YAK;) —1](1 = Ny)ds, (4.6)
0 A

Understanding the effect of these extra terms is crucial to fully understand the sharing of the
agency-free shutdown risk. First, we show that the sign of the control K* is constant.

Lemma 4.3. Let ¢y and co be the relevant constants given in Theorem 4.1 then the optimal control
(K{)teo,r) can be expressed as :

- E )])
K'=—1logE |exp| ———(ci1 +c)((T—t)AT te0,T]. 4.7
= o (B o (2 (@ e (T -0 A7) 0.7) (4.7
Proof. We have that :
1
K = ———log(®p(t)),
t P+ A g(®o(1))
with Hva
YpPTY
1+ cC2 A C2) 74
O(t) = ——exp|lcr———(T —-1t) | — =
o) (01 p(l’VPJrVA( )> 01)

The aim here is to link this expression for ®g to that of an expected value. As such, we consider
the following expected value that decomposes as shown :

E |:exp (%fj%(cl +e)((T =) A r)ﬂ

=E {exp (%4(01 +ea)(T — t)) 1T>Tt} +E [GXP (M(Q + 02)T> 17‘<Tt:| .
P+ 74 P + 74
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Yp + 74
YA

Using ¢; = A, the first term of the expected value rewrites as follows :

E {exp (”‘(c1 + ) (T — t)> 1T>T_t} = exp <

VP + 1A Tt 7a “2><Tt>> exp (AT — 1))

YA
:eXp CT_t>
<1'7P+'VA( )

It remains to compute the second term. We obtain :

T—t

YA YA

E|lexp| ——(c1 + )7 ) 1< z/ Aex (c +c s)ex —)\s)ds
{ p(’YP+7A(1 2)> =T t} 0 P '7P+7A(1 2) P(=2s)

T—t
= / Aexp <’YA(01 +ca)s — /\s> ds
0 P +7A
T—t
= / Aexp (7’4015> ds
0 P +7A
T—t
_ [A P +7a ( YA )}
== exp 18
Cq YA p +7A 0
T—t
C2 YA
—exp | ——as
{01 (’YP +7a )]0

~Zep (a2 -n) -2

c1 Yp + A

Combining both terms we reach the final expression :

E [exp <7A(c1 +e)(T—1) m))] _ate o <C1M(T— t)> _ e

Yp + YA C1 Yp + A

Therefore we identify that :

yptva
Bo(t) (E {exp <%4(cl +ea) (T — ) A T))D s
TP+ 74
As a consequence, we may also rewrite K. Indeed :
K = #lo (Po(t))
o +7a S0

and with the new expression for ®3 we obtain the result :

K; = %log (IE [exp (”‘(cl +e)(T—1) A T))D .

Yp + a4
O

Remark 4.2. We have the same expression for the optimal control K* in the first-best case, using
for c1 and co the relevant constants given in Theorem 3.1.
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As a consequence, this alternative form for K* leads to easy analysis of the sign of the control,
given in the following lemma.

Lemma 4.4. The sign of K* over the contracting period [0,T] is constant and entirely determined
by the model’s risk aversions yp and va, and the Agent’s effort cost k. Indeed, the sign of K*
is equal to the sign of ypya — ypk~ ! — (k71)%. Moreover, K; varies monotonously in time, with
Ky =0.

Proof. From the expression (4.7), we easily deduce that :
o If ¢y + co = 0 then K} = 0 for every t € [0,T],
o if ¢; + ¢y > 0 then K > 0 for t < 7 and the function ¢ = K} decreases,

o if ¢; + o < 0 then K} < 0 for t < 7 and the function ¢ — K increases.

Replacing ¢; and co by their relevant expressions in each case leads to the result.
O

Finally, we will show that the risk-sharing component of the contract is in fact linear with respect
to the shutdown time. This is a strong result of our study for which we had no ex-ante intuition.

Theorem 4.2. The shutdown risk-sharing component of the optimal wage is linear in the shutdown
time. More precisely, the optimal wage s

1 1 C1 A
wW* = + Z*Bh,, + = + =) (Z)AT AT +K*—(+> TAT).
e+ 2 Bing g (a4 1) @A K - (=S4 ) @A)

Proof. Because K} = 0, the optimal wage can be written

1 1
W* =ypo + Z*Bi,, + 3 (7A+ n) (Z*)Q(T/\T) + (T AT),

with
)= K7 + / A (exp(—yaK?) — 1) ds, t € [0,T).
0

YA
Let us define

o) = R ep (0w -p) - 2.

1 P +74 1
We have /(1) = ~(e1 + e2) % exp (ea 52 (T 1)
Therefore,
0 1 ¢(t
Ogr_ 19 (t)
ot va g(t)
1 —(c1 + ¢2) exp (61 VP‘Y;‘WA (T — t))
B cq1+c c
r + A % exp (Cl ’YP’Y“f’YA (T o t)) B ﬁ
o [ Aate)en(aginr-n)
TP YA | (1 + ¢2) exp (01 ’yp’yfm (T - t)) —c
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Also

and so :

a [t A A
9 / 2 (exp(—1aK?) — 1) ds = = (exp(—1aK?) ~ 1)
0

ot Jo va
1
A ( - 1) well-defined as g(t) > 0 on [0, T
74 \g(t)
A 1 .,
A CI;CZ exp (Cl w:f'm (T - t)) - %
_ad ! _ A
YA | (c1 + o) exp (01 ’YP'Yf’YA (T - t)) —C YA
Finally, we have :
o) o [* A
‘W)= 2K+ 2 [ 2 (exp(—yaKF) —1)d
PO = gkt g [ 2 exp(aks) < 1)ds
g —(c1 + c2) exp (Cl (T - t))
VP YA | (¢1 4 ¢2) exp (cl Wj_fm (T - t)) —co
el ! A
YA | (c1 + o) exp (Cl w:—fm (T - t)) —Ca YA
- 1
- - {(01 + c2) exp <C1 oA (T - t)) A }
YP YA (¢1 + ¢3) exp (01 ,YPY;_“,M (T — t)) — co P + 74 P + 74
_A
A
c1 A AYa
= —— ascp=—"—
YP+v4 YA P+ 74
()
=—(——+=).
TP H+vA YA
U

5 MITIGATING THE SHUTDOWN RISK

Even if this moves us away from our pandemic motivation, we will assume, similarly to Capponi and
Frei’s paper [3], that the agent can execute two different tasks: as before, he can exert some costly
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effort a to improve the productivity of the project and he can also exert another preventive action
to delay the arrival of the shutdown risk. The prevention effort is modeled in a manner similar
to that proposed by Pagés and Possamai [20]. More precisely, the prevention action at time ¢ is
modeled by a measurable process b; € {0, 1}, if agent exerts effort at time ¢, by = 1. The intensity
of the shutdown time 7 is assumed to be

A
N =S b).

The agent incurs disutility for exerting effort and prevention. We assume to fix ideas that it takes
the form of c(a,b) = ka?/2 + eb, where € > 0.

Remark 5.1. Unlike the paper by Capponi and Frei [3], our cost function does not capture in-
teractions between effort provision and risk prevention. In this paper, we choose this simplifying
assumption because we want to explore the impact of prevention on the linear contract in the simplest
possible extension of the main model.

We denote by P the set of F-predictable processs with values in {0,1}. For a € B and b € P, we
define by Girsanov theorem (see [1], Th. 1.30 p.24) the probability measure

dPeb  gpe T ®) 11 (0) ENCEENG
d]P)O dIP)O exXp (/O Og<)\t /At )d t /0 (At )\t )dt

under which N; — fot )\gb) ds is a martingale.

5.1 THE AGENT

Given a contract W, the agent solves

sup sup E*?
aEBbEP

Ua(W — /0 c(as(1 — Ng),bs(1 — Ny)) ds)} .

In order to characterize the incentive-compatible contracts, we proceed analogously as in Section 4
by relying on the martingale optimality principle. Then, we introduce the process

rt=ua(vi- [ a1~ N ba(1 - N))ds).

where, under PY,

T T T
Y}:W—/ f(ZS,KS)(l—NS)ds—/ Zs(l—Ns)st—/ K4(1 — Ns_)dNs.

t

Proceeding again as in Section 4, we have that (R} ), is a Pb super-martingale for every pair
(a,b) € B x P if and only if
2

S A2 (e ) 4inf (=2 (2 — b)(e=4k —
f(z, k)= 5 ? +12f(/~@2 az)—i-lrgf(?’YA(Z b)(e 1)—|—eb).
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The first order condition for determining the optimal effort ¢* is unchanged. On the other hand,
the optimal prevention is bang-bang and we have bf = 1, _ where

K’:filog <1+27Ae) < 0.
YA A

Remark 5.2. To encourage the agent to make the preventive effort, it is necessary to punish the
agent financially if the risk materializes.

Hence,
_ 1 —yak _ —vyak _
YA — K 9 A (e 1 e 1
f(Z,k)ZTZ +<2 (%4)+6) H{ng}+/\(%4 Legs iy

Proceeding analogously as in Section 4, we introduce the agent promised wage as the forward SDE

Wt—yoJr/Z( ,)dB* + _)dN,

K
YA+ KT A ’YAK 1 e—vaKs _q
+/0 TZ2—|- (2 <%4 +€ H{K <K}+)‘ T H{KS>K}(1_NS)dS’

where from now on the processes Z and K are seen as controls for the principal.

5.2 THE PRINCIPAL

Still following Sannikov’s methodology, the principal problem can be written as follows

VP ‘= sup U(07 T, y)7
Y>Yo
where
U(O,.I',y) = SZuII() E(a %) [UP(XT/\T - WT/\T)] (51)
To characterize the optimal contract, we will proceed analogously as in Section 4 by constructing a
smooth solution to the HJB equation associated to the Markov control problem (5.1) given by

0=wv(t,z,y) (5.2)
Z YA+ A ek —1 e~ vaK 1
+sup {Ux(ta z,y)— + vyt 2, y) [QZQ 13 T te)Migepy +A BT ks iy

A Z? 1

+ <2]1{K§f(} + /\]1{K>K}> [UP(m —Yy- K) - v(tv Z, y)] + vyy(tv Ty y)? + ivzr(t Ty y) + viy(tv Ty y)Z} ’

Taking advantage of the separability of the problem from the control variables, we once again make
the guess that v(t,z,y) = ¢(¢)U(xz — y), where ¢ is a positive function, to get

va +l§1_1 Z2
fzz} topo + SR YA

+ i%f {fl(K7 O < iy + Jo(K, ¢)]1{K>f(}} ’

z
0=¢ +inf{—vp +7p
Z I
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where

—vaK _
fi(K,¢) = <;\ (efml) +6> Ypd + g(evpK — ),

and
e~ 7aK 1

folK,8) = A () b+ A — §),
YA

The first observation is that the minimization problem with respect to Z is similar to that of Section
4. Keeping the same notations as in the theorem 4.1, we obtain for ¢ € [0,T)

0= '(t) + (e + c2)6 + inf { Fu(K OO ey + ol DT ey } -

Hereafter, denote f(6) = infic { f1(K, )L s ey + JolK, )T ey } -
The second observation is that, for a given ¢, the functions fo(.,¢) and fi(.,¢) are convex and
attain their minimum on R at the point

Therefore, two cases have to be considered.
e K(¢) > K : for which, we have

F6) = min (. 0), fo(K (6), ) = min e = S+ e 0L s )
(5.3

o K(¢) < K : for which, we have

e +04) (67717 — ¢) + 7P€¢> :
YA

(5.4)

F6) = min(fo(&, 6). /(K (6).)) = min ( (2ye = N+ 27", 5

Our third observation is that in the neighborhood of ¢ =1, it is always optimal not to induce the
agent to take preventive actions. Indeed, because K (1) > K, we have from Equation (5.3) that

f1)=0= fo(K(1),1).

e YAK _1

: A
Remembering that 5 ( T

have

) = ¢, we observe that f is continuous at gf) = e(a+1P)K and we

Fem IR = min(fy (R, 00 0R), gy (R, 0r490K))
= min((2yp +74)ee " TE (2yp 4 294)eca I

= (2vp + 74 )eeVATIPIE,
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This leads to our fourth observation. In the neighborhood of (257 it is optimal for the principal to
encourage the agent to make prevention actions.
To sum up, we are looking for a smooth solution to the non-linear o.d.e.

{1 = o(T)
0 =¢'+ (a1 +c2)¢+ f(0),

where

i (1~ 0+ 30 8 )i

CE o e y
min ( (2ype — A)p + AP E 3 PYPWA’YA (p7P+a — ) + fype¢) )if ¢ < &

The idea is to build the solution using our previous observations starting from the solution ¢y of
Section 4 since it is known that it is not optimal to enforce prevention actions in the neighborhood
of 1. Unfortunately, due to the large number of parameters, we will not give a complete description
of all the possible cases but concentrate on some particular cases to give economic intuitions. The
first result provides sufficient conditions that it is never optimal for the principal to give the agent
incentives to take preventive actions.

Proposition 5.1. Let ¢1,co and ¢g given in Lemma 4.2. Assume c1 + co > 0 then ¢ = ¢g. The
optimal contract is identical to the one signed when the shock is exogenous.

N
Proof. Let’s assume for a moment that we have proven that f(¢) = W(dﬂzafm — ¢) for

all ¢ > 1. Under the assumptions ¢; + ¢ > 0, the solution ¢y remains above 1 for every ¢ and

consequently K} = vpim log(¢o(t)) > K. Therefore, ¢ solves the desired o.d.e..

To prove f(¢) = W(qﬁgfm — ¢), we study the function

Ay +74)
YA

_p A A 5
9(¢) = (¢77H7% — ) = (2ype — 5)b + 56””(-

Clearly, f(¢) = W@ TPt @) if g(¢) < 0. A straightforward computation shows that g is

concave, diverges to —oo and cancels out only once at a point ¢y € [(/3, 1) which ends the proof. O

When the agent is more sensitive to shutdown risk than the principal, the Section 4 contract is
already protective enough for the agent that it is not optimal for the principal to force preventive
actions even if the cost of prevention is zero.

The end of the paper is devoted to the case where ¢; + co < 0. We know that in this case, the
function ¢y is increasing. Suppose that the contract is long enough (7" large), so that there exists

ty € [0,7T] such that ¢g(ty) = ¢y. Let ¢1 be the solution on [0,¢,] of the linear equation

{ (i)v = ¢1(tv) A
0 =¢1+(c1 +e2)gn + (2ype — §)¢n + 577 E.

Let a = ¢1 4 ¢co + 2ype — % and 8 = %e'YPK. Moreover, assume « < 0. Then,

61(1) = (6 + Dyent=0 -2

«
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6 A STRUCTURAL AGENCY MODEL

In this section, we will assume that the shutdown risk is a F-stopping time. More precisely, inter-
preting now the process X as the equity value of the firm, we assume that 7 is the first time X
hits zero. Although the process Ny = ;<) is now F-adapted, we can follow Section 2 to the line
to introduce the agency problem. In particular, the principal commits to deliver a payment W at
time T' A 7 and the agent’s problem’s is

TAT
supE® |Us (W —/ k(as)ds || .
a€B 0
To ease the exposition, we will assume a quadratic cost k(a) = 2 Qur first lemma gives a family

2
of incentive-compatible contracts. For 8 = (8;); € B, we define the process

t t
Wty-ﬂ :er/O f(ﬂg) d8+/0 Bs dBs, (61)

where f(3) = 6% + iI;f (a; - aﬁ).

Lemma 6.1. The contract quw is incentive-compatible for every 8 = (B): € B. Moreover, the
agent’s best reply is a* () = 5.

Proof. Assume the principal offers W%ABT Then, the agent has to solve

inf (IE“
aeB

Because the process § = () is uniformly bounded, the process M = (M;); with

—YA <y+f0TAT f(ﬁs)‘i’asﬁs_%g ds"l‘fc,.r/w- Bs dB:)
e = J(Cl) .

t A2 [t
M; = exp (—7,4/ Bs dBg — RES Bf ds)
0 2 Jo

is a F-martingale. We define an equivalent probability measure Q by

aQ*
dpe

TNAT 2
€xXp <7A <y+/0 (f(ﬁs)“i’asﬂs*a?s*% ?)ds>>‘|

By definition of f, we get for every a € B,

|Fr = Mr,

to obtain

J(a) =EY

J(a) =z e = J (),

which ends the proof. O
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Then, the principal problem is supv(0, z,y) with
Y2Yo

’U(O, z, y) = sup EB |:UP(X§'/\T - Wﬁ/\r)]
pBeB

where

dXP =B, dt + dB!

1
awf = <7A2+ ) B2 dt + BidBy .
The associated HJB equation is

2

4+ 1 1 B
it ) Bv, + 3Vmw T Sy + By |,

2

Ozvt+sup<ﬂv$+<
8 2

with boundary conditions v(T, z,y) = Up(z — y) and v(¢,0,y) = Up(—y) for t <T.
We will build a classical solution to the above HJB equation by looking for a solution in the form
v(t,z,y) = Up(w(t,z) —y). We obtain

. +9p+1 1
wy = 1r51f <—(1 +vp)wy S+ FM;PW) + ’Y?Pwﬁ ~ 5Waa; (6.2)
with boundary conditions w(7T,z) = x and w(t,0) =0 for ¢t < T.
The first-order condition gives
* 1 + ypP
— _— U}z, 6.3
0 (1 +p + VA) (65)
Plugging (6.3) into HIB (6.2), we obtain
1
wy + FWea = Guw?,
where
oo (+7p)

2 2(1+ya+7p)

Remark 6.1. When the CARA coefficients v4 and ~p satisfies yayp = 1 + vp, we have G = 0.
1

Therefore, the optimal contract is linear with 8* = e and the principal value is stationary given
by Up(x — y). Observe that y4 must be larger or equal to 1 (and thus f* < 1) to have G = 0.

When G # 0, we define g(t,z) = e~ () to obtain the linear PDE

1

with boundary conditions g(T,z) = e~ and g(¢,0) = 1 for t < T, for which we have a classical
solution given by Feynman-Kac formulae. More precisely,

9(0,2) =E [efG(HBTAT,m)} 7

where T_, = inf{t > 0, B; = —z}.

We are in a position to state the main result.
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Proposition 6.1. The optimal contract is given by the terminal value of Equation (6.1), Wﬁ;T
where B* is given by (6.3) and where the shutdown time is

t
T:inf{tZO,x—i—/ Bsds + Bf = 0}.
0

Proof. In order to apply a standard verification result, it suffices to check that £* is bounded or
equivalently that the ratio £= is bounded. Without loss of generality, we make the proof for ¢ = 0.
We first assume that G < 0 for which g is increasing. We have for ¢ > 0,

0<g(0,z+¢)—g(0,2) <E {e_G(HEJ”BTAT*(Hﬁ)} - E [e*G(”BTAwa)}

The strong Markov property implies that Bt = Brar_, 4+t — Brar_, is a Brownian motion. There-
fore,

E G_G(x+E+BTAT7(I+E>)i| — e_G(IJ"E)E |:67GBT/\T7:E (ZS&_(T A Tim):| 5

where A
bo(t) =B [e”Frnent ],

with 7_. = inf{t > 0, B; = —¢}. Therefore,
0<g(0,z+¢) — g(0,2) < e~CE [e—GBTATﬂ} (e=C%6.(0) — 1)
We now focus on the term e~%¢.(0) — 1. We first observe
9:(0) = E [¢~“Prr-]
= BT, <T) +E [ OPrtrer o]

G321

<e¥ 1T PO(T <T,),

where P(%) is defined on Fr by %h}: exp(—GBrp — %ZT) Under P9, the process B,gG) =

Et + Gt is a Brownian motion and
T . =inf{t >0, BY — Gt = —¢}.

Using the density function of the hitting time of a drifted Brownian motion, we obtain

—+o0

G271 IS 1 2
$:(0) < e 4¢3 e 2 (EHGD" gy
(0) T  V2mt3
+o00 5

3

— e
T V2td

[2 [(F _.2
ey e G52 / e % du change of variables u = £
T™Jo Vi
2
1+ <\/+G> e+ o(e).
7T
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We then deduce
2
0.2 (0,2 +2) = 9(0,2) < g(a)y] —e + 0le),

which yields the result by letting ¢ tend to zero.

We now assume G > 0 for which g is a decreasing function. In the case, the proof follows from
Jensen’s inequality applied to the convex function e~“* which implies that the process e~ is a
sub-martingale. Applying the optional sampling theorem for e=“5¢ for the bounded stopping times
TANT_, <TANT_,_., we get

0> g(0,z+¢) —g(0,x) > g(x)(e” % — 1),

which implies the result by letting € tend to zero. O
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