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A NONLOCAL GRAY-SCOTT MODEL:

WELL-POSEDNESS AND DIFFUSIVE LIMIT

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

Abstract. Well-posedness in L∞ of the nonlocal Gray-Scott model is studied for integrable kernels,
along with the stability of the semi-trivial spatially homogeneous steady state. In addition, it is shown
that the solutions to the nonlocal Gray-Scott system converge to those to the classical Gray-Scott
system in the diffusive limit.

1. Introduction

Let Ω be a bounded domain of Rn, n ≥ 1, and (d1, d2, f, κ) ∈ (0,∞)4. The Gray-Scott model

∂tu = d1∆u− uv2 + f(1− u) in (0,∞)× Ω ,

∂tv = d2∆v + uv2 − (f + κ)v in (0,∞)× Ω ,
(1.1)

is a mathematical model for the autocatalytic chemical reaction U+2V → 3V , where u and v denote
the concentrations of the chemical species U and V , respectively. Despite its simple polynomial
mass-action structure, it is well-known to exhibit a rich dynamics, generating a variety of patterns
according to the values of the parameters (d1, d2, f, κ), including spots, stripes, and labyrinthine
patterns, see [9, 10, 13, 15, 16, 18, 21, 23, 24] for instance.
A more recent trend is the study of the influence of the diffusion on pattern formation, replacing

the standard Laplace operator (d1∆, d2∆) by nonlocal operators such as fractional Laplacians [27]

∂tu = d1(−∆)α/2u− uv2 + f(1− u) in (0,∞)× Ω ,

∂tv = d2(−∆)α/2v + uv2 − (f + κ)v in (0,∞)× Ω ,
(1.2)

with α ∈ (1, 2) or convolution operators [7]

∂tu = d1Γγ1u− uv2 + f(1− u) in (0,∞)× Ω ,

∂tv = d2Γγ2v + uv2 − (f + κ)v in (0,∞)× Ω ,
(1.3)

where

Γγℓz(x) :=

∫

Ω

γℓ(x, y)
(

z(y)− z(x)
)

dy , x ∈ Ω , (1.4)
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and γℓ : Ω×Ω → [0,∞) is a measurable function for ℓ ∈ {1, 2}. In particular, numerical simulations
performed in [27] reveal that the patterns are more localized when α < 2, while topological changes
are reported in [7, 27] when the nonlocal operators in (1.2) or in (1.3) deviate sufficiently from
standard diffusion. Nevertheless, the observed patterns look similar when the nonlocal operators are
close to standard diffusion and one aim of this paper is to show that solutions to (1.3) converge to
that to (1.1) for a suitable choice of the nonlocal operators (Γγ1 ,Γγ2), see Theorem 1.4 below. As a
preliminary step, we first establish the global well-posedness of the initial value problem associated
with (1.3); that is,

∂tu = d1Γγ1u− uv2 + f(1− u) in (0,∞)× Ω , (1.5a)

∂tv = d2Γγ2v + uv2 − (f + κ)v in (0,∞)× Ω , (1.5b)

(u, v)(0) =
(

u0, v0) in Ω , (1.5c)

the nonlocal operators being defined in (1.4). Throughout this paper, we set

X := L∞(Ω) , X+ := {z ∈ X : z ≥ 0 a.e. in Ω} ,

and we denote the norm on L∞(Ω) by ‖ · ‖∞ = ‖ · ‖L∞(Ω).

Theorem 1.1 (Well-posedness). Assume that γℓ : Ω×Ω → [0,∞) is a measurable function satisfying
∫

Ω

γℓ(y, x) dy =

∫

Ω

γℓ(x, y) dy ≤ γ∞ <∞ , x ∈ Ω , (1.6)

for ℓ ∈ {1, 2} and some γ∞ ≥ 1 and consider (u0, v0) ∈ X+×X+. Then there is a unique non-negative
global solution

(u, v) ∈ C1
(

[0,∞), X+ ×X+
)

to (1.5) which is bounded; that is,

sup
t≥0

{

‖u(t)‖∞ + ‖v(t)‖∞
}

<∞ .

In fact, the mapping (u0, v0) 7→ (u, v) defines a global semiflow on X+ ×X+.
Assume further that γℓ ∈ C(Ω̄× Ω̄) for ℓ ∈ {1, 2}. Then the same result is true when replacing X

by C(Ω̄).

A similar result is available for the original Gray-Scott model (1.1) supplemented with homogeneous
Neumann or Dirichlet boundary conditions and follows from the general theory developed in [17,
Theorems 1-2] for reaction-diffusion systems with mass balance and polynomial nonlinearities.
Theorem 1.1 extends [7, Theorem 1] which is restricted to the one-dimensional case n = 1 and

only provides local well-posedness in H1(Ω)×H1(Ω). Instead of using a Galerkin approximation as
in [7], we exploit here the semilinear structure of (1.5), along with the boundedness of the nonlocal
operators in X2 and the local Lipschitz continuity of the nonlinear reaction terms, still in X2, see
Section 2. Notice also that the equality in condition (1.6) is obviously satisfied when γℓ is symmetric.
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Remark 1.2. Unlike (1.1), there is no need to supplement (1.5) with boundary conditions but the
choice of the nonlocal operator (1.4) actually includes a nonlocal version of homogeneous Neumann
boundary conditions. While we refer for instance to [4] for a more complete discussion on nonlocal
operators and boundary conditions, we point out here that Theorem 1.1 is also valid for nonlocal
operators corresponding to homogeneous Dirichlet boundary conditions, as shown in Section 5.

We next turn to the large time behaviour of solutions to (1.5) and first recall that the spatially
homogeneous steady states of (1.3) are well identified:

(s1) if f < 4(f + κ)2, then (1, 0) is the unique spatially homogeneous steady state of (1.3) and it
is linearly stable;

(s2) if f = 4(f + κ)2, then (1.3) admits two spatially homogeneous steady states (1, 0) and
(1/2, 2(f + κ));

(s3) if f > 4(f +κ)2, then (1.3) admits three spatially homogeneous steady states (1, 0), (u+, v+),
and (u−, v−) given by

u± :=
2(f + κ)2

f ±
√

f 2 − 4f(f + κ)2
, v± :=

f ±
√

f 2 − 4f(f + κ)2

2(f + κ)
. (1.7)

We refer to [19] for additional information on these steady states in the absence of diffusion and
to [9,10,13,16,18,21,24] for the existence of spatially inhomogeneous solutions to (1.1) in R triggered
by the availability of multiple spatially homogeneous steady states. Extending such results to (1.3)
does not seem to be obvious and we thus restrict ourselves to the behaviour of solutions to (1.5) in
a neighbourhood of the semi-trivial steady state (1, 0).

Theorem 1.3 (Stabilization). Assume that γℓ : Ω × Ω → [0,∞) is a measurable function satis-
fying (1.6) for ℓ ∈ {1, 2}. Then the semi-trivial steady state (1, 0) is locally asymptotically stable
in X2.
Moreover, if

‖u0‖∞ ≤ 1 + δ and ‖v0‖∞ <
f + κ

1 + δ
(1.8)

for some δ ≥ 0, then
lim
t→∞

{

‖u(t)− 1‖∞ + ‖v(t)‖∞
}

= 0

with
‖u(t)‖∞ ≤ 1 + δ , ‖v(t)‖∞ ≤ ‖v0‖∞ , t ≥ 0 .

While the first assertion in Theorem 1.3 is a consequence of the principle of linearized stability, the
second one stems from the dissipativity properties of the operator d2Γγ2 −(f+κ) in X , see Section 3.

The last contribution of this paper deals, as mentioned previously, with the connection between
the nonlocal Gray-Scott model (1.3) and the (local) Gray-Scott model (1.1). To study this question,
we assume that the kernels (γ1, γ2) are given by

γ1(x, y) = γ2(x, y) = jn+2ϕ(j(x− y)) , (x, y) ∈ Ω2 , j ≥ 1 , (1.9)
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where ϕ ∈ C∞
0 (Rn) is a non-negative radially symmetric function with compact support and a non-

increasing radial profile; that is, ϕ̃(r) := ϕ(x) for x ∈ R
n with |x| = r and r ≥ 0 is a non-increasing

function on [0,∞). Such a connection is already alluded to in [7, Section 4.5] and the purpose of the
next result is to provide a mathematical proof of this connection.

Theorem 1.4 (Diffusive limit). Let n ≥ 2 and assume that Ω is a bounded domain with C2+α-smooth
boundary ∂Ω. Consider a non-negative radially symmetric function ϕ ∈ C∞

0 (Rn) with compact
support and a non-increasing radial profile. For each integer j ≥ 1, we define χj : Ω×Ω → [0,∞) by

χj(x, y) := jn+2ϕ(j(x− y)) , (x, y) ∈ Ω2 ,

and, for z ∈ X,

Γχj
z(x) :=

∫

Ω

χj(x, y)(z(y)− z(x)) dy , x ∈ Ω .

Given (u0, v0) ∈ X+ ×X+, let (uj, vj) ∈ C1([0,∞), X+ ×X+) be the solution to

∂tuj = d1Γχj
uj − ujv

2
j + f(1− uj) in (0,∞)× Ω , (1.10a)

∂tvj = d2Γχj
vj + ujv

2
j − (f + κ)vj in (0,∞)× Ω , (1.10b)

(uj, vj)(0) =
(

u0, v0) in Ω . (1.10c)

There are a subsequence (jk)k≥1 and non-negative functions

u ∈ L∞((0,∞)× Ω) ∩ L2,loc([0,∞), H1(Ω)) ,

v ∈ L∞((0,∞), L2(Ω)) ∩ L2,loc([0,∞), H1(Ω)) ,
(1.11)

such that

lim
k→∞

∫ T

0

∫

Ω

(

|(ujk − u)(t, x)|2 + |(vjk − v)(t, x)|2
)

dxdt = 0 (1.12)

for all T > 0. Moreover, (u, v) is a weak solution to (1.1) supplemented with homogeneous Neumann
boundary conditions in the following sense:

∫

Ω

(

u(t, x)− u0(x)
)

ϑ(x) dx+
m2d1
2n

∫ t

0

∫

Ω

∇u(s, x) · ∇ϑ(x) dxds

=

∫ t

0

∫

Ω

(

f(1− u)− uv2
)

(s, x) dxds

(1.13)

and
∫

Ω

(

v(t, x)− v0(x)
)

ϑ(x) dx+
m2d2
2n

∫ t

0

∫

Ω

∇v(s, x) · ∇ϑ(x) dxds

=

∫ t

0

∫

Ω

(

uv2 − (f + κ)v
)

(s, x) dxds

(1.14)
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for all ϑ ∈ W 1
n+1(Ω) and t > 0, where

m2 :=

∫

Rn

|x|2ϕ(x) dx > 0 . (1.15)

.

In recent years, several works have been devoted to the proof of the convergence of nonlocal equa-
tions or systems to their diffusive limits and, among others, we refer to [4] for p-Laplacian equation,
to [1, 8, 11, 12, 14, 20] for degenerate and non-degenerate Cahn-Hilliard equations and systems, to [2]
for the Navier-Stokes/Cahn-Hilliard system, and to [22] for cross-diffusion systems with triangular
structure. As in [8, 14], the main difficulty we face here is to establish the strong compactness of
the sequence (uj, vj)j≥1 as the nonlocal operators do not provide estimates in H1(Ω), in contrast to
the Laplace operator. Still, the specific choice of the scaling of the nonlocal operators Γχj

allows us
to recover compactness, which is obtained by adapting the compactness result derived in [5, Theo-
rem 4] and further developed in [4, Theorem 6.11] and [25, Theorem 1.2] to a time-dependent setting,
thereby obtaining a nonlocal version of the compactness results in [26]. Similar results are already
obtained in [8,14] when Ω is the n-dimensional torus and the version we provide in Proposition A.1
below is adapted to a bounded domain and nonlocal operators of the form (1.4). As a final comment,
let us point out that Theorem 1.4 is likely to be true in one space dimension n = 1 as well. However,
the analysis performed in [25], on which the compactness argument used in the proof of Theorem 1.4
relies, is slightly different in that case and we have chosen not to include the one-dimensional setting
for simplicity.

2. Well-posedness: Proof of Theorem 1.1

We begin this section with the properties of the linear term in (1.5). Specifically, given a non-
negative measurable function γ : Ω× Ω → [0,∞) and a measurable function z : Ω → R, we define

Γγz(x) :=

∫

Ω

γ(x, y)
(

z(y)− z(x)
)

dy , x ∈ Ω , (2.1)

whenever it makes sense.

Lemma 2.1. Assume that there is γ∞ > 0 such that
∫

Ω

γ(y, x) dy =

∫

Ω

γ(x, y) dy ≤ γ∞ <∞ , x ∈ Ω . (2.2)

Then Γγ ∈ L(X) with ‖Γγ‖L(X) ≤ 2γ∞, and Γγ generates a uniformly continuous semigroup
(

etΓγ
)

t≥0

on X satisfying

‖etΓγ‖L(X) ≤ 1 , t ≥ 0 . (2.3)

Moreover, for t ≥ 0,

etΓγ ≥ 0 and etΓγ1 = 1 . (2.4)

If, in addition, γ ∈ C(Ω̄× Ω̄), then the above statements remain true with C(Ω̄) replacing X.
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Proof. It readily follows from (2.2) that, for z ∈ X and x ∈ Ω,

|Γγz(x)| ≤

∫

Ω

γ(x, y)|z(y)− z(x)| dy ≤ 2γ∞‖z‖∞ .

Hence Γγ ∈ L(X) with ‖Γγ‖L(X) ≤ 2γ∞ and Γγ generates a uniformly continuous semigroup
(

etΓγ
)

t≥0

on X . In order to prove that
(

etΓγ
)

t≥0
is a semigroup of contractions on X , we pick z0 ∈ X and set

z(t) := etΓγz0 for t ≥ 0. We then note that, for M ∈ R and t > 0,

d

dt

∫

Ω

(

z(t, x) −M
)

+
dx =

∫

Ω

(Γγz(t))(x) sign+

(

z(t, x)−M
)

dx

=

∫

Ω

∫

Ω

γ(x, y)
(

z(t, y)− z(t, x)
)

sign+

(

z(t, x)−M
)

dydx

=

∫

Ω

∫

Ω

γ(x, y)
(

z(t, y)−M
)

sign+

(

z(t, x)−M
)

dydx

−

∫

Ω

∫

Ω

γ(x, y)
(

z(t, x)−M
)

+
dydx

≤

∫

Ω

(

z(t, y)−M
)

+

∫

Ω

γ(x, y) dxdy

−

∫

Ω

(

z(t, x)−M
)

+

∫

Ω

γ(x, y) dydx

=

∫

Ω

(

z(t, x)−M
)

+

∫

Ω

γ(y, x) dydx

−

∫

Ω

(

z(t, x)−M
)

+

∫

Ω

γ(x, y) dydx

≤ 0 ,

where we used (2.2) to obtain the last inequality. Consequently,

d

dt

∫

Ω

(

z(t, x) −M
)

+
dx ≤ 0 , t > 0 ,

and thus
(

etΓγz0
)

(x) ≤M + (z0(x)−M)+ , (t, x) ∈ [0,∞)× Ω . (2.5)

Applying (2.5) with M = ‖z0‖∞ to z0 and (−z0), we conclude that ‖etΓγz0‖∞ ≤ ‖z0‖∞ for t ≥ 0.
Consider now z0 ∈ X+ and apply (2.5) with M = 0 to (−z0) to obtain −

(

etΓγz0
)

(x) ≤ 0 for
(t, x) ∈ [0,∞)×Ω, which shows the positivity of the semigroup claimed in (2.4). Finally, the second
property stated in (2.4) is an obvious consequence of the definition (2.1) of Γγ. �

We now show the well-posedness of (1.5) in X+ ×X+.
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Proposition 2.2. Assume that γℓ : Ω × Ω → [0,∞) is a measurable function satisfying (1.6) for
ℓ ∈ {1, 2}. For every (u0, v0) ∈ X+ ×X+ there is a unique non-negative global solution

(u, v) ∈ C1
(

[0,∞), X+ ×X+
)

to (1.5). In fact, the mapping (u0, v0) 7→ (u, v) defines a global semiflow on X+ × X+. If γℓ ∈
C
(

Ω̄× Ω̄
)

for ℓ ∈ {1, 2}, then the same result is true when replacing X by C
(

Ω̄
)

.

Proof. We set z = (u, v), Γℓ := Γγℓ for ℓ ∈ {1, 2},

A :=

(

d1Γ1 0
0 d2Γ2

)

∈ L(X2) and F (z) :=

(

F1(z)
F2(z)

)

:=

(

−uv2 + f(1− u)
uv2 − (f + κ)v

)

.

Given z0 = (u0, v0) ∈ X2, the initial value problem (1.5) is equivalent to

dz

dt
= Az + F (z) , t ≥ 0 , z(0) = z0 . (2.6)

Since A ∈ L(X2) and F ∈ C1−
b (X2, X2), the initial value problem (2.6) has a unique solution

z = z(·; z0) = (u, v) ∈ C1([0, Tm), X
2)

defined on a maximal time interval [0, Tm) with Tm ∈ (0,∞] and (t, z0) 7→ z(t; z0) defines a semiflow
on X2. Moreover, if Tm <∞, then

lim
t→Tm

‖z(t)‖X2 = ∞ . (2.7)

We next observe that, for every R > 0, there is ξ(R) := f +max{κ,R2} > 0 such that

F (z) + ξ(R)z ≥ 0 for z ≥ 0 with ‖z‖X2 ≤ R . (2.8)

By (2.6), we have the representation formula

z(t) = et(A−ξ(R))z0 +

∫ t

0

e(t−s)(A−ξ(R))
[

F (z(s)) + ξ(R)z(s)
]

ds ,

and hence deduce from (2.4) and (2.8) that

z(t) = (u(t), v(t)) ∈ X+ ×X+ for t ∈ [0, Tm) whenever z0 = (u0, v0) ∈ X+ ×X+ . (2.9)

In order to prove global existence for (u0, v0) ∈ X+ ×X+, we note that w := u− 1 satisfies

∂tw = d1Γ1w − (1 + w)v2 − fw , (t, x) ∈ [0, Tm)× Ω ,

w(0) = u0 − 1 , x ∈ Ω .
(2.10)

Thus, for t ∈ [0, Tm), it follows from (2.9) that

w(t) = et(d1Γ1−f)w(0)−

∫ t

0

e(t−s)(d1Γ1−f)
(

(1 + w(s))v(s)2
)

ds ≤ et(d1Γ1−f)w(0) .

Since w(0) ≤ (‖u0‖∞ − 1)+ we infer from (2.5) that

w(t) ≤ et(d1Γ1−f)w(0) ≤ e−ft
(

‖u0‖∞ − 1
)

+
, t ∈ [0, Tm) .
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Therefore,

0 ≤ u(t, x) ≤ 1 + e−ft
(

‖u0‖∞ − 1
)

+
, (t, x) ∈ [0, Tm)× Ω , (2.11)

and in particular,
‖u(t)‖∞ ≤ ‖u0‖∞ + 1 , t ∈ [0, Tm) . (2.12)

Next, h := u+ v solves

∂th = d2Γ2h+ (d1Γ1 − d2Γ2)u− fh+ f − κv in (0, Tm)× Ω ,

h(0) = u0 + v0 in Ω ,

hence

h(t) = et(d2Γ2−f)h(0) +

∫ t

0

e(t−s)(d2Γ2−f)
[

(d1Γ1 − d2Γ2)u(s) + f − κv(s)
]

ds (2.13)

for t ∈ [0, Tm). According to (1.6), (2.12), and Lemma 2.1, we have

‖(d1Γ1 − d2Γ2)u(s)‖∞ ≤ |d1 − d2|‖Γ1u(s)‖∞ + d2‖(Γ1 − Γ2)u(s)‖∞

≤ 2γ∞|d1 − d2|‖u(s)‖∞

+ d2 ess sup
x∈Ω

∣

∣

∣

∣

∫

Ω

(γ1 − γ2)(x, y)(u(s, y)− u(s, x)) dy

∣

∣

∣

∣

≤ 2γ∞|d1 − d2|‖u(s)‖∞ + 2md2‖u(s)‖∞

≤ 2
(

|d1 − d2|γ∞ +md2
)

(1 + ‖u0‖∞) ,

where

m := ess sup
x∈Ω

∫

Ω

|(γ1 − γ2)(x, y)| dy ≤ 2γ∞ .

Combining (2.13), the above estimate, the non-negativity of u, and Lemma 2.1 gives, for t ∈ [0, Tm),

0 ≤ h(t) ≤ e−ft‖u0 + v0‖∞ +

∫ t

0

e−f(t−s)
[

2
(

|d1 − d2|γ∞ +md2
)

(1 + ‖u0‖∞) + f
]

ds

≤ e−tf‖u0 + v0‖∞ +
1− e−tf

f

[

2
(

|d1 − d2| γ∞ +md2
)

(1 + ‖u0‖∞) + f
]

. (2.14)

Owing to (2.12) and (2.14), we conclude Tm = ∞ according to (2.7). �

The proof of Proposition 2.2 actually provides the boundedness of solutions to (1.5).

Corollary 2.3. Assume that γℓ : Ω × Ω → [0,∞) is a measurable function satisfying (1.6) for
ℓ ∈ {1, 2} and consider (u0, v0) ∈ X+ ×X+. The corresponding solution (u, v) to (1.5) satisfies

0 ≤ u(t, x) ≤ 1 + e−ft
(

‖u0‖∞ − 1
)

+
(2.15)

and

0 ≤ (u+ v)(t, x) ≤ e−tf‖u0 + v0‖∞ +
1− e−tf

f

[

2
(

|d1 − d2| γ∞ +md2
)

(1 + ‖u0‖∞) + f
]

(2.16)
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for (t, x) ∈ [0,∞)× Ω, where

m = ess sup
x∈Ω

∫

Ω

|(γ1 − γ2)(x, y)| dy ≤ 2γ∞ .

In particular,

lim sup
t→∞

‖u(t)‖∞ ≤ 1

and, if ‖u0‖∞ ≤ 1, then ‖u(t)‖∞ ≤ 1 for t ≥ 0.

Proof. The bounds on u and u + v are established in (2.12) and (2.14), respectively, while the last
statement of Corollary 2.3 readily follows from (2.15). �

Proof of Theorem 1.1. Gathering the outcome of Proposition 2.2 and Corollary 2.3 gives Theo-
rem 1.1. �

3. Convergence to spatially homogeneous steady states: Proof of Theorem 1.3

Let us begin with the local asymptotic stability of (1, 0).

Proposition 3.1. Assume that γℓ : Ω × Ω → [0,∞) is a measurable function satisfying (1.6) for
ℓ ∈ {1, 2}. Then the semi-trivial steady state (1, 0) is locally asymptotically stable in X2.

Proof. Set w = u− 1. Then (1.5) is equivalent to

∂tw = d1Γγ1w − (1 + w)v2 − fw , w(0) = u0 − 1 , (3.1a)

∂tv = d2Γγ2v + (1 + w)v2 − (f + κ)v , v(0) = v0 , (3.1b)

so that, with ζ = (w, v),

ζ(t) = etA0ζ0 +

∫ t

0

e(t−s)A0R(ζ(s)) ds , t ≥ 0 ,

where

A0 :=

(

d1Γγ1 − f 0
0 d2Γγ2 − (f + κ)

)

∈ L(X2) , ‖etA0‖L(X2) ≤ e−ft , t ≥ 0 ,

according to Lemma 2.1 and R(ζ) = o(‖ζ‖X2) as ζ → 0. The principle of linearized stability then
ensures that (w, v) = (0, 0) is locally asymptotically stable in X2 for (3.1), see [3, Theorem 15.3] for
instance. �

Remark 3.2. If γℓ ∈ C(Ω̄× Ω̄) for ℓ ∈ {1, 2}, then the semi-trivial steady state (1, 0) is also locally
asymptotically stable in C(Ω̄,R2).

We next finish the proof of Theorem 1.3 by providing a more quantitative stability result for the
semi-trivial steady state (1, 0) and actually identify an invariant set for the flow associated with (1.5)
in X+ ×X+.
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Proof of Theorem 1.3. We have already shown in Proposition 3.1 the local stability of the semi-trivial
steady state (1, 0). We next refine this local stability result when the initial conditions satisfy (1.8).
To this end, we first recall from Corollary 2.3 that ‖u(t)‖∞ ≤ 1 + δ for t ≥ 0. Owing to (1.8), we
may choose ε > 0 such that

‖v0‖∞ <
f + κ− ε

1 + δ
and the time continuity of v implies that

t0 := inf

{

t ≥ 0 : ‖v(t)‖∞ ≥
f + κ− ε

1 + δ

}

> 0 .

Then

F2(u, v)(s) = u(s)v(s)2 − (f + κ)v(s) ≤ (u(s)v(s)− f − κ)v(s) ≤ −εv(s) , s ∈ [0, t0) , (3.2)

so that, thanks to (1.5b) and Lemma 2.1,

v(t) = etd2Γγ2v0 +

∫ t

0

e(t−s)d2Γγ2F2(u(s), v(s)) ds ≤ etd2Γγ2v0 , t ∈ [0, t0) .

We now infer from Lemma 2.1 and the above inequality that

‖v(t)‖∞ ≤ ‖v0‖∞ <
f + κ− ε

1 + δ
, t ∈ [0, t0) ,

and therefore t0 = ∞; that is,

‖v(t)‖∞ ≤ ‖v0‖∞ <
f + κ− ε

1 + δ
, t ≥ 0 .

Using again (1.5b) and (3.2), we deduce

∂tv = d2Γγ2v + uv2 − (f + κ)v ≤ d2Γγ2v − εv , t ≥ 0 ,

and Lemma 2.1 ensures that

‖v(t)‖∞ ≤ e−εt ‖v0‖∞ , t ≥ 0 . (3.3)

In particular,

lim
t→∞

‖v(t)‖∞ = 0 .

Furthermore, it follows from (2.15) and (3.3) that, for every η > 0, there is tη > 0 such that

0 ≤ u(s, x))v(s, x)2 ≤ η , (s, x) ∈ (tη,∞)× Ω .

Consequently, invoking (1.5a) and Lemma 2.1,

u(t+ tη)− 1 = et(d1Γγ1−f)
[

u(tη)− 1
]

−

∫ t+tη

tη

e(t+tη−s)(d1Γγ1−f)
(

u(s)v(s)2
)

ds

≥ −
∥

∥et(d1Γγ1−f)
[

u(tη)− 1
]
∥

∥

∞
−

∫ t+tη

tη

‖e(t+tη−s)(d1Γγ1−f)η‖∞ ds
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≥ −e−ft ‖u(tη)− 1‖∞ −
1− e−ft

f
η

for t ≥ 0. We may then let t→ ∞ and conclude that

lim inf
t→∞

ess inf
x∈Ω

{u(t, x)− 1} = lim inf
t→∞

ess inf
x∈Ω

{u(t+ tη, x)− 1} ≥ −
η

f
.

Since η > 0 was arbitrary and since

ess sup
x∈Ω

{u(t, x)− 1} ≤ e−ft
(

‖u0‖∞ − 1
)

+
, t ≥ 0 ,

by Corollary 2.3, we end up with
lim
t→∞

‖u(t)− 1‖∞ = 0 ,

which completes the proof. �

Remark 3.3. Assume that γℓ : Ω×Ω → [0,∞) is a measurable function satisfying (1.6) for ℓ ∈ {1, 2}
and consider (u0, v0) ∈ X+ ×X+ such that

‖u0‖∞ ≤ 1 + δ and ‖v0‖∞ ≤
f + κ

1 + δ

for some δ ≥ 0. Then the solution (u, v) to (1.5) satisfies

‖u(t)‖∞ ≤ 1 + δ , ‖v(t)‖∞ ≤ ‖v0‖∞ , t ≥ 0 .

Indeed, this property follows from applying Theorem 1.3 to the initial value (u0, θv0) with θ ∈ (0, 1)
and then using the continuous dependence of the solution on the initial value to let θ → 1.

4. Diffusive limit: Proof of Theorem 1.4

This section is devoted to a mathematical proof of the connection between the Gray-Scott model (1.1)
and its nonlocal version (1.5) with the suitable choice of nonlocal operators described in Theorem 1.4.
We assume that n ≥ 2 and consider a non-negative radially symmetric function ϕ ∈ C∞

0 (Rn) with
compact support in B1(0) and a non-increasing radial profile. For each integer j ≥ 1, we define
χj : Ω× Ω → [0,∞) by

χj(x, y) := jn+2ϕ(j(x− y)) , (x, y) ∈ Ω× Ω , (4.1)

and, for z ∈ X = L∞(Ω),

Γχj
z(x) :=

∫

Ω

χj(x, y)
(

z(y)− z(x)
)

dy , x ∈ Ω . (4.2)

We also set

Yj[z] :=

∫

Ω×Ω

χj(x, y)[z(x)− z(y)]2 d(x, y) , z ∈ L2(Ω) . (4.3)

We fix (u0, v0) ∈ X+ ×X+ and denote the corresponding solution to (1.10) by

(uj, vj) ∈ C1([0,∞), X+ ×X+) .
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The first step of the proof is the derivation of several estimates which do not depend on j ≥ 1.
Throughout this section, C and Ci, i ≥ 0, denote positive constants which only depend on n, Ω, d1,
d2, ϕ, f , κ, and (u0, v0). Dependence upon additional parameters will be indicated explicitly.

4.1. Estimates. Recall that, for j ≥ 1,

0 ≤ uj(t, x) ≤ 1 + e−ft
(

‖u0‖∞ − 1
)

+
≤ C0 := 1 + ‖u0‖∞ , t ≥ 0 , (4.4)

by Corollary 2.3. We next proceed as in [28, Lemma 2] to derive L2-estimates on (uj, vj).

Lemma 4.1. For t > 0 and j ≥ 1,

‖uj(t)‖
2
2 + ‖vj(t)‖

2
2 ≤ C1 (4.5a)

and
∫ t

0

(

Yj[uj(s)] + Yj[vj(s)] + ‖(ujvj)(s)‖
2
2

)

ds ≤ C1(1 + t) . (4.5b)

Proof. Let t ≥ 0 and j ≥ 1. We first infer from (1.10a), (4.2), and the non-negativity of uj that

1

2

d

dt
‖uj(t)‖

2
2 + d1

∫

Ω×Ω

χj(x, y)uj(t, x)[uj(t, x)− uj(t, y)] d(x, y)

+ ‖(ujvj)(t)‖
2
2 + f‖uj(t)‖

2
2 = f‖uj(t)‖1 .

Since
∫

Ω×Ω

χj(x, y)uj(t, x)[uj(t, x)− uj(t, y)] d(x, y)

=
1

2

∫

Ω×Ω

χj(x, y)uj(t, x)[uj(t, x)− uj(t, y)] d(x, y)

+
1

2

∫

Ω×Ω

χj(y, x)uj(t, y)[uj(t, y)− uj(t, x)] d(x, y)

=
Yj[uj(t)]

2

by the symmetry of χj and

f‖uj(t)‖1 ≤
f

2
‖uj(t)‖

2
2 +

f

2
|Ω|

by Young’s inequality, we conclude that

d

dt
‖uj(t)‖

2
2 + d1Yj[uj(t)] + 2‖(ujvj)(t)‖

2
2 + f‖uj(t)‖

2
2 ≤ f |Ω| . (4.6)

We next recall that hj := uj + vj solves

∂thj = d2Γχj
hj + (d1 − d2)Γχj

uj + f(1− hj)− κvj in (0,∞)× Ω . (4.7)
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Then, thanks to the non-negativity of κvj ,

1

2

d

dt
‖hj(t)‖

2
2 + d2

∫

Ω×Ω

χj(x, y)hj(t, x)[hj(t, x)− hj(t, y)] d(x, y) + f‖hj(t)‖
2
2

≤ (d1 − d2)

∫

Ω×Ω

χj(x, y)hj(t, x)[uj(t, y)− uj(t, x)] d(x, y) + f‖hj(t)‖1 .

We again use the symmetry of χj , along with Young’s inequality, to deduce that

d2

∫

Ω×Ω

χj(x, y)hj(t, x)[hj(t, x)− hj(t, y)] d(x, y) =
d2
2
Yj[hj(t)]

and

(d1 − d2)

∫

Ω×Ω

χj(x, y)hj(t, x)[uj(t, y)− uj(t, x)] d(x, y)

=
d2 − d1

2

∫

Ω×Ω

χj(x, y)[hj(t, x)− hj(t, y)][uj(t, x)− uj(t, y)] d(x, y)

≤
d2
4
Yj[hj(t)] +

(d1 − d2)
2

4d2
Yj[uj(t)] .

Also,

f‖hj(t)‖1 ≤
f

2
‖hj(t)‖

2
2 +

f

2
|Ω| .

Gathering the above estimates leads us to

d

dt
‖hj(t)‖

2
2 +

d2
2
Yj[hj(t)] + f‖hj(t)‖

2
2 ≤

(d1 − d2)
2

2d2
Yj[uj(t)] + f |Ω| . (4.8)

Setting C2 := (d1d2)/[1 + (d1 − d2)
2], we infer from (4.6) and (4.8) that

d

dt

[

‖uj(t)‖
2
2 + C2‖hj(t)‖

2
2

]

+

(

d1 −
C2(d1 − d2)

2

2d2

)

Yj[uj(t)] +
d2C2

2
Yj[hj(t)]

+ 2‖(ujvj)(t)‖
2
2 + f

(

‖uj(t)‖
2
2 + C2‖hj(t)‖

2
2

)

≤ f(1 + C2)|Ω| .

Hence,

d

dt

[

‖uj(t)‖
2
2 + C2‖hj(t)‖

2
2

]

+ f
(

‖uj(t)‖
2
2 + C2‖hj(t)‖

2
2

)

+
d1
2
Yj[uj(t)] +

d2C2

2
Yj [hj(t)] + 2‖(ujvj)(t)‖

2
2 ≤ f(1 + C2)|Ω| .

(4.9)

A first consequence of (4.9) is that

‖uj(t)‖
2
2 + C2‖hj(t)‖

2
2 ≤ e−ft

[

‖u0‖22 + C2‖u
0 + v0‖22

]

+ (1 + C2)|Ω|
(

1− e−ft
)

,

from which (4.5a) readily follows, since vj = hj − uj. We next integrate (4.9) with respect to time
to obtain (4.5b), using again the relation vj = hj − uj, and complete the proof. �
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We now turn to estimates on ∂tuj and ∂tvj.

Lemma 4.2. For t > 0 and j ≥ 1,
∫ t

0

[

‖∂tuj(s)‖
2
(W 1

n+1
)′ + ‖∂tvj(s)‖

2
(W 1

n+1
)′

]

ds ≤ C3(1 + t) . (4.10)

Proof. Since W 1
n+1(Ω) is continuously embedded in L∞(Ω), there is C4 > 0 such that

‖ϑ‖∞ ≤ C4‖ϑ‖W 1
n+1

, ϑ ∈ W 1
n+1(Ω) . (4.11)

Let ϑ ∈ W 1
n+1(Ω), t > 0, and j ≥ 1. We infer from (1.10a), (4.4), (4.5a), (4.11), and the symmetry

of χj that
∣

∣

∣

∣

∫

Ω

ϑ(x)∂tuj(t, x) dx

∣

∣

∣

∣

≤ d1

∣

∣

∣

∣

∫

Ω×Ω

χj(x, y)ϑ(x)[uj(t, y)]− uj(t, x)] d(x, y)

∣

∣

∣

∣

+ ‖ϑ‖∞‖uj(t)‖∞‖vj(t)‖
2
2 + f‖ϑ‖∞|Ω| (1 + ‖uj(t)‖∞)

≤
d1
2

∣

∣

∣

∣

∫

Ω×Ω

χj(x, y)[ϑ(x)− ϑ(y)][uj(t, x)]− uj(t, y)] d(x, y)

∣

∣

∣

∣

+ C‖ϑ‖W 1
n+1

.

Since the support of χj is a subset of {(x, y) ∈ R
2n : |x−y| ≤ C/j}, it follows from Hölder’s inequality

and [5, Theorem 1] that
∣

∣

∣

∣

∫

Ω×Ω

χj(x, y)[ϑ(x)− ϑ(y)][uj(t, x)]− uj(t, y)] d(x, y)

∣

∣

∣

∣

≤ Yj[uj(t)]
1/2

(
∫

Ω×Ω

χj(x, y)[ϑ(x)− ϑ(y)]2 d(x, y)

)1/2

≤
C

j
Yj[uj(t)]

1/2

(
∫

Ω×Ω

χj(x, y)

|x− y|2
[ϑ(x)− ϑ(y)]2 d(x, y)

)1/2

≤ C‖ϕ‖
1/2
L1(Rn)‖ϑ‖W 1

2
Yj[uj(t)]

1/2 ≤ C‖ϑ‖W 1
n+1
Yj[uj(t)]

1/2 .

Consequently,
∣

∣

∣

∣

∫

Ω

ϑ(x)∂tuj(t, x) dx

∣

∣

∣

∣

≤ C‖ϑ‖W 1
n+1

(

1 + Yj[uj(t)]
1/2

)

and a duality argument ensures that

‖∂tuj(t)‖(W 1
n+1

)′ ≤ C
(

1 + Yj[uj(t)]
1/2

)

.

Combining (4.5b) and the above inequality gives
∫ t

0

‖∂tuj(s)‖
2
(W 1

n+1
)′ ds ≤ C(1 + t) . (4.12a)
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We next employ a similar argument to deduce from (4.5) and (4.7) that
∫ t

0

‖∂t(uj + vj)(s)‖
2
(W 1

n+1
)′ ds ≤ C(1 + t) . (4.12b)

Lemma 4.2 now readily follows from (4.12). �

4.2. Convergence. Having at hand Lemma 4.1 and Lemma 4.2, we are in a position to establish
compactness properties of the sequences (uj)j≥1 and (vj)j≥1 and begin with a simple consequence
of (4.5a), (4.10), the compactness of the embedding of L2(Ω) in W

1
n+1(Ω)

′, and [26, Corollary 1].

Lemma 4.3. The sequences (uj)j≥1 and (vj)j≥1 are relatively compact in C([0, T ],W 1
n+1(Ω)

′) for
any T > 0.

Though allowing us to pass to the limit in the linear terms involved in (1.10a), Lemma 4.3 does
not carry enough information to pass to the limit in the nonlinear terms in (1.10a). Thus, strong
compactness is required to handle these terms. Despite the lack of gradient estimates here, it was
observed in [5, Theorem 4] and [25, Theorem 1.2] that, given a bounded sequence (zj)j≥1 in L2(Ω),
estimates on (Yj(zj))j≥1 imply the relative compactness of (zj)j≥1 in L2(Ω). Time-dependent exten-
sions of [5, Theorem 4] and [25, Theorem 1.2] are developed in [14, Appendix B] and [8, Appendix B]
when Ω = T

n is the n-dimensional torus, and we prove a similar result in Proposition A.1 below.

Lemma 4.4. For any T > 0, the sequences (uj)j≥1 and (vj)j≥1 are relatively compact in L2((0, T )×Ω)
and their cluster points belong to L2((0, T ), H

1(Ω)).

Proof. Recalling

m2 =

∫

Rn

|x|2ϕ(x) dx > 0 ,

see (1.15), we define

̺j(x) := jn+2 |x|
2

m2

ϕ(jx) = jn̺1(jx) , x ∈ R
n , j ≥ 1 . (4.13)

Since ϕ ∈ C∞
0 (Rn) is non-negative and radially symmetric, the function ̺1 satisfies the assumptions

of Proposition A.1. Moreover,

(uj)j≥1 is bounded in L2((0, T )× Ω) ∩ L2((0, T ),W
1
n+1(Ω)

′)

by Lemma 4.1 and Lemma 4.2, while we infer from (4.5b) that
∫ T

0

∫

Ω×Ω

∣

∣uj(t, x)− uj(t, y)
∣

∣

2

|x− y|2
̺j(x− y) d(x, y)dt

=
1

m2

∫ T

0

∫

Ω×Ω

χj(x, y)
∣

∣uj(t, x)− uj(t, y)
∣

∣

2
d(x, y)dt

=
1

m2

∫ T

0

Yj[uj(t)] dt ≤
C1

m2
(1 + T ) .
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Consequently, the sequence (uj)j≥1 satisfies the assumptions of Proposition A.1 (with p = r = 2
and q = n+1) and an application of Proposition A.1 provides the relative compactness of (uj)j≥1 in
L2((0, T )×Ω), together with the L2((0, T ), H

1(Ω))-regularity of its cluster points. A similar argument
allows us to handle the sequence (vj)j≥1 and thereby complete the proof of Lemma 4.4. �

Proof of Theorem 1.4. Owing to (4.4), (4.5a), Lemma 4.3 and Lemma 4.4, a diagonal process ensures
the existence of a sequence (jk)k≥1, jk → ∞, and non-negative functions

u ∈ C([0,∞),W 1
n+1(Ω)

′) ∩ L∞((0,∞)× Ω) ∩ L2,loc([0,∞), H1(Ω)) ,

v ∈ C([0,∞),W 1
n+1(Ω)

′) ∩ L∞((0,∞), L2(Ω)) ∩ L2,loc([0,∞), H1(Ω)) ,

such that, for any t > 0,

lim
k→∞

sup
s∈[0,t]

[

‖(ujk − u)(s)‖(W 1
n+1

)′ + ‖(vjk − v)(s)‖(W 1
n+1

)′

]

= 0 , (4.14)

lim
k→∞

∫ t

0

[

‖(ujk − u)(s)‖22 + ‖(vjk − v)(s)‖22
]

ds = 0 , (4.15)

and

lim
k→∞

[|(ujk − u)(s, x)|+ |(vjk − v)(s, x)|] = 0 for a.e. (s, x) ∈ (0, t)× Ω . (4.16)

We first use the previous convergences to identify the limit of the nonlinear terms in (1.10). For
t > 0 and k ≥ 1,

∫ t

0

∫

Ω

∣

∣

(

ujkv
2
jk
− uv2

)

(s, x)
∣

∣ dxds =

∫ t

0

∫

Ω

ujk(s, x)
∣

∣

(

v2jk − v2
)

(s, x)
∣

∣ dxds

+

∫ t

0

∫

Ω

v2(s, x) |(ujk − u) (s, x)| dxds .

(4.17)

On the one hand, it follows from (4.4), (4.5a), (4.15), and Hölder’s inequality that
∫ t

0

∫

Ω

ujk(s, x)
∣

∣

(

v2jk − v2
)

(s, x)
∣

∣ dxds

≤

∫ t

0

‖ujk(s)‖∞‖(vjk + v)(s)‖2‖(vjk − v)(s)‖2 ds

≤ C0

(
∫ t

0

‖(vjk + v)(s)‖22 ds

)1/2(∫ t

0

‖(vjk − v)(s)‖22 ds

)1/2

≤ 2C0

√

C1

(
∫ t

0

‖(vjk − v)(s)‖22 ds

)1/2

,

so that, by (4.15),

lim
k→∞

∫ t

0

∫

Ω

ujk(s, x)
∣

∣

(

v2jk − v2
)

(s, x)
∣

∣ dxds = 0 . (4.18)
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On the other hand, since v2 ∈ L1((0, t)×Ω), we deduce from (4.4), (4.16), and Lebesgue’s dominated
convergence theorem that

lim
k→∞

∫ t

0

∫

Ω

v2(s, x) |(ujk − u) (s, x)| dxds = 0 . (4.19)

Gathering (4.17), (4.18), and (4.19), we conclude that

lim
k→∞

∫ t

0

∫

Ω

∣

∣

(

ujkv
2
jk
− uv2

)

(s, x)
∣

∣ dxds = 0 . (4.20)

Now, it follows from (4.15), (4.20), and Proposition B.1 that u = U , where U is the unique mild
solution to

∂tU =
m2d1
2n

∆U − uv2 + f(1− u) in (0,∞)× Ω ,

∇U · n = 0 on (0,∞)× ∂Ω ,

U(0) = u0 in Ω ;

that is, u is the mild solution to

∂tu =
m2d1
2n

∆u− uv2 + f(1− u) in (0,∞)× Ω ,

∇u · n = 0 on (0,∞)× ∂Ω ,

u(0) = u0 in Ω .

A similar argument ensures that v is the unique mild solution to

∂tv =
m2d2
2n

∆v + uv2 − (f + κ)v in (0,∞)× Ω ,

∇v · n = 0 on (0,∞)× ∂Ω ,

v(0) = v0 in Ω .

Recalling the already obtained regularity on (u, v) allows us to deduce that u and v satisfy (1.13)
and (1.14), respectively, thereby completing the proof. �

5. Extension to the Dirichlet setting

The approach used to establish the well-posedness of (1.5c) is actually quite flexible and can be
easily extended to other nonlocal operators such as a nonlocal version of homogeneous Dirichlet
boundary conditions, which differs from (1.4). Specifically, in this section only, given a measurable
function γ : Rn × R

n → [0,∞) and z ∈ L∞(Ω), we define the nonlocal operator Γγ by

Γγz(x) :=

∫

Rn

γ(x, y)
(

z̄(y)− z(x)
)

dy , x ∈ Ω , (5.1)
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where z̄(x) = z(x) for x ∈ Ω and z̄(x) = 0 for x ∈ Ωc = R
n \ Ω. With this definition, we consider

the problem

∂tu = d1Γγ1u− uv2 + f(1− u) in (0,∞)× Ω , (5.2a)

∂tv = d2Γγ2v + uv2 − (f + κ)v in (0,∞)× Ω , (5.2b)

u = v = 0 in (0,∞)× Ωc , (5.2c)

(u, v)(0) =
(

u0, v0) in Ω , (5.2d)

and report the following well-posedness result.

Theorem 5.1 (Well-posedness). Assume that γℓ : R
n × R

n → [0,∞) is a measurable function
satisfying

∫

Ω

γℓ(y, x) dy ≤

∫

Rn

γℓ(x, y) dy ≤ γ∞ <∞ , x ∈ Ω , (5.3)

for ℓ ∈ {1, 2} and consider (u0, v0) ∈ X+ ×X+. Then there is a unique non-negative global solution

(u, v) ∈ C1
(

[0,∞), X+ ×X+
)

to (5.2) which is bounded; that is,

sup
t≥0

{

‖u(t)‖∞ + ‖v(t)‖∞
}

<∞ .

In fact, the mapping (u0, v0) 7→ (u, v) defines a global semiflow on X+ ×X+.
Assume further that γℓ ∈ C(Ω̄× Ω̄) for ℓ ∈ {1, 2}. Then the same result is true when replacing X

by C(Ω̄).

The proof is the same as that of Theorem 1.1, to which we refer. The only change is in the analogue
of Lemma 2.1, where (2.4) is replaced by

etΓγ ≥ 0 and etΓγ1 ≤ 1 , t ≥ 0 . (5.4)

The proof of (5.4) follows the lines of that of (2.5) and relies on (5.3).

Appendix A. A compactness result

Let Ω be a bounded domain of Rn, n ≥ 2, and consider a non-negative radially symmetric function
̺ ∈ C∞

0 (Rn) such that
∫

Rn

̺(x) dx = 1 . (A.1)

For x ∈ R
n and j ≥ 1, we put ̺j(x) := jn̺(jx) and note that ̺j ∈ C∞

0 (Rn) with ‖̺j‖L1(Rn) = 1.
Next, for an open subset O of Rn, p ∈ (1,∞), j ≥ 1, and g ∈ Lp(O), we define

Λj(g,O) :=

∫

O×O

|g(x)− g(y)|p

|x− y|p
̺j(x− y) d(x, y) ∈ [0,∞] , (A.2)

and set Λj(·) := Λj(·,R
n) for simplicity.
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Proposition A.1. Let (p, q, r) ∈ (1,∞)3, T > 0, and consider a sequence (fj)j≥1 of measurable
functions on (0, T )× Ω satisfying

fj ∈ Lp((0, T )× Ω) ∩ Lr((0, T ),W
1
q (Ω)

′) , j ≥ 1 , (A.3a)
∫ T

0

[

‖fj(t)‖
p
p + Λj(fj(t),Ω)

]

dt ≤ K0 , j ≥ 1 , (A.3b)

as well as
∫ T

0

‖∂tfj(t)‖
r
(W 1

q )
′ dt ≤ K0 , j ≥ 1 , (A.3c)

for some K0 > 0. Then (fj)j≥1 is relatively compact in Lp((0, T ) × Ω) and its cluster points in
Lp((0, T )× Ω) belong to Lp((0, T ),W

1
p (Ω)).

As already mentioned, Proposition A.1 is similar to [8, Appendix B] and [14, Appendix B] and is in
the spirit of [26, Corollary 4]. Its proof relies on the compactness results established in [5, Theorem 4]
and [25, Theorem 1.2] for sequences of time-independent functions and requires several intermediate
results.
For further use, we fix a non-negative radially symmetric function Φ ∈ C∞

0 (Rn) satisfying

suppΦ ⊂ B1(0) , 0 ≤ Φ ≤ 1 ,

∫

Rn

Φ(x) dx = 1 , (A.4)

and set Φδ(x) := δ−nΦ(x/δ) for x ∈ R
n and δ ∈ (0, 1). We begin with an estimate on Φδ ∗ g − g for

g ∈ Lp(R
n) and argue as in the proof of [25, Proposition 4.2] to derive the following result.

Lemma A.2. Let δ0 ∈ (0, 1) and consider j ≥ 1 such that
∫

Bδ0
(0)

̺j(x) dx ≥
1

2
. (A.5)

There exists K1 > 0 depending only on n and p such that, for any g ∈ Lp(R
n) satisfying

Λj(g) =

∫

Rn×Rn

|g(x)− g(y)|p

|x− y|p
̺j(x− y) d(x, y) <∞ (A.6)

and any δ ∈ (0, δ0), there holds
∫

Rn

|(Φδ ∗ g − g)(x)|p dx ≤ K1δ
p
0Λj(g) . (A.7)

In order to use Lemma A.2 with functions defined only on Ω, we next study the behaviour of the
functional Λj(·,Ω) with respect to space truncation.

Lemma A.3. Let ψ ∈ C∞
0 (Ω) and consider j ≥ 1 and g ∈ Lp(Ω) such that Λj(g,Ω) < ∞. Then

gψ ∈ Lp(R
n) with

‖gψ‖Lp(Rn) ≤ ‖ψ‖∞‖g‖p , (A.8)

Λj(gψ) ≤ 2p
[

‖ψ‖∞Λj(g,Ω) + ‖∇ψ‖∞‖g‖pp
]

. (A.9)
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Proof. We define gψ on R
n by setting (gψ)(x) = g(x)ψ(x) for x ∈ Ω and (gψ)(x) = 0 for x ∈ R

n \Ω.
Since (A.8) is obvious, we turn to (A.9) and deduce from the properties of ψ and the symmetry of ̺j
that

Λj(gψ) =

∫

Ω×Ω

∣

∣(gψ)(x)− (gψ)(y)
∣

∣

p

|x− y|p
̺j(x− y) d(x, y)

+ 2

∫

Ω×(Rn\Ω)

∣

∣(gψ)(x)
∣

∣

p

|x− y|p
̺j(x− y) d(x, y)

≤ 2p−1

∫

Ω×Ω

[

|ψ(x)|p|g(x)− g(y)|p + |g(y)|p|ψ(x)− ψ(y)|p
]̺j(x− y)

|x− y|p
d(x, y)

+ 2

∫

Ω×(Rn\Ω)

|g(x)|p|ψ(x)− ψ(y)|p

|x− y|p
̺j(x− y) d(x, y)

≤ 2p−1‖ψ‖∞Λj(g,Ω) + 2p−1‖∇ψ‖∞

∫

Ω×Ω

|g(y)|p̺j(x− y) d(x, y)

+ 2‖∇ψ‖∞

∫

Ω×(Rn\Ω)

|g(x)|p̺j(x− y) d(x, y)

≤ 2p‖ψ‖∞Λj(g,Ω) + 2p‖∇ψ‖∞

∫

Ω

|g(x)|p
∫

Rn

̺j(x− y) d(x, y) ,

and we use (A.1) to complete the proof. �

After this preparation, we may start to investigate the compactness issue and, as in [8, Appendix B]
and [14, Appendix B], we first establish the relative compactness of the sequence

(

(ψfj) ∗Φδ

)

j≥1
for

each δ ∈ (0, 1) and ψ ∈ C∞
0 (Ω).

Lemma A.4. Let (p, q, r) ∈ (1,∞)3, T > 0, and a sequence (fj)j≥1 of measurable functions on
(0, T )× Ω satisfying (A.3). For any non-negative function ψ ∈ C∞

0 (Ω) and δ ∈ (0, 1), the sequence
(

(ψfj) ∗ Φδ

)

j≥1
is relatively compact in Lp((0, T )× R

n).

Proof. Introducing U1 := {x ∈ R
n : d(x,Ω) < 1}, we note that, for t ∈ (0, T ) and x 6∈ U1,

gj(t, x) :=
[

(ψfj(t, ·)) ∗ Φδ

]

(x) =

∫

Rn

ψ(y)fj(t, y)Φδ(x− y) dy

=

∫

Ω

ψ(y)fj(t, y)Φδ(x− y) dy = 0 ,

since suppΦδ ⊂ Bδ(0) ⊂ B1(0) by (A.4). Therefore,

supp gj(t) ⊂ U1 , t ∈ (0, T ) , j ≥ 1 . (A.10)
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On the one hand, it follows from (A.3b) and the Riesz-Fréchet-Kolmogorov theorem, see [6, Theo-
rem IV.25 & Corollary IV.27] for instance, that

(

x 7→

∫ t2

t1

gj(t, x) dt

)

j≥1

is relatively compact in Lp(U1) (A.11)

for all 0 < t1 < t2 < T . On the other hand, for h ∈ (0, T ), j ≥ 1, and (t, x) ∈ (0, T − h)× U1,

|gj(t + h, x)− gj(t, x)| =

∣

∣

∣

∣

∫

Rn

ψ(y)[fj(t+ h, y)− fj(t, y)]Φδ(x− y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t+h

t

〈

∂tfj(s), ψΦδ(x− ·)
〉

ds

∣

∣

∣

∣

≤

∫ t+h

t

‖∂tfj(s)‖(W 1
q )

′‖ψΦδ(x− ·)‖W 1
q
ds .

Owing to the properties of ψ and Φδ,

‖ψΦδ(x− ·)‖W 1
q
= ‖ψΦδ(x− ·)‖W 1

q (R
n)

≤ ‖ψ‖∞‖Φδ(x− ·)‖W 1
q (R

n) + ‖∇ψ‖∞‖Φδ(x− ·)‖Lq(Rn)

≤ ‖ψ‖∞‖Φδ‖W 1
q (R

n) + ‖∇ψ‖∞‖Φδ‖Lq(Rn)

≤ 2‖ψ‖W 1
∞
‖Φ‖W 1

q (R
n)δ

−[q(n+1)−n]/q .

Therefore,

|gj(t + h, x)− gj(t, x)| ≤ 2‖ψ‖W 1
∞
‖Φ‖W 1

q (R
n)δ

−[q(n+1)−n]/q

∫ t+h

t

‖∂tfj(s)‖(W 1
q )

′ ds ,

and we infer from (A.3c) and Hölder’s inequality that

|gj(t+ h, x)− gj(t, x)| ≤ 2‖ψ‖W 1
∞
‖Φ‖W 1

q (R
n)h

(r−1)/rK
1/r
0 δ−[q(n+1)−n]/q .

Integrating with respect to (t, x) ∈ (0, T − h)× U1, we are led to
∫ T−h

0

∫

U1

|gj(t+ h, x)− gj(t, x)| dxdt

≤ 2T |U1|‖ψ‖W 1
∞
‖Φ‖W 1

q (R
n)h

(r−1)/rK
1/r
0 δ−[q(n+1)−n]/q . (A.12)

Owing to (A.11) and (A.12), we are in a position to apply [26, Theorem 1] and conclude that (gj)j≥1

is relatively compact in Lp((0, T )× U1) and thus in Lp((0, T )× R
n) according to (A.10). �

The next step is the relative compactness of (fj)j≥1 in Lp,loc((0, T )× Ω).

Lemma A.5. Let (p, q, r) ∈ (1,∞)3, T > 0, and a sequence (fj)j≥1 of measurable functions on
(0, T ) × Ω satisfying (A.3). For any non-negative function ψ ∈ C∞

0 (Ω), the sequence
(

ψfj
)

j≥1
is

relatively compact in Lp((0, T )× Ω).
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Proof. We argue as in the proof of [25, Proposition 4.2] and consider δ0 ∈ (0, 1). The properties of
the sequence (̺j)j≥1 entail that there is Jδ0 ≥ 1 such that

∫

Bδ0
(0)

̺j(x) dx ≥
1

2
, j ≥ Jδ0 ,

so that ̺j satisfies (A.5) for any j ≥ Jδ0 . Since ψfj(t) belongs to Lp(R
n) for j ≥ 1 and a.e. t ∈ (0, T ),

we infer from (A.3b), Lemma A.2, and Lemma A.3 that, for δ ∈ (0, δ0) and j ≥ Jδ0 ,
∫ T

0

∫

Rn

∣

∣

∣

[

(ψfj(t, ·)) ∗ Φδ

]

(x)− ψ(x)fj(t, x)
∣

∣

∣

p

dxdt

≤ K1δ
p
0

∫ T

0

Λj(ψfj(t)) dt

≤ (2δ0)
pK1

[

‖ψ‖∞

∫ T

0

Λj(fj(t),Ω) dt + ‖∇ψ‖∞

∫ T

0

‖fj(t)‖
p
p dt

]

≤ K0K1(2δ0)
p‖ψ‖W 1

∞
.

Recalling Lemma A.4, the above inequality implies that (ψfj)j≥1 is arbitrarily close to relatively
compact sequences in Lp((0, T ) × R

n), so that it is also relatively compact in Lp((0, T ) × R
n) and

thus in Lp((0, T )× Ω). �

In view of Lemma A.5, we are left to handle the behaviour of (fj)j≥1 near the boundary of Ω. In
this direction, we recall the following result established in [25, Lemma 5.1].

Lemma A.6 ( [25, Lemma 5.1]). There are r0 > 0 depending on Ω and ̺ and constants (K2, K3) ∈
(0,∞)2 depending on n, Ω, and p with the following property: given r ∈ (0, r0), there is Ir ≥ 1 such
that, for every j ≥ Ir and g ∈ Lp(Ω),

∫

Ω

|g(x)|p dx ≤ K2

∫

Ωr

|g(x)|p dx+K3r
pΛj(g,Ω) ,

where Ωr := {x ∈ Ω : d(x, ∂Ω) > r}.

Proof of Proposition A.1. We argue as in the proof of [25, Theorem 1.2] with the help of Lemma A.6.
We first readily infer from (A.3b), Lemma A.5, and a diagonal process that there are a subsequence
(jk)k≥1, jk → ∞, and f ∈ Lp((0, T )× Ω) such that

fjk ⇀ f in Lp((0, T )× Ω) ,

fjk −→ f in Lp((0, T )× Ωr) ,
(A.13)

for each r ∈ (0, r0). Moreover, arguing as in the proof of [25, Equation (24)], we deduce from (A.3b)
and (A.13) that

f ∈ Lp((0, T ),W
1
p (Ω)) . (A.14)
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Now, let r ∈ (0, r0) and j ≥ jr. It follows from (A.3b), (A.14), Lemma A.6 (with g = fjk − f),
and [5, Theorem 1] that

∫ T

0

∫

Ω

∣

∣fjk(t, x)− f(t, x)
∣

∣

p
dxdt ≤ K2

∫ T

0

∫

Ωr

∣

∣fjk(t, x)− f(t, x)
∣

∣

p
dxdt

+K3r
p

∫ T

0

Λjk

(

(fjk − f)(t),Ω
)

dt

≤ K2

∫ T

0

∫

Ωr

∣

∣fjk(t, x)− f(t, x)
∣

∣

p
dxdt

+ 2p−1K3r
p

∫ T

0

[

Λjk

(

fjk(t),Ω
)

+ Λjk

(

f(t),Ω
)

]

dt

≤ K2

∫ T

0

∫

Ωr

∣

∣fjk(t, x)− f(t, x)
∣

∣

p
dxdt

+ 2p−1K3r
p

[

K0 +K4‖̺‖L1(Rn)

∫ T

0

‖f(t)‖W 1
p
dt

]

,

where K4 is a positive constant depending only on Ω and p. Recalling (A.1), we may let k → ∞ in
the above inequality and use (A.13) to deduce that

lim sup
k→∞

∫ T

0

∫

Ω

∣

∣fjk(t, x)− f(t, x)
∣

∣

p
dxdt ≤ 2p−1K3r

p

[

K0 +K4

∫ T

0

‖f(t)‖W 1
p
dt

]

for all r ∈ (0, r0). We then take the limit r → 0 in the above inequality to complete the proof. �

Appendix B. Diffusive limit in L1: an auxiliary result

We recall that, for j ≥ 1, the kernel χj and the nonlocal operator Γχj
are defined by (4.1) and (4.2),

respectively.

Proposition B.1. Let Ω be a bounded domain of Rn with C2+α-smooth boundary ∂Ω, T > 0, and
d > 0. We consider a sequence (Sj)j≥1 in L∞((0, T )×Ω) and a sequence (w0

j )j≥1 in L∞(Ω) such that

lim
j→∞

[

‖Sj − S‖L1((0,T )×Ω) + ‖w0
j − w0‖1

]

= 0 (B.1)

for some S ∈ L1((0, T )×Ω) and w0 ∈ L1(Ω). For j ≥ 1, let wj ∈ C1([0,∞), L∞(Ω)) be the solution
to

∂twj = dΓχj
wj + Sj in (0, T )× Ω ,

wj(0) = w0
j in Ω ,

(B.2)

where χj and Γχj
are defined in (4.1) and (4.2), respectively. If there is w∞ ∈ L1((0, T )× Ω) such

that
lim
j→∞

‖wj − w∞‖L1((0,T )×Ω) = 0 , (B.3)
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then w∞ = w, where w denotes the unique mild solution to

∂tw = D∆w + S in (0, T )× Ω ,

∇w · n = 0 on (0, T )× ∂Ω ,

w(0) = w0 in Ω ,

(B.4)

with n denoting the outward normal unit vector field to ∂Ω and

D :=
d

2n

∫

Rn

|z|2ϕ(z) dz .

Proof. The proof is inspired by [4, Sections 3.2.2 & 3.2.4]. We consider Σ ∈ C∞
0 ((0, T )× Ω), W 0 ∈

C2+α(Ω̄) and let W ∈ C1+α/2,2+α([0, T ]× Ω̄) be the classical solution to

∂tW = D∆W + Σ in (0, T )× Ω ,

∇W · n = 0 on (0, T )× ∂Ω ,

W (0) =W 0 in Ω .

(B.5)

On the one hand, it follows from (B.4), (B.5), and the contraction property of the heat semigroup
in L1(Ω) that

sup
t∈[0,T ]

‖W (t)− w(t)‖1 ≤ ‖W 0 − w0‖1 + ‖S − Σ‖L1((0,T )×Ω) . (B.6)

On the other hand, it follows from (B.2) and (B.5) that wj −W solves

∂t(wj −W ) = dΓχj
(wj −W ) + Fj + Sj − Σ in (0, T )× Ω ,

(wj −W )(0) = w0
j −W 0 in Ω ,

(B.7)

with Fj := dΓχj
W −D∆W . Since

∫

Ω

Γχj
z(x)sign(z(x)) dx =

∫

Ω×Ω

χj(x, y)z(y)sign(z(x)) d(x, y)

−

∫

Ω×Ω

χj(x, y)|z(x)| d(x, y)

≤

∫

Ω×Ω

χj(x, y)|z(y)| d(x, y)

−

∫

Ω×Ω

χj(y, x)|z(y)| d(x, y)

≤ 0

for all z ∈ L1(Ω) due to the symmetry of χj, we infer from (B.7) that

sup
t∈[0,T ]

‖wj(t)−W (t)‖1 ≤ ‖w0
j −W 0‖1 + ‖Fj + Sj − Σ‖L1((0,T )×Ω)

≤ ‖w0
j − w0‖1 + ‖w0 −W 0‖1 + ‖Fj‖L1((0,T )×Ω)
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+ ‖Sj − S‖L1((0,T )×Ω) + ‖S − Σ‖L1((0,T )×Ω) . (B.8)

We now estimate Fj . To this end, we proceed as in [4, Section 3.2.2] and denote an extension of
W to [0, T ]× R

n by W ∈ C1+α/2,2+α([0, T ]× R
n). Then Fj = Fj,1 + Fj,2 with

Fj,1(t, x) := d

∫

Rn

χj(x, y)
[

W(t, y)−W(t, x)
]

dy −D∆W(t, x) ,

Fj,2(t, x) := −d

∫

Rn\Ω

χj(x, y)
[

W(t, y)−W(t, x)
]

dy

for (t, x) ∈ [0, T ]×Ω̄. We first argue as in the proof of [4, Equation (3.15)] and use a Taylor expansion
and the radial symmetry of ϕ to deduce that there is a positive constant B1(W) depending only on
n, Ω, ϕ, T , and W such that

‖Fj,1‖L1((0,T )×Ω) ≤ B1(W)j−α . (B.9)

Next, if x ∈ Ω1/j := {y ∈ Ω : dist(y, ∂Ω) < 1/j} and j is large enough, then the orthogonal
projection Px of x on ∂Ω is well-defined and it follows from [4, Lemma 3.14] that there is a positive
constant B2(W) depending only on n, Ω, ϕ, T , and W such that, for t ∈ [0, T ],

∣

∣

∣

∣

Fj,2(t, x) +
d

2

∫

Rn\Ω

χj(x, y)
〈

D2W(t, Px)(y − Px), (x− Px)
〉

dy

∣

∣

∣

∣

≤ B2(W)j−α . (B.10)

Now, |x− Px| ≤ 1/j,

suppχj(x, ·) ⊂ K := {y ∈ R
n : dist(y,Ω) ≤ 1} ,

|y − Px| ≤ |y − x|+ |x− Px| ≤ 2/j for y ∈ suppχj(x, ·) ,

so that
∣

∣

∣

∣

d

2

∫

Rn\Ω

χj(x, y)
〈

D2W(t, Px)(y − Px), (x− Px)
〉

dy

∣

∣

∣

∣

≤
d‖D2W(t)‖L∞(K)

j2

∫

Rn\Ω

χj(x, y) dy

≤ jnd‖D2W‖L∞([0,T ]×K)

∫

Rn

ϕ(j(x− y)) dy

≤ d‖D2W‖L∞([0,T ]×K) .

Recalling (B.10), we have shown that there is a positive constant B3(W) depending only on n, Ω, ϕ,
T , and W such that

Fj,2(t, x) ≤ B3(W) , (t, x) ∈ [0, T ]× Ω1/j . (B.11)

Finally, if x ∈ Ω \ Ω1/j , then |x− y| ≥ 1/j for all y ∈ R
n \ Ω. Thus, due to (4.1),

Fj,2(t, x) = 0 , (t, x) ∈ [0, T ]×
(

Ω \ Ω1/j

)

. (B.12)
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Collecting (B.6), (B.8), (B.9), (B.11), and (B.12), we find

sup
t∈[0,T ]

‖wj(t)− w(t)‖1 ≤ 2‖W 0 − w0‖1 + 2‖S − Σ‖L1((0,T )×Ω) + ‖w0
j − w0‖1

+B1(W)j−α + TB3(W)|Ω1/j |+ ‖Sj − S‖L1((0,T )×Ω) .

Hence,

‖wj − w‖L1((0,T )×Ω) ≤ 2T‖W 0 − w0‖1 + 2T‖S − Σ‖L1((0,T )×Ω) + T‖w0
j − w0‖1

+ TB1(W)j−α + T 2B3(W)|Ω1/j |+ T‖Sj − S‖L1((0,T )×Ω) .

We then let j → ∞ in the above inequality and deduce from (B.1), (B.3), and the definition of Ω1/j

that

‖w∞ − w‖L1((0,T )×Ω) ≤ 2T‖W 0 − w0‖1 + 2T‖S − Σ‖L1((0,T )×Ω) .

Since the above inequality is valid for all (Σ,W 0) ∈ C∞
0 ((0, T )×Ω)×C∞

0 (Ω), we now use the density
of C∞

0 ((0, T )×Ω) in L1((0, T )×Ω), along with that of C∞
0 (Ω) in L1(Ω), to complete the proof. �

References

[1] H. Abels and C. Hurm, Strong nonlocal-to-local convergence of the Cahn-Hilliard equation and its operator,
2023.

[2] H. Abels and Y. Terasawa, Convergence of a nonlocal to a local diffuse interface model for two-phase flow

with unmatched densities, Discrete Contin. Dyn. Syst., Ser. S, 15 (2022), pp. 1871–1881.
[3] H. Amann, Ordinary differential equations. An introduction to nonlinear analysis. Transl. from the German by

Gerhard Metzen, vol. 13 of De Gruyter Stud. Math., Berlin: Walter de Gruyter, 1990.
[4] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, and J. J. Toledo-Melero, Nonlocal diffusion problems,

vol. 165 of Math. Surv. Monogr., Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad
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651.

[12] E. Davoli, L. Scarpa, and L. Trussardi, Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann

boundary conditions and viscosity terms, Arch. Ration. Mech. Anal., 239 (2021), pp. 117–149.
[13] A. Doelman, T. J. Kaper, and P. A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model,

Nonlinearity, 10 (1997), pp. 523–563.



A nonlocal Gray-Scott model 27

[14] C. Elbar and J. Skrzeczkowski, Degenerate Cahn-Hilliard equation: from nonlocal to local, J. Differ. Equa-
tions, 364 (2023), pp. 576–611.

[15] P. Gandhi, Y. R. Zelnik, and E. Knobloch, Spatially localized structures in the Gray-Scott model, Philos.
Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci., 376 (2018), p. 20. Id/No 20170375.

[16] J. K. Hale, L. A. Peletier, and W. C. Troy, Exact homoclinic and heteroclinic solutions of the Gray-Scott

model for autocatalysis, SIAM J. Appl. Math., 61 (2000), pp. 102–130.
[17] S. L. Hollis, R. H. Martin, and M. Pierre, Global existence and boundedness in reaction-diffusion systems,

SIAM J. Math. Anal., 18 (1987), pp. 744–761.
[18] T. Kolokolnikov, M. J. Ward, and J. Wei, Zigzag and breakup instabilities of stripes and rings in the

two-dimensional Gray-Scott model, Stud. Appl. Math., 116 (2006), pp. 35–95.
[19] J. S. McGough and K. Riley, Pattern formation in the Gray-Scott model, Nonlinear Anal., Real World Appl.,

5 (2004), pp. 105–121.
[20] S. Melchionna, H. Ranetbauer, L. Scarpa, and L. Trussardi, From nonlocal to local Cahn-Hilliard

equation, Adv. Math. Sci. Appl., 28 (2019), pp. 197–211.
[21] D. S. Morgan and T. J. Kaper, Axisymmetric ring solutions of the 2d Gray-Scott model and their destabi-

lization into spots, Physica D, 192 (2004), pp. 33–62.
[22] A. Moussa, From nonlocal to classical Shigesada-Kawasaki-Teramoto systems: triangular case with bounded

coefficients, SIAM J. Math. Anal., 52 (2020), pp. 42–64.
[23] J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), pp. 189–192.
[24] R. Peng and M. X. Wang, Some nonexistence results for nonconstant stationary solutions to the Gray-Scott

model in a bounded domain, Appl. Math. Lett., 22 (2009), pp. 569–573.
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