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Well-posedness in L ∞ of the nonlocal Gray-Scott model is studied for integrable kernels, along with the stability of the semi-trivial spatially homogeneous steady state. In addition, it is shown that the solutions to the nonlocal Gray-Scott system converge to those to the classical Gray-Scott system in the diffusive limit.

Introduction

Let Ω be a bounded domain of R n , n ≥ 1, and (d 1 , d 2 , f, κ) ∈ (0, ∞) 4 . The Gray-Scott model

∂ t u = d 1 ∆u -uv 2 + f (1 -u) in (0, ∞) × Ω , ∂ t v = d 2 ∆v + uv 2 -(f + κ)v in (0, ∞) × Ω , (1.1) 
is a mathematical model for the autocatalytic chemical reaction U + 2V → 3V , where u and v denote the concentrations of the chemical species U and V , respectively. Despite its simple polynomial mass-action structure, it is well-known to exhibit a rich dynamics, generating a variety of patterns according to the values of the parameters (d 1 , d 2 , f, κ), including spots, stripes, and labyrinthine patterns, see [START_REF] Castelli | Rigorous computation of non-uniform patterns for the 2-dimensional Gray-Scott reaction-diffusion equation[END_REF][START_REF] Chen | The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model[END_REF][START_REF] Doelman | Pattern formation in the one-dimensional Gray-Scott model[END_REF][START_REF] Gandhi | Spatially localized structures in the Gray-Scott model[END_REF][START_REF] Hale | Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis[END_REF][START_REF] Kolokolnikov | Zigzag and breakup instabilities of stripes and rings in the two-dimensional Gray-Scott model[END_REF][START_REF] Morgan | Axisymmetric ring solutions of the 2d Gray-Scott model and their destabilization into spots[END_REF][START_REF] Pearson | Complex patterns in a simple system[END_REF][START_REF] Peng | Some nonexistence results for nonconstant stationary solutions to the Gray-Scott model in a bounded domain[END_REF] for instance.

A more recent trend is the study of the influence of the diffusion on pattern formation, replacing the standard Laplace operator (d 1 ∆, d 2 ∆) by nonlocal operators such as fractional Laplacians [START_REF] Wang | Fractional Gray-Scott model: well-posedness, discretization, and simulations[END_REF] 

∂ t u = d 1 (-∆) α/2 u -uv 2 + f (1 -u) in (0, ∞) × Ω , ∂ t v = d 2 (-∆) α/2 v + uv 2 -(f + κ)v in (0, ∞) × Ω , (1.2) 
with α ∈ (1, 2) or convolution operators [START_REF] Cappanera | Analysis and simulations of a nonlocal Gray-Scott model[END_REF] ∂

t u = d 1 Γ γ 1 u -uv 2 + f (1 -u) in (0, ∞) × Ω , ∂ t v = d 2 Γ γ 2 v + uv 2 -(f + κ)v in (0, ∞) × Ω , (1.3) 
where

Γ γ ℓ z(x) := Ω γ ℓ (x, y) z(y) -z(x) dy , x ∈ Ω , (1.4) 
and γ ℓ : Ω × Ω → [0, ∞) is a measurable function for ℓ ∈ {1, 2}. In particular, numerical simulations performed in [START_REF] Wang | Fractional Gray-Scott model: well-posedness, discretization, and simulations[END_REF] reveal that the patterns are more localized when α < 2, while topological changes are reported in [START_REF] Cappanera | Analysis and simulations of a nonlocal Gray-Scott model[END_REF][START_REF] Wang | Fractional Gray-Scott model: well-posedness, discretization, and simulations[END_REF] when the nonlocal operators in (1.2) or in (1.3) deviate sufficiently from standard diffusion. Nevertheless, the observed patterns look similar when the nonlocal operators are close to standard diffusion and one aim of this paper is to show that solutions to (1.3) converge to that to (1.1) for a suitable choice of the nonlocal operators (Γ γ 1 , Γ γ 2 ), see Theorem 1.4 below. As a preliminary step, we first establish the global well-posedness of the initial value problem associated with (1.3); that is,

∂ t u = d 1 Γ γ 1 u -uv 2 + f (1 -u) in (0, ∞) × Ω , (1.5a) 
∂ t v = d 2 Γ γ 2 v + uv 2 -(f + κ)v in (0, ∞) × Ω , (1.5b) (u, v)(0) = u 0 , v 0 ) in Ω , (1.5c) 
the nonlocal operators being defined in (1.4). Throughout this paper, we set X := L ∞ (Ω) , X + := {z ∈ X : z ≥ 0 a.e. in Ω} , and we denote the norm on L ∞ (Ω) by

• ∞ = • L∞(Ω) .
Theorem 1.1 (Well-posedness). Assume that γ ℓ : Ω×Ω → [0, ∞) is a measurable function satisfying

Ω γ ℓ (y, x) dy = Ω γ ℓ (x, y) dy ≤ γ ∞ < ∞ , x ∈ Ω , (1.6) 
for ℓ ∈ {1, 2} and some γ ∞ ≥ 1 and consider (u 0 , v 0 ) ∈ X + ×X + . Then there is a unique non-negative global solution (u, v) ∈ C 1 [0, ∞), X + × X + to (1.5) which is bounded; that is,

sup t≥0 u(t) ∞ + v(t) ∞ < ∞ .
In fact, the mapping (u 0 , v 0 ) → (u, v) defines a global semiflow on X + × X + . Assume further that γ ℓ ∈ C( Ω × Ω) for ℓ ∈ {1, 2}. Then the same result is true when replacing X by C( Ω).

A similar result is available for the original Gray-Scott model (1.1) supplemented with homogeneous Neumann or Dirichlet boundary conditions and follows from the general theory developed in [START_REF] Hollis | Global existence and boundedness in reaction-diffusion systems[END_REF] for reaction-diffusion systems with mass balance and polynomial nonlinearities.

Theorem 1.1 extends [7, Theorem 1] which is restricted to the one-dimensional case n = 1 and only provides local well-posedness in H 1 (Ω) × H 1 (Ω). Instead of using a Galerkin approximation as in [START_REF] Cappanera | Analysis and simulations of a nonlocal Gray-Scott model[END_REF], we exploit here the semilinear structure of (1.5), along with the boundedness of the nonlocal operators in X 2 and the local Lipschitz continuity of the nonlinear reaction terms, still in X 2 , see Section 2. Notice also that the equality in condition (1.6) is obviously satisfied when γ ℓ is symmetric.

Remark 1.2. Unlike (1.1), there is no need to supplement (1.5) with boundary conditions but the choice of the nonlocal operator (1.4) actually includes a nonlocal version of homogeneous Neumann boundary conditions. While we refer for instance to [START_REF] Andreu-Vaillo | Nonlocal diffusion problems[END_REF] for a more complete discussion on nonlocal operators and boundary conditions, we point out here that Theorem 1.1 is also valid for nonlocal operators corresponding to homogeneous Dirichlet boundary conditions, as shown in Section 5.

We next turn to the large time behaviour of solutions to (1.5) and first recall that the spatially homogeneous steady states of (1.3) are well identified:

(s1) if f < 4(f + κ) 2 , then (1, 0) is the unique spatially homogeneous steady state of (1.3) and it is linearly stable; (s2) if f = 4(f + κ) 2 , then (1.3) admits two spatially homogeneous steady states [START_REF] Abels | Strong nonlocal-to-local convergence of the Cahn-Hilliard equation and its operator[END_REF]0) and

(1/2, 2(f + κ)); (s3) if f > 4(f + κ) 2 , then (1.
3) admits three spatially homogeneous steady states (1, 0), (u + , v + ), and (u -, v -) given by

u ± := 2(f + κ) 2 f ± f 2 -4f (f + κ) 2 , v ± := f ± f 2 -4f (f + κ) 2 2(f + κ) . (1.7)
We refer to [START_REF] Mcgough | Pattern formation in the Gray-Scott model, Nonlinear Anal[END_REF] for additional information on these steady states in the absence of diffusion and to [START_REF] Castelli | Rigorous computation of non-uniform patterns for the 2-dimensional Gray-Scott reaction-diffusion equation[END_REF][START_REF] Chen | The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model[END_REF][START_REF] Doelman | Pattern formation in the one-dimensional Gray-Scott model[END_REF][START_REF] Hale | Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis[END_REF][START_REF] Kolokolnikov | Zigzag and breakup instabilities of stripes and rings in the two-dimensional Gray-Scott model[END_REF][START_REF] Morgan | Axisymmetric ring solutions of the 2d Gray-Scott model and their destabilization into spots[END_REF][START_REF] Peng | Some nonexistence results for nonconstant stationary solutions to the Gray-Scott model in a bounded domain[END_REF] for the existence of spatially inhomogeneous solutions to (1.1) in R triggered by the availability of multiple spatially homogeneous steady states. Extending such results to (1.3) does not seem to be obvious and we thus restrict ourselves to the behaviour of solutions to (1.5) in a neighbourhood of the semi-trivial steady state (1, 0). 

Theorem 1.3 (Stabilization). Assume that γ ℓ : Ω × Ω → [0, ∞)
u 0 ∞ ≤ 1 + δ and v 0 ∞ < f + κ 1 + δ (1.8)
for some δ ≥ 0, then lim

t→∞ u(t) -1 ∞ + v(t) ∞ = 0 with u(t) ∞ ≤ 1 + δ , v(t) ∞ ≤ v 0 ∞ , t ≥ 0 .
While the first assertion in Theorem 1.3 is a consequence of the principle of linearized stability, the second one stems from the dissipativity properties of the operator

d 2 Γ γ 2 -(f + κ) in X, see Section 3.
The last contribution of this paper deals, as mentioned previously, with the connection between the nonlocal Gray-Scott model (1.3) and the (local) Gray-Scott model (1.1). To study this question, we assume that the kernels (γ 1 , γ 2 ) are given by

γ 1 (x, y) = γ 2 (x, y) = j n+2 ϕ(j(x -y)) , (x, y) ∈ Ω 2 , j ≥ 1 , (1.9) 
where ϕ ∈ C ∞ 0 (R n ) is a non-negative radially symmetric function with compact support and a nonincreasing radial profile; that is, φ(r) := ϕ(x) for x ∈ R n with |x| = r and r ≥ 0 is a non-increasing function on [0, ∞). Such a connection is already alluded to in [START_REF] Cappanera | Analysis and simulations of a nonlocal Gray-Scott model[END_REF]Section 4.5] and the purpose of the next result is to provide a mathematical proof of this connection.

Theorem 1.4 (Diffusive limit). Let n ≥ 2 and assume that Ω is a bounded domain with C 2+α -smooth boundary ∂Ω. Consider a non-negative radially symmetric function ϕ ∈ C ∞ 0 (R n ) with compact support and a non-increasing radial profile. For each integer j ≥ 1, we define χ j : Ω × Ω → [0, ∞) by

χ j (x, y) := j n+2 ϕ(j(x -y)) , (x, y) ∈ Ω 2 ,
and, for z ∈ X,

Γ χ j z(x) := Ω χ j (x, y)(z(y) -z(x)) dy , x ∈ Ω . Given (u 0 , v 0 ) ∈ X + × X + , let (u j , v j ) ∈ C 1 ([0, ∞), X + × X +
) be the solution to

∂ t u j = d 1 Γ χ j u j -u j v 2 j + f (1 -u j ) in (0, ∞) × Ω , (1.10a) 
∂ t v j = d 2 Γ χ j v j + u j v 2 j -(f + κ)v j in (0, ∞) × Ω , (1.10b) 
(u j , v j )(0) = u 0 , v 0 ) in Ω . (1.10c)
There are a subsequence (j k ) k≥1 and non-negative functions

u ∈ L ∞ ((0, ∞) × Ω) ∩ L 2,loc ([0, ∞), H 1 (Ω)) , v ∈ L ∞ ((0, ∞), L 2 (Ω)) ∩ L 2,loc ([0, ∞), H 1 (Ω)) , (1.11 
)

such that lim k→∞ T 0 Ω |(u j k -u)(t, x)| 2 + |(v j k -v)(t, x)| 2 dxdt = 0 (1.12)
for all T > 0. Moreover, (u, v) is a weak solution to (1.1) supplemented with homogeneous Neumann boundary conditions in the following sense:

Ω u(t, x) -u 0 (x) ϑ(x) dx + m 2 d 1 2n t 0 Ω ∇u(s, x) • ∇ϑ(x) dxds = t 0 Ω f (1 -u) -uv 2 (s, x) dxds (1.13)
and

Ω v(t, x) -v 0 (x) ϑ(x) dx + m 2 d 2 2n t 0 Ω ∇v(s, x) • ∇ϑ(x) dxds = t 0 Ω uv 2 -(f + κ)v (s, x) dxds (1.14)
for all ϑ ∈ W 1 n+1 (Ω) and t > 0, where

m 2 := R n |x| 2 ϕ(x) dx > 0 . (1.

15)

.

In recent years, several works have been devoted to the proof of the convergence of nonlocal equations or systems to their diffusive limits and, among others, we refer to [START_REF] Andreu-Vaillo | Nonlocal diffusion problems[END_REF] for p-Laplacian equation, to [START_REF] Abels | Strong nonlocal-to-local convergence of the Cahn-Hilliard equation and its operator[END_REF][START_REF] Carrillo | Degenerate Cahn-Hilliard systems: From nonlocal to local[END_REF][START_REF] Davoli | Degenerate nonlocal Cahn-Hilliard equations: well-posedness, regularity and local asymptotics[END_REF][START_REF] Davoli | Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms[END_REF][START_REF] Elbar | Degenerate Cahn-Hilliard equation: from nonlocal to local[END_REF][START_REF] Melchionna | From nonlocal to local Cahn-Hilliard equation[END_REF] for degenerate and non-degenerate Cahn-Hilliard equations and systems, to [START_REF] Abels | Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities[END_REF] for the Navier-Stokes/Cahn-Hilliard system, and to [START_REF] Moussa | From nonlocal to classical Shigesada-Kawasaki-Teramoto systems: triangular case with bounded coefficients[END_REF] for cross-diffusion systems with triangular structure. As in [START_REF] Carrillo | Degenerate Cahn-Hilliard systems: From nonlocal to local[END_REF][START_REF] Elbar | Degenerate Cahn-Hilliard equation: from nonlocal to local[END_REF], the main difficulty we face here is to establish the strong compactness of the sequence (u j , v j ) j≥1 as the nonlocal operators do not provide estimates in H 1 (Ω), in contrast to the Laplace operator. Still, the specific choice of the scaling of the nonlocal operators Γ χ j allows us to recover compactness, which is obtained by adapting the compactness result derived in [START_REF] Bourgain | Another look at Sobolev spaces[END_REF]Theorem 4] and further developed in [START_REF] Andreu-Vaillo | Nonlocal diffusion problems[END_REF]Theorem 6.11] and [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF]Theorem 1.2] to a time-dependent setting, thereby obtaining a nonlocal version of the compactness results in [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]. Similar results are already obtained in [START_REF] Carrillo | Degenerate Cahn-Hilliard systems: From nonlocal to local[END_REF][START_REF] Elbar | Degenerate Cahn-Hilliard equation: from nonlocal to local[END_REF] when Ω is the n-dimensional torus and the version we provide in Proposition A.1 below is adapted to a bounded domain and nonlocal operators of the form (1.4). As a final comment, let us point out that Theorem 1.4 is likely to be true in one space dimension n = 1 as well. However, the analysis performed in [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF], on which the compactness argument used in the proof of Theorem 1.4 relies, is slightly different in that case and we have chosen not to include the one-dimensional setting for simplicity.

Well-posedness: Proof of Theorem 1.1

We begin this section with the properties of the linear term in (1.5). Specifically, given a nonnegative measurable function γ : Ω × Ω → [0, ∞) and a measurable function z : Ω → R, we define

Γ γ z(x) := Ω γ(x, y) z(y) -z(x) dy , x ∈ Ω , (2.1) 
whenever it makes sense.

Lemma 2.1. Assume that there is γ ∞ > 0 such that Ω γ(y, x) dy = Ω γ(x, y) dy ≤ γ ∞ < ∞ , x ∈ Ω . (2.2)
Then Γ γ ∈ L(X) with Γ γ L(X) ≤ 2γ ∞ , and Γ γ generates a uniformly continuous semigroup e tΓγ t≥0 on X satisfying e tΓγ L(X) ≤ 1 , t ≥ 0 . (2.3)
Moreover, for t ≥ 0, e tΓγ ≥ 0 and e tΓγ 1 = 1 .

(2.4)

If, in addition, γ ∈ C( Ω × Ω), then the above statements remain true with C( Ω) replacing X.

Proof. It readily follows from (2.2) that, for z ∈ X and x ∈ Ω,

|Γ γ z(x)| ≤ Ω γ(x, y)|z(y) -z(x)| dy ≤ 2γ ∞ z ∞ .
Hence Γ γ ∈ L(X) with Γ γ L(X) ≤ 2γ ∞ and Γ γ generates a uniformly continuous semigroup e tΓγ t≥0 on X. In order to prove that e tΓγ t≥0 is a semigroup of contractions on X, we pick z 0 ∈ X and set z(t) := e tΓγ z 0 for t ≥ 0. We then note that, for M ∈ R and t > 0,

d dt Ω z(t, x) -M + dx = Ω (Γ γ z(t))(x) sign + z(t, x) -M dx = Ω Ω γ(x, y) z(t, y) -z(t, x) sign + z(t, x) -M dydx = Ω Ω γ(x, y) z(t, y) -M sign + z(t, x) -M dydx - Ω Ω γ(x, y) z(t, x) -M + dydx ≤ Ω z(t, y) -M + Ω γ(x, y) dxdy - Ω z(t, x) -M + Ω γ(x, y) dydx = Ω z(t, x) -M + Ω γ(y, x) dydx - Ω z(t, x) -M + Ω γ(x, y) dydx ≤ 0 ,
where we used (2.2) to obtain the last inequality. Consequently,

d dt Ω z(t, x) -M + dx ≤ 0 , t > 0 ,
and thus

e tΓγ z 0 (x) ≤ M + (z 0 (x) -M) + , (t, x) ∈ [0, ∞) × Ω . (2.5)
Applying (2.5) with M = z 0 ∞ to z 0 and (-z 0 ), we conclude that e tΓγ z 0 ∞ ≤ z 0 ∞ for t ≥ 0. Consider now z 0 ∈ X + and apply (2.5) with M = 0 to (-z 0 ) to obtain -e tΓγ z 0 (x) ≤ 0 for (t, x) ∈ [0, ∞) × Ω, which shows the positivity of the semigroup claimed in (2.4). Finally, the second property stated in (2.4) is an obvious consequence of the definition (2.1) of Γ γ .

We now show the well-posedness of (1.5) in

X + × X + . Proposition 2.2. Assume that γ ℓ : Ω × Ω → [0, ∞) is a measurable function satisfying (1.6) for ℓ ∈ {1, 2}. For every (u 0 , v 0 ) ∈ X + × X + there is a unique non-negative global solution (u, v) ∈ C 1 [0, ∞), X + × X + to (1.5). In fact, the mapping (u 0 , v 0 ) → (u, v) defines a global semiflow on X + × X + . If γ ℓ ∈ C Ω × Ω for ℓ ∈ {1, 2}, then the same result is true when replacing X by C Ω . Proof. We set z = (u, v), Γ ℓ := Γ γ ℓ for ℓ ∈ {1, 2}, A := d 1 Γ 1 0 0 d 2 Γ 2 ∈ L(X 2 ) and F (z) := F 1 (z) F 2 (z) := -uv 2 + f (1 -u) uv 2 -(f + κ)v . Given z 0 = (u 0 , v 0 ) ∈ X 2 , the initial value problem (1.5) is equivalent to dz dt = Az + F (z) , t ≥ 0 , z(0) = z 0 . (2.6) Since A ∈ L(X 2 ) and F ∈ C 1- b (X 2 , X 2 ), the initial value problem (2.6) has a unique solution z = z(•; z 0 ) = (u, v) ∈ C 1 ([0, T m ), X 2 ) defined on a maximal time interval [0, T m ) with T m ∈ (0, ∞] and (t, z 0 ) → z(t; z 0 ) defines a semiflow on X 2 . Moreover, if T m < ∞, then lim t→Tm z(t) X 2 = ∞ . (2.7) 
We next observe that, for every R > 0, there is ξ(R)

:= f + max{κ, R 2 } > 0 such that F (z) + ξ(R)z ≥ 0 for z ≥ 0 with z X 2 ≤ R . (2.8)
By (2.6), we have the representation formula

z(t) = e t(A-ξ(R)) z 0 + t 0 e (t-s)(A-ξ(R)) F (z(s)) + ξ(R)z(s) ds ,
and hence deduce from (2.4) and (2.8) that

z(t) = (u(t), v(t)) ∈ X + × X + for t ∈ [0, T m ) whenever z 0 = (u 0 , v 0 ) ∈ X + × X + .
(2.9)

In order to prove global existence for (u 0 , v 0 ) ∈ X + × X + , we note that w := u -1 satisfies

∂ t w = d 1 Γ 1 w -(1 + w)v 2 -f w , (t, x) ∈ [0, T m ) × Ω , w(0) = u 0 -1 , x ∈ Ω . (2.10)
Thus, for t ∈ [0, T m ), it follows from (2.9) that

w(t) = e t(d 1 Γ 1 -f ) w(0) - t 0 e (t-s)(d 1 Γ 1 -f ) (1 + w(s))v(s) 2 ds ≤ e t(d 1 Γ 1 -f ) w(0) . Since w(0) ≤ ( u 0 ∞ -1) + we infer from (2.5) that w(t) ≤ e t(d 1 Γ 1 -f ) w(0) ≤ e -f t u 0 ∞ -1 + , t ∈ [0, T m ) . Therefore, 0 ≤ u(t, x) ≤ 1 + e -f t u 0 ∞ -1 + , (t, x) ∈ [0, T m ) × Ω , (2.11) 
and in particular,

u(t) ∞ ≤ u 0 ∞ + 1 , t ∈ [0, T m ) . (2.12) Next, h := u + v solves ∂ t h = d 2 Γ 2 h + (d 1 Γ 1 -d 2 Γ 2 )u -f h + f -κv in (0, T m ) × Ω , h(0) = u 0 + v 0 in Ω , hence h(t) = e t(d 2 Γ 2 -f ) h(0) + t 0 e (t-s)(d 2 Γ 2 -f ) (d 1 Γ 1 -d 2 Γ 2 )u(s) + f -κv(s) ds (2.13)
for t ∈ [0, T m ). According to (1.6), (2.12), and Lemma 2.1, we have

(d 1 Γ 1 -d 2 Γ 2 )u(s) ∞ ≤ |d 1 -d 2 | Γ 1 u(s) ∞ + d 2 (Γ 1 -Γ 2 )u(s) ∞ ≤ 2γ ∞ |d 1 -d 2 | u(s) ∞ + d 2 ess sup x∈Ω Ω (γ 1 -γ 2 )(x, y)(u(s, y) -u(s, x)) dy ≤ 2γ ∞ |d 1 -d 2 | u(s) ∞ + 2md 2 u(s) ∞ ≤ 2 |d 1 -d 2 |γ ∞ + md 2 (1 + u 0 ∞ ) , where m := ess sup x∈Ω Ω |(γ 1 -γ 2 )(x, y)| dy ≤ 2γ ∞ .
Combining (2.13), the above estimate, the non-negativity of u, and Lemma 2.1 gives, for t ∈ [0, T m ),

0 ≤ h(t) ≤ e -f t u 0 + v 0 ∞ + t 0 e -f (t-s) 2 |d 1 -d 2 |γ ∞ + md 2 (1 + u 0 ∞ ) + f ds ≤ e -tf u 0 + v 0 ∞ + 1 -e -tf f 2 |d 1 -d 2 | γ ∞ + md 2 (1 + u 0 ∞ ) + f . (2.14)
Owing to (2.12) and (2.14), we conclude T m = ∞ according to (2.7).

The proof of Proposition 2.2 actually provides the boundedness of solutions to (1.5).

Corollary 2.3. Assume that γ ℓ : Ω × Ω → [0, ∞) is a measurable function satisfying (1.6) for ℓ ∈ {1, 2} and consider (u 0 , v 0 ) ∈ X + × X + . The corresponding solution (u, v) to (1.5) satisfies 0 ≤ u(t, x) ≤ 1 + e -f t u 0 ∞ -1 + (2.15) and 0 ≤ (u + v)(t, x) ≤ e -tf u 0 + v 0 ∞ + 1 -e -tf f 2 |d 1 -d 2 | γ ∞ + md 2 (1 + u 0 ∞ ) + f (2.16) for (t, x) ∈ [0, ∞) × Ω, where m = ess sup x∈Ω Ω |(γ 1 -γ 2 )(x, y)| dy ≤ 2γ ∞ .
In particular, lim sup Let us begin with the local asymptotic stability of (1, 0).

t→∞ u(t) ∞ ≤ 1 and, if u 0 ∞ ≤ 1, then u(t) ∞ ≤ 1 for t ≥ 0. Proof.
Proposition 3.1. Assume that γ ℓ : Ω × Ω → [0, ∞) is a measurable function satisfying (1.6) for ℓ ∈ {1, 2}. Then the semi-trivial steady state (1, 0) is locally asymptotically stable in X 2 . Proof. Set w = u -1. Then (1.5) is equivalent to ∂ t w = d 1 Γ γ 1 w -(1 + w)v 2 -f w , w(0) = u 0 -1 , (3.1a) 
∂ t v = d 2 Γ γ 2 v + (1 + w)v 2 -(f + κ)v , v(0) = v 0 , (3.1b) 
so that, with ζ = (w, v),

ζ(t) = e tA 0 ζ 0 + t 0 e (t-s)A 0 R(ζ(s)) ds , t ≥ 0 ,
where We next finish the proof of Theorem 1.3 by providing a more quantitative stability result for the semi-trivial steady state (1, 0) and actually identify an invariant set for the flow associated with (1.5) in X + × X + .

A 0 := d 1 Γ γ 1 -f 0 0 d 2 Γ γ 2 -(f + κ) ∈ L(X 2 ) , e tA 0 L(X 2 ) ≤ e -f t , t ≥ 0 ,
Proof of Theorem 1.3. We have already shown in Proposition 3.1 the local stability of the semi-trivial steady state (1, 0). We next refine this local stability result when the initial conditions satisfy (1.8).

To this end, we first recall from Corollary 2.3 that u(t) ∞ ≤ 1 + δ for t ≥ 0. Owing to (1.8), we may choose ε > 0 such that

v 0 ∞ < f + κ -ε 1 + δ and the time continuity of v implies that t 0 := inf t ≥ 0 : v(t) ∞ ≥ f + κ -ε 1 + δ > 0 .
Then

F 2 (u, v)(s) = u(s)v(s) 2 -(f + κ)v(s) ≤ (u(s)v(s) -f -κ)v(s) ≤ -εv(s) , s ∈ [0, t 0 ) , (3.2) 
so that, thanks to (1.5b) and Lemma 2.1,

v(t) = e td 2 Γγ 2 v 0 + t 0 e (t-s)d 2 Γγ 2 F 2 (u(s), v(s)) ds ≤ e td 2 Γγ 2 v 0 , t ∈ [0, t 0 ) .
We now infer from Lemma 2.1 and the above inequality that

v(t) ∞ ≤ v 0 ∞ < f + κ -ε 1 + δ , t ∈ [0, t 0 ) ,
and therefore t 0 = ∞; that is, v(t) ∞ ≤ v 0 ∞ < f + κ -ε 1 + δ , t ≥ 0 .
Using again (1.5b) and (3.2), we deduce

∂ t v = d 2 Γ γ 2 v + uv 2 -(f + κ)v ≤ d 2 Γ γ 2 v -εv , t ≥ 0 , and Lemma 2.1 ensures that v(t) ∞ ≤ e -εt v 0 ∞ , t ≥ 0 . (3.3) In particular, lim t→∞ v(t) ∞ = 0 .
Furthermore, it follows from (2.15) and (3.3) that, for every η > 0, there is

t η > 0 such that 0 ≤ u(s, x))v(s, x) 2 ≤ η , (s, x) ∈ (t η , ∞) × Ω .
Consequently, invoking (1.5a) and Lemma 2.1, 

u(t + t η ) -1 = e t(d 1 Γγ 1 -f ) u(t η ) -1 - t+tη tη e (t+tη -s)(d 1 Γγ 1 -f ) u(s)v(s) 2 ds ≥ -e t(d 1 Γγ 1 -f ) u(t η ) -1 ∞ - t+tη tη e (t+tη -s)(d 1 Γγ 1 -f ) η ∞ ds ≥ -e -f t u(t η ) -1 ∞ - 1 -e -f
(u 0 , v 0 ) ∈ X + × X + such that u 0 ∞ ≤ 1 + δ and v 0 ∞ ≤ f + κ 1 + δ for some δ ≥ 0. Then the solution (u, v) to (1.5) satisfies u(t) ∞ ≤ 1 + δ , v(t) ∞ ≤ v 0 ∞ , t ≥ 0 .
Indeed, this property follows from applying Theorem 1.3 to the initial value (u 0 , θv 0 ) with θ ∈ (0, 1) and then using the continuous dependence of the solution on the initial value to let θ → 1.

Diffusive limit: Proof of Theorem 1.4

This section is devoted to a mathematical proof of the connection between the Gray-Scott model (1.1) and its nonlocal version (1.5) with the suitable choice of nonlocal operators described in Theorem 1.4. We assume that n ≥ 2 and consider a non-negative radially symmetric function ϕ ∈ C ∞ 0 (R n ) with compact support in B 1 (0) and a non-increasing radial profile. For each integer j ≥ 1, we define

χ j : Ω × Ω → [0, ∞) by χ j (x, y) := j n+2 ϕ(j(x -y)) , (x, y) ∈ Ω × Ω , (4.1) 
and, for z

∈ X = L ∞ (Ω), Γ χ j z(x) := Ω χ j (x, y) z(y) -z(x) dy , x ∈ Ω . (4.2)
We also set

Y j [z] := Ω×Ω χ j (x, y)[z(x) -z(y)] 2 d(x, y) , z ∈ L 2 (Ω) . (4.3) 
We fix (u 0 , v 0 ) ∈ X + × X + and denote the corresponding solution to (1.10) by

(u j , v j ) ∈ C 1 ([0, ∞), X + × X + ) .
The first step of the proof is the derivation of several estimates which do not depend on j ≥ 1. Throughout this section, C and C i , i ≥ 0, denote positive constants which only depend on n, Ω, d 1 , d 2 , ϕ, f , κ, and (u 0 , v 0 ). Dependence upon additional parameters will be indicated explicitly.

4.1. Estimates. Recall that, for j ≥ 1,

0 ≤ u j (t, x) ≤ 1 + e -f t u 0 ∞ -1 + ≤ C 0 := 1 + u 0 ∞ , t ≥ 0 , (4.4) 
by Corollary 2.3. We next proceed as in [28, Lemma 2] to derive L 2 -estimates on (u j , v j ).

Lemma 4.1. For t > 0 and j ≥ 1,

u j (t) 2 2 + v j (t) 2 2 ≤ C 1 (4.5a) and t 0 Y j [u j (s)] + Y j [v j (s)] + (u j v j )(s) 2 2 ds ≤ C 1 (1 + t) . (4.5b)
Proof. Let t ≥ 0 and j ≥ 1. We first infer from (1.10a), (4.2), and the non-negativity of u j that 1 2

d dt u j (t) 2 2 + d 1 Ω×Ω χ j (x, y)u j (t, x)[u j (t, x) -u j (t, y)] d(x, y) + (u j v j )(t) 2 2 + f u j (t) 2 2 = f u j (t) 1 . Since Ω×Ω χ j (x, y)u j (t, x)[u j (t, x) -u j (t, y)] d(x, y) = 1 2 Ω×Ω χ j (x, y)u j (t, x)[u j (t, x) -u j (t, y)] d(x, y) + 1 2 Ω×Ω χ j (y, x)u j (t, y)[u j (t, y) -u j (t, x)] d(x, y) = Y j [u j (t)]
2 by the symmetry of χ j and

f u j (t) 1 ≤ f 2 u j (t) 2 2 + f 2 |Ω| by Young's inequality, we conclude that d dt u j (t) 2 2 + d 1 Y j [u j (t)] + 2 (u j v j )(t) 2 2 + f u j (t) 2 2 ≤ f |Ω| . (4.6)
We next recall that h j := u j + v j solves

∂ t h j = d 2 Γ χ j h j + (d 1 -d 2 )Γ χ j u j + f (1 -h j ) -κv j in (0, ∞) × Ω . (4.7)
Then, thanks to the non-negativity of κv j ,

1 2 d dt h j (t) 2 2 + d 2 Ω×Ω χ j (x, y)h j (t, x)[h j (t, x) -h j (t, y)] d(x, y) + f h j (t) 2 2 ≤ (d 1 -d 2 ) Ω×Ω χ j (x, y)h j (t, x)[u j (t, y) -u j (t, x)] d(x, y) + f h j (t) 1 .
We again use the symmetry of χ j , along with Young's inequality, to deduce that

d 2 Ω×Ω χ j (x, y)h j (t, x)[h j (t, x) -h j (t, y)] d(x, y) = d 2 2 Y j [h j (t)]
and

(d 1 -d 2 ) Ω×Ω χ j (x, y)h j (t, x)[u j (t, y) -u j (t, x)] d(x, y) = d 2 -d 1 2 Ω×Ω χ j (x, y)[h j (t, x) -h j (t, y)][u j (t, x) -u j (t, y)] d(x, y) ≤ d 2 4 Y j [h j (t)] + (d 1 -d 2 ) 2 4d 2 Y j [u j (t)] .
Also,

f h j (t) 1 ≤ f 2 h j (t) 2 2 + f 2 |Ω| .
Gathering the above estimates leads us to

d dt h j (t) 2 2 + d 2 2 Y j [h j (t)] + f h j (t) 2 2 ≤ (d 1 -d 2 ) 2 2d 2 Y j [u j (t)] + f |Ω| . (4.8) Setting C 2 := (d 1 d 2 )/[1 + (d 1 -d 2 )
2 ], we infer from (4.6) and (4.8) that

d dt u j (t) 2 2 + C 2 h j (t) 2 2 + d 1 - C 2 (d 1 -d 2 ) 2 2d 2 Y j [u j (t)] + d 2 C 2 2 Y j [h j (t)] + 2 (u j v j )(t) 2 2 + f u j (t) 2 2 + C 2 h j (t) 2 2 ≤ f (1 + C 2 )|Ω| . Hence, d dt u j (t) 2 2 + C 2 h j (t) 2 2 + f u j (t) 2 2 + C 2 h j (t) 2 2 + d 1 2 Y j [u j (t)] + d 2 C 2 2 Y j [h j (t)] + 2 (u j v j )(t) 2 2 ≤ f (1 + C 2 )|Ω| .
(4.9)

A first consequence of (4.9) is that

u j (t) 2 2 + C 2 h j (t) 2 2 ≤ e -f t u 0 2 2 + C 2 u 0 + v 0 2 2 + (1 + C 2 )|Ω| 1 -e -f t
, from which (4.5a) readily follows, since v j = h j -u j . We next integrate (4.9) with respect to time to obtain (4.5b), using again the relation v j = h j -u j , and complete the proof.

We now turn to estimates on ∂ t u j and ∂ t v j . Lemma 4.2. For t > 0 and j ≥ 1,

t 0 ∂ t u j (s) 2 (W 1 n+1 ) ′ + ∂ t v j (s) 2 (W 1 n+1 ) ′ ds ≤ C 3 (1 + t) .
(4.10)

Proof. Since W 1 n+1 (Ω) is continuously embedded in L ∞ (Ω), there is C 4 > 0 such that ϑ ∞ ≤ C 4 ϑ W 1 n+1 , ϑ ∈ W 1 n+1 (Ω) . (4.11)
Let ϑ ∈ W 1 n+1 (Ω), t > 0, and j ≥ 1. We infer from (1.10a), (4.4), (4.5a), (4.11), and the symmetry of χ j that

Ω ϑ(x)∂ t u j (t, x) dx ≤ d 1 Ω×Ω χ j (x, y)ϑ(x)[u j (t, y)] -u j (t, x)] d(x, y) + ϑ ∞ u j (t) ∞ v j (t) 2 2 + f ϑ ∞ |Ω| (1 + u j (t) ∞ ) ≤ d 1 2 Ω×Ω χ j (x, y)[ϑ(x) -ϑ(y)][u j (t, x)] -u j (t, y)] d(x, y) + C ϑ W 1 n+1 .
Since the support of χ j is a subset of {(x, y) ∈ R 2n : |x-y| ≤ C/j}, it follows from Hölder's inequality and [5, Theorem 1] that

Ω×Ω χ j (x, y)[ϑ(x) -ϑ(y)][u j (t, x)] -u j (t, y)] d(x, y) ≤ Y j [u j (t)] 1/2 Ω×Ω χ j (x, y)[ϑ(x) -ϑ(y)] 2 d(x, y) 1/2 ≤ C j Y j [u j (t)] 1/2 Ω×Ω χ j (x, y) |x -y| 2 [ϑ(x) -ϑ(y)] 2 d(x, y) 1/2 ≤ C ϕ 1/2 L 1 (R n ) ϑ W 1 2 Y j [u j (t)] 1/2 ≤ C ϑ W 1 n+1 Y j [u j (t)] 1/2 . Consequently, Ω ϑ(x)∂ t u j (t, x) dx ≤ C ϑ W 1 n+1 1 + Y j [u j (t)] 1/2
and a duality argument ensures that

∂ t u j (t) (W 1 n+1 ) ′ ≤ C 1 + Y j [u j (t)] 1/2 .

Combining (4.5b) and the above inequality gives

t 0 ∂ t u j (s) 2 (W 1 n+1 ) ′ ds ≤ C(1 + t) . (4.12a)
We next employ a similar argument to deduce from (4.5) and (4.7) that 

t 0 ∂ t (u j + v j )(s) 2 (W 1 n+1 ) ′ ds ≤ C(1 + t) . ( 4 
) j≥1 are relatively compact in C([0, T ], W 1 n+1 (Ω) ′ ) for any T > 0.
Though allowing us to pass to the limit in the linear terms involved in (1.10a), Lemma 4.3 does not carry enough information to pass to the limit in the nonlinear terms in (1.10a). Thus, strong compactness is required to handle these terms. Despite the lack of gradient estimates here, it was observed in [5, Theorem 4] and [25, Theorem 1.2] that, given a bounded sequence (z j ) j≥1 in L 2 (Ω), estimates on (Y j (z j )) j≥1 imply the relative compactness of (z j ) j≥1 in L 2 (Ω). Time-dependent extensions of [START_REF] Bourgain | Another look at Sobolev spaces[END_REF]Theorem 4] and [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF]Theorem 1.2] are developed in [14, Appendix B] and [START_REF] Carrillo | Degenerate Cahn-Hilliard systems: From nonlocal to local[END_REF]Appendix B] when Ω = T n is the n-dimensional torus, and we prove a similar result in Proposition A.1 below. Lemma 4.4. For any T > 0, the sequences (u j ) j≥1 and (v j ) j≥1 are relatively compact in L 2 ((0, T )×Ω) and their cluster points belong to L 2 ((0, T ), H 1 (Ω)).

Proof. Recalling

m 2 = R n |x| 2 ϕ(x) dx > 0 , see (1.15), we define ̺ j (x) := j n+2 |x| 2 m 2 ϕ(jx) = j n ̺ 1 (jx) , x ∈ R n , j ≥ 1 . (4.13) 
Since ϕ ∈ C ∞ 0 (R n ) is non-negative and radially symmetric, the function ̺ 1 satisfies the assumptions of Proposition A.1. Moreover,

(u j ) j≥1 is bounded in L 2 ((0, T ) × Ω) ∩ L 2 ((0, T ), W 1 n+1 (Ω) ′
) by Lemma 4.1 and Lemma 4.2, while we infer from (4.5b) that

T 0 Ω×Ω u j (t, x) -u j (t, y) 2 |x -y| 2 ̺ j (x -y) d(x, y)dt = 1 m 2 T 0 Ω×Ω χ j (x, y) u j (t, x) -u j (t, y) 2 d(x, y)dt = 1 m 2 T 0 Y j [u j (t)] dt ≤ C 1 m 2 (1 + T ) .
Consequently, the sequence (u j ) j≥1 satisfies the assumptions of Proposition A.1 (with p = r = 2 and q = n + 1) and an application of Proposition A.1 provides the relative compactness of (u j ) j≥1 in L 2 ((0, T )×Ω), together with the L 2 ((0, T ), H 1 (Ω))-regularity of its cluster points. A similar argument allows us to handle the sequence (v j ) j≥1 and thereby complete the proof of Lemma 4.4.

Proof of Theorem 1.4. Owing to (4.4), (4.5a), Lemma 4.3 and Lemma 4.4, a diagonal process ensures the existence of a sequence (j k ) k≥1 , j k → ∞, and non-negative functions

u ∈ C([0, ∞), W 1 n+1 (Ω) ′ ) ∩ L ∞ ((0, ∞) × Ω) ∩ L 2,loc ([0, ∞), H 1 (Ω)) , v ∈ C([0, ∞), W 1 n+1 (Ω) ′ ) ∩ L ∞ ((0, ∞), L 2 (Ω)) ∩ L 2,loc ([0, ∞), H 1 (Ω)) , such that, for any t > 0, lim k→∞ sup s∈[0,t] (u j k -u)(s) (W 1 n+1 ) ′ + (v j k -v)(s) (W 1 n+1 ) ′ = 0 , (4.14) 
lim k→∞ t 0 (u j k -u)(s) 2 2 + (v j k -v)(s) 2 2 ds = 0 , (4.15) 
and lim

k→∞ [|(u j k -u)(s, x)| + |(v j k -v)(s, x)|] = 0 for a.e. (s, x) ∈ (0, t) × Ω . (4.16) 
We first use the previous convergences to identify the limit of the nonlinear terms in (1.10). For t > 0 and k ≥ 1,

t 0 Ω u j k v 2 j k -uv 2 (s, x) dxds = t 0 Ω u j k (s, x) v 2 j k -v 2 (s, x) dxds + t 0 Ω v 2 (s, x) |(u j k -u) (s, x)| dxds . (4.17) 
On the one hand, it follows from (4.4), (4.5a), (4.15), and Hölder's inequality that

t 0 Ω u j k (s, x) v 2 j k -v 2 (s, x) dxds ≤ t 0 u j k (s) ∞ (v j k + v)(s) 2 (v j k -v)(s) 2 ds ≤ C 0 t 0 (v j k + v)(s) 2 2 ds 1/2 t 0 (v j k -v)(s) 2 2 ds 1/2 ≤ 2C 0 C 1 t 0 (v j k -v)(s) 2 2 ds 1/2
, so that, by (4.15), 

lim k→∞ t 0 Ω u j k (s, x) v 2 j k -v 2 (s, x) dxds = 0 . ( 4 
∂ t U = m 2 d 1 2n ∆U -uv 2 + f (1 -u) in (0, ∞) × Ω , ∇U • n = 0 on (0, ∞) × ∂Ω , U(0) = u 0 in Ω ;
that is, u is the mild solution to

∂ t u = m 2 d 1 2n ∆u -uv 2 + f (1 -u) in (0, ∞) × Ω , ∇u • n = 0 on (0, ∞) × ∂Ω , u(0) = u 0 in Ω .
A similar argument ensures that v is the unique mild solution to

∂ t v = m 2 d 2 2n ∆v + uv 2 -(f + κ)v in (0, ∞) × Ω , ∇v • n = 0 on (0, ∞) × ∂Ω , v(0) = v 0 in Ω .
Recalling the already obtained regularity on (u, v) allows us to deduce that u and v satisfy (1.13) and (1.14), respectively, thereby completing the proof.

Extension to the Dirichlet setting

The approach used to establish the well-posedness of (1.5c) is actually quite flexible and can be easily extended to other nonlocal operators such as a nonlocal version of homogeneous Dirichlet boundary conditions, which differs from (1.4). Specifically, in this section only, given a measurable function γ : R n × R n → [0, ∞) and z ∈ L ∞ (Ω), we define the nonlocal operator Γ γ by

Γ γ z(x) := R n γ(x, y) z(y) -z(x) dy , x ∈ Ω , (5.1) 
Proof. We define gψ on R n by setting (gψ)(x) = g(x)ψ(x) for x ∈ Ω and (gψ)(x) = 0 for x ∈ R n \ Ω. Since (A.8) is obvious, we turn to (A.9) and deduce from the properties of ψ and the symmetry of ̺ j that

Λ j (gψ) = Ω×Ω (gψ)(x) -(gψ)(y) p |x -y| p ̺ j (x -y) d(x, y) + 2 Ω×(R n \Ω) (gψ)(x) p |x -y| p ̺ j (x -y) d(x, y) ≤ 2 p-1 Ω×Ω |ψ(x)| p |g(x) -g(y)| p + |g(y)| p |ψ(x) -ψ(y)| p ̺ j (x -y) |x -y| p d(x, y) + 2 Ω×(R n \Ω) |g(x)| p |ψ(x) -ψ(y)| p |x -y| p ̺ j (x -y) d(x, y) ≤ 2 p-1 ψ ∞ Λ j (g, Ω) + 2 p-1 ∇ψ ∞ Ω×Ω |g(y)| p ̺ j (x -y) d(x, y) + 2 ∇ψ ∞ Ω×(R n \Ω) |g(x)| p ̺ j (x -y) d(x, y) ≤ 2 p ψ ∞ Λ j (g, Ω) + 2 p ∇ψ ∞ Ω |g(x)| p R n ̺ j (x -y) d(x, y) ,
and we use (A.1) to complete the proof.

After this preparation, we may start to investigate the compactness issue and, as in [8, Appendix B] and [14, Appendix B], we first establish the relative compactness of the sequence (ψf j ) * Φ δ j≥1 for each δ ∈ (0, 1) and ψ ∈ C ∞ 0 (Ω).

Lemma A.4. Let (p, q, r) ∈ (1, ∞) 3 , T > 0, and a sequence (f j ) j≥1 of measurable functions on (0, T ) × Ω satisfying (A.3). For any non-negative function ψ ∈ C ∞ 0 (Ω) and δ ∈ (0, 1), the sequence (ψf j ) * Φ δ j≥1 is relatively compact in L p ((0, T ) × R n ).

Proof. Introducing U 1 := {x ∈ R n : d(x, Ω) < 1}, we note that, for t ∈ (0, T ) and x ∈ U 1 , for all 0 < t 1 < t 2 < T . On the other hand, for h ∈ (0, T ), j ≥ 1, and (t,

g j (t, x) := (ψf j (t, •)) * Φ δ (x) = R n ψ(y)f j (t, y)Φ δ (x -y) dy = Ω ψ(y)f j (t, y)Φ δ (x -y) dy = 0 , since supp Φ δ ⊂ B δ (0) ⊂ B 1 (0) by (A.4). Therefore, supp g j (t) ⊂ U 1 , t ∈ (0, T ) , j ≥ 1 . (A.
x) ∈ (0, T -h) × U 1 , |g j (t + h, x) -g j (t, x)| = R n ψ(y)[f j (t + h, y) -f j (t, y)]Φ δ (x -y) dy = t+h t ∂ t f j (s), ψΦ δ (x -•) ds ≤ t+h t ∂ t f j (s) (W 1 q ) ′ ψΦ δ (x -•) W 1 q ds .
Owing to the properties of ψ and Φ δ ,

ψΦ δ (x -•) W 1 q = ψΦ δ (x -•) W 1 q (R n ) ≤ ψ ∞ Φ δ (x -•) W 1 q (R n ) + ∇ψ ∞ Φ δ (x -•) Lq(R n ) ≤ ψ ∞ Φ δ W 1 q (R n ) + ∇ψ ∞ Φ δ Lq(R n ) ≤ 2 ψ W 1 ∞ Φ W 1 q (R n ) δ -[q(n+1)-n]/q . Therefore, |g j (t + h, x) -g j (t, x)| ≤ 2 ψ W 1 ∞ Φ W 1 q (R n ) δ -[q(n+1)-n]/q t+h t ∂ t f j (s) (W 1 q ) ′ ds ,
and we infer from (A.3c) and Hölder's inequality that

|g j (t + h, x) -g j (t, x)| ≤ 2 ψ W 1 ∞ Φ W 1 q (R n ) h (r-1)/r K 1/r 0 δ -[q(n+1)-n]/q . Integrating with respect to (t, x) ∈ (0, T -h) × U 1 , we are led to T -h 0 U 1 |g j (t + h, x) -g j (t, x)| dxdt ≤ 2T |U 1 | ψ W 1 ∞ Φ W 1 q (R n ) h (r-1)/r K 1/r 0 δ -[q(n+1)-n]/q . (A.12)
Owing to (A.11) and (A.12), we are in a position to apply [26, Theorem 1] and conclude that (g j ) j≥1 is relatively compact in L p ((0, T ) × U 1 ) and thus in L p ((0, T ) × R n ) according to (A.10).

The next step is the relative compactness of (f j ) j≥1 in L p,loc ((0, T ) × Ω).

Lemma A.5. Let (p, q, r) ∈ (1, ∞) 3 , T > 0, and a sequence (f j ) j≥1 of measurable functions on (0, T ) × Ω satisfying (A.3). For any non-negative function ψ ∈ C ∞ 0 (Ω), the sequence ψf j j≥1 is relatively compact in L p ((0, T ) × Ω). Now, let r ∈ (0, r 0 ) and j ≥ j r . It follows from (A.3b), (A.14), Lemma A.6 (with g = f j k -f ), and [5, Theorem 1] that

T 0 Ω f j k (t, x) -f (t, x) p dxdt ≤ K 2 T 0 Ωr f j k (t, x) -f (t, x) p dxdt + K 3 r p T 0 Λ j k (f j k -f )(t), Ω dt ≤ K 2 T 0 Ωr f j k (t, x) -f (t, x) p dxdt + 2 p-1 K 3 r p T 0 Λ j k f j k (t), Ω + Λ j k f (t), Ω dt ≤ K 2 T 0 Ωr f j k (t, x) -f (t, x) p dxdt + 2 p-1 K 3 r p K 0 + K 4 ̺ L 1 (R n ) T 0 f (t) W 1 p dt ,
where K 4 is a positive constant depending only on Ω and p. Recalling (A.1), we may let k → ∞ in the above inequality and use (A.13) to deduce that lim sup

k→∞ T 0 Ω f j k (t, x) -f (t, x) p dxdt ≤ 2 p-1 K 3 r p K 0 + K 4 T 0 f (t) W 1 p dt
for all r ∈ (0, r 0 ). We then take the limit r → 0 in the above inequality to complete the proof.

Appendix B. Diffusive limit in L 1 : an auxiliary result

We recall that, for j ≥ 1, the kernel χ j and the nonlocal operator Γ χ j are defined by (4.1) and (4.2), respectively.

Proposition B.1. Let Ω be a bounded domain of R n with C 2+α -smooth boundary ∂Ω, T > 0, and d > 0. We consider a sequence (S j ) j≥1 in L ∞ ((0, T ) × Ω) and a sequence (w

0 j ) j≥1 in L ∞ (Ω) such that lim j→∞ S j -S L 1 ((0,T )×Ω) + w 0 j -w 0 1 = 0 (B.1)
for some S ∈ L 1 ((0, T ) × Ω) and

w 0 ∈ L 1 (Ω). For j ≥ 1, let w j ∈ C 1 ([0, ∞), L ∞ (Ω)) be the solution to ∂ t w j = dΓ χ j w j + S j in (0, T ) × Ω , w j (0) = w 0 j in Ω , (B.2)
where χ j and Γ χ j are defined in w j (t) -W (t) 1 ≤ w 0 j -W 0 1 + F j + S j -Σ L 1 ((0,T )×Ω)

≤ w 0 j -w 0 1 + w 0 -W 0 1 + F j L 1 ((0,T )×Ω) + S j -S L 1 ((0,T )×Ω) + S -Σ L 1 ((0,T )×Ω) . (B.8)

We now estimate F j . To this end, we proceed as in [4, Section 3.2.2] and denote an extension of W to [0, T ] × R n by W ∈ C 1+α/2,2+α ([0, T ] × R n ). Then F j = F j,1 + F j,2 with F j,1 (t, x) := d R n χ j (x, y) W(t, y) -W(t, x) dy -D∆W(t, x) , F j,2 (t, x) := -d R n \Ω χ j (x, y) W(t, y) -W(t, x) dy for (t, x) ∈ [0, T ]× Ω. We first argue as in the proof of [START_REF] Andreu-Vaillo | Nonlocal diffusion problems[END_REF]Equation (3.15)] and use a Taylor expansion and the radial symmetry of ϕ to deduce that there is a positive constant B 1 (W) depending only on n, Ω, ϕ, T , and W such that F j,1 L 1 ((0,T )×Ω) ≤ B 1 (W)j -α . (B.9)

Next, if x ∈ Ω 1/j := {y ∈ Ω : dist(y, ∂Ω) < 1/j} and j is large enough, then the orthogonal projection P x of x on ∂Ω is well-defined and it follows from [4, Lemma 3.14] that there is a positive constant B 2 (W) depending only on n, Ω, ϕ, T , and W such that, for t ∈ [0, T ], 

according to Lemma 2 .Remark 3 . 2 .

 232 1 and R(ζ) = o( ζ X 2 ) as ζ → 0. The principle of linearized stability then ensures that (w, v) = (0, 0) is locally asymptotically stable in X 2 for (3.1), see [3, Theorem 15.3] for instance. If γ ℓ ∈ C( Ω × Ω) for ℓ ∈ {1, 2}, then the semi-trivial steady state (1, 0) is also locally asymptotically stable in C( Ω, R 2 ).

( 4 . 1 )

 41 and (4.2), respectively. If there is w ∞ ∈ L 1 ((0, T ) × Ω) such that lim j→∞ w j -w ∞ L 1 ((0,T )×Ω) = 0 , (B.3) then w ∞ = w, where w denotes the unique mild solution to∂ t w = D∆w + S in (0, T ) × Ω , ∇w • n = 0 on (0, T ) × ∂Ω , w(0) = w 0 in Ω , (B.4)with n denoting the outward normal unit vector field to ∂Ω andD := d 2n R n |z| 2 ϕ(z) dz . Proof. The proof is inspired by [4, Sections 3.2.2 & 3.2.4]. We consider Σ ∈ C ∞ 0 ((0, T ) × Ω), W 0 ∈ C 2+α ( Ω) and let W ∈ C 1+α/2,2+α ([0, T ] × Ω) be the classical solution to ∂ t W = D∆W + Σ in (0, T ) × Ω , ∇W • n = 0 on (0, T ) × ∂Ω , W (0) = W 0 in Ω . (B.5)On the one hand, it follows from (B.4), (B.5), and the contraction property of the heat semigroup in L 1 (Ω) that supt∈[0,T ] W (t) -w(t) 1 ≤ W 0 -w 0 1 + S -Σ L 1 ((0,T )×Ω) . (B.6)On the other hand, it follows from (B.2) and (B.5) that w j -W solves∂ t (w j -W ) = dΓ χ j (w j -W ) + F j + S j -Σ in (0, T ) × Ω , (w j -W )(0) = w 0 j -W 0 in Ω ,(B.7) with F j := dΓ χ j W -D∆W . Since Ω Γ χ j z(x)sign(z(x)) dx = Ω×Ω χ j (x, y)z(y)sign(z(x)) d(x, y) -Ω×Ω χ j (x, y)|z(x)| d(x, y) ≤ Ω×Ω χ j (x, y)|z(y)| d(x, y) -Ω×Ω χ j (y, x)|z(y)| d(x, y) ≤ 0 for all z ∈ L 1 (Ω) due to the symmetry of χ j , we infer from (B.7) that sup t∈[0,T ]

F j, 2

 2 (t, x) + d 2 R n \Ω χ j (x, y) D 2 W(t, P x)(y -P x), (x -P x) dy ≤ B 2 (W)j -α . (B.10) Now, |x -P x| ≤ 1/j, supp χ j (x, •) ⊂ K := {y ∈ R n : dist(y, Ω) ≤ 1} , |y -P x| ≤ |y -x| + |x -P x| ≤ 2/j for y ∈ supp χ j (x, •) , so that d 2 R n \Ω χ j (x, y) D 2 W(t, P x)(y -P x), (x -P x) dy ≤ d D 2 W(t) L∞(K) j 2 R n \Ω χ j (x, y) dy ≤ j n d D 2 W L∞([0,T ]×K) R n ϕ(j(x -y)) dy ≤ d D 2 W L∞([0,T ]×K) .Recalling (B.10), we have shown that there is a positive constant B 3 (W) depending only on n, Ω, ϕ, T , and W such thatF j,2 (t, x) ≤ B 3 (W) , (t, x) ∈ [0, T ] × Ω 1/j . (B.11)Finally, if x ∈ Ω \ Ω 1/j , then |x -y| ≥ 1/j for all y ∈ R n \ Ω. Thus, due to (4.1), F j,2 (t, x) = 0 , (t, x) ∈ [0, T ] × Ω \ Ω 1/j . (B.12)

  The bounds on u and u + v are established in (2.12) and (2.14), respectively, while the last statement of Corollary 2.3 readily follows from(2.15). Convergence to spatially homogeneous steady states: Proof of Theorem 1.3

	Proof of Theorem 1.1. Gathering the outcome of Proposition 2.2 and Corollary 2.3 gives Theo-
	rem 1.1.
	3.

  Convergence. Having at hand Lemma 4.1 and Lemma 4.2, we are in a position to establish compactness properties of the sequences (u j ) j≥1 and (v j ) j≥1 and begin with a simple consequence of (4.5a), (4.10), the compactness of the embedding ofL 2 (Ω) in W 1 n+1 (Ω) ′ ,and [26, Corollary 1]. Lemma 4.3. The sequences (u j ) j≥1 and (v j

	.12b)
	Lemma 4.2 now readily follows from (4.12).
	4.2.

  .18) On the other hand, since v 2 ∈ L 1 ((0, t) × Ω), we deduce from (4.4), (4.16), and Lebesgue's dominated convergence theorem that

		t			
	lim k→∞	0	Ω	v 2 (s, x) |(u j k -u) (s, x)| dxds = 0 .	(4.19)
	Gathering (4.17), (4.18), and (4.19), we conclude that
		t			
	lim k→∞	0	Ω	u j k v 2 j k -uv 2 (s, x) dxds = 0 .	(4.20)
	Now, it follows from (4.15), (4.20), and Proposition B.1 that u = U, where U is the unique mild
	solution to				

  [START_REF] Chen | The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model[END_REF] On the one hand, it follows from (A.3b) and the Riesz-Fréchet-Kolmogorov theorem, see [6, Theorem IV.25 & Corollary IV.27] for instance, that

	t 2			
	x →	g j (t, x) dt	is relatively compact in L p (U 1 )	(A.11)
	t 1	j≥1		

where z(x) = z(x) for x ∈ Ω and z(x) = 0 for x ∈ Ω c = R n \ Ω. With this definition, we consider the problem

)

(u, v)(0) = u 0 , v 0 ) in Ω , (5.2d) and report the following well-posedness result.

Theorem 5.1 (Well-posedness). Assume that γ ℓ : R n × R n → [0, ∞) is a measurable function satisfying

for ℓ ∈ {1, 2} and consider (u 0 , v 0 ) ∈ X + × X + . Then there is a unique non-negative global solution

In fact, the mapping

Then the same result is true when replacing X by C( Ω).

The proof is the same as that of Theorem 1.1, to which we refer. The only change is in the analogue of Lemma 2.1, where (2.4) is replaced by e tΓγ ≥ 0 and e tΓγ 1 ≤ 1 , t ≥ 0 .

(5.4)

The proof of (5.4) follows the lines of that of (2.5) and relies on (5.3).

Appendix A. A compactness result

Let Ω be a bounded domain of R n , n ≥ 2, and consider a non-negative radially symmetric function

For x ∈ R n and j ≥ 1, we put ̺ j (x) := j n ̺(jx) and note that

and set Λ j (•) := Λ j (•, R n ) for simplicity.

Proposition A.1. Let (p, q, r) ∈ (1, ∞) 3 , T > 0, and consider a sequence (f j ) j≥1 of measurable functions on (0, T ) × Ω satisfying

as well as

for some K 0 > 0. Then (f j ) j≥1 is relatively compact in L p ((0, T ) × Ω) and its cluster points in L p ((0, T ) × Ω) belong to L p ((0, T ), W 1 p (Ω)). As already mentioned, Proposition A.1 is similar to [8, Appendix B] and [14, Appendix B] and is in the spirit of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4]. Its proof relies on the compactness results established in [START_REF] Bourgain | Another look at Sobolev spaces[END_REF]Theorem 4] and [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF]Theorem 1.2] for sequences of time-independent functions and requires several intermediate results.

For further use, we fix a non-negative radially symmetric function

and set Φ δ (x) := δ -n Φ(x/δ) for x ∈ R n and δ ∈ (0, 1). We begin with an estimate on Φ δ * g -g for g ∈ L p (R n ) and argue as in the proof of [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF]Proposition 4.2] to derive the following result.

Lemma A.2. Let δ 0 ∈ (0, 1) and consider j ≥ 1 such that

There exists K 1 > 0 depending only on n and p such that, for any g ∈ L p (R n ) satisfying

and any δ ∈ (0, δ 0 ), there holds

In order to use Lemma A.2 with functions defined only on Ω, we next study the behaviour of the functional Λ j (•, Ω) with respect to space truncation.

(A.9)

Proof. We argue as in the proof of [25, Proposition 4.2] and consider δ 0 ∈ (0, 1). The properties of the sequence (̺ j ) j≥1 entail that there is J δ 0 ≥ 1 such that

so that ̺ j satisfies (A.5) for any j ≥ J δ 0 . Since ψf j (t) belongs to L p (R n ) for j ≥ 1 and a.e. t ∈ (0, T ), we infer from (A.3b), Lemma A.2, and Lemma A.3 that, for δ ∈ (0, δ 0 ) and j ≥ J δ 0 , [START_REF] Andreu-Vaillo | Nonlocal diffusion problems[END_REF], the above inequality implies that (ψf j ) j≥1 is arbitrarily close to relatively compact sequences in L p ((0, T ) × R n ), so that it is also relatively compact in L p ((0, T ) × R n ) and thus in L p ((0, T ) × Ω).

In view of Lemma A.5, we are left to handle the behaviour of (f j ) j≥1 near the boundary of Ω. In this direction, we recall the following result established in [25, Lemma 5.1].

Lemma A.6 ( [25, Lemma 5.1]

). There are r 0 > 0 depending on Ω and ̺ and constants (K 2 , K 3 ) ∈ (0, ∞) 2 depending on n, Ω, and p with the following property: given r ∈ (0, r 0 ), there is I r ≥ 1 such that, for every j ≥ I r and g ∈ L p (Ω),

where Ω r := {x ∈ Ω : d(x, ∂Ω) > r}.

Proof of Proposition A.1. We argue as in the proof of [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF]Theorem 1.2] with the help of Lemma A.6. We first readily infer from (A.3b), Lemma A.5, and a diagonal process that there are a subsequence (j k ) k≥1 , j k → ∞, and f ∈ L p ((0, T ) × Ω) such that

for each r ∈ (0, r 0 ). Moreover, arguing as in the proof of [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF]Equation (24)], we deduce from (A.3b) and (A.13) that f ∈ L p ((0, T ), W 

Hence, w j -w L 1 ((0,T )×Ω) ≤ 2T W 0 -w 0 1 + 2T S -Σ L 1 ((0,T )×Ω) + T w 0 j -w 0 1 + T B 1 (W)j -α + T 2 B 3 (W)|Ω 1/j | + T S j -S L 1 ((0,T )×Ω) .

We then let j → ∞ in the above inequality and deduce from (B.1), (B.3), and the definition of Ω 1/j that w ∞ -w L 1 ((0,T )×Ω) ≤ 2T W 0 -w 0 1 + 2T S -Σ L 1 ((0,T )×Ω) . Since the above inequality is valid for all (Σ, W 0 ) ∈ C ∞ 0 ((0, T ) × Ω) × C ∞ 0 (Ω), we now use the density of C ∞ 0 ((0, T ) × Ω) in L 1 ((0, T ) × Ω), along with that of C ∞ 0 (Ω) in L 1 (Ω), to complete the proof.