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Abstract

Despite promising experimental works, high fidelity numerical simulations of
chordwise flexible blade are useful to better understanding. However, such sim-
ulation remains a challenging problem as it requires a Fluid-Structure Inter-
action (FSI) solver capable of accurately predicting the stall dynamics, while
computing the deformation of a solid with complex geometry. In this paper, the
authors propose a LES-based FSI solver using 3D solid elements for the solid
and unstructured grid for fluid and solid solvers. This approach aims at being
universal and is based on a partitioned coupling scheme, allowing low density
ratios of the structure to the fluid. It uses an original pseudo-solid method
for the mesh movement solving, specifically developed for this work. Besides,
this solver is suited for massively parallel computing and can perform Dynamic
Mesh Adaptation to be able to take into account any solid movement. Both fluid
and solid solvers are validated independently before validation of the FSI solver
against a 2D laminar benchmark, including mesh convergence study. The entire
methodology is then successfully applied to experimental 3D complex case with
high Reynolds number, confirming the potential of the FSI solver for its intended
use, without geometry restriction. This is finally illustrated with a simulation
of an experiment involving a chordwise flexible blade with large deformation,
which has never been reproduced with a 3D LES approach in litterature so far.
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1. Introduction

Fluid-Structure Interaction (FSI) phenomena are very common in nature
and human activities. It happens as soon as a fluid and a solid are in contact
and that the solid is deformed significantly under the effect of the forces applied
by the fluid. The structure displacement influences also the flow, resulting in
a complex coupling process [1]. Examples in nature include wings of birds and
insects interacting with surrounding air, or fish swimming [2]. In order to get a
better understanding of these problems, numerical simulations of FSI cases have
been developed substantially in the last decade. This has been made possible
by recent increases in the available computational resources, but it is still very
challenging because it requires specific solvers in different physics fields. Thus,
FSI simulations use has spread to bio-medicine and even civil engineering [3].
FSI simulations can also be useful to design efficiently aircraft wings, drone
wings or turbine blades.

A recent review of fluid dynamics of flapping and pitching foils [4] shows that
even if the interest in the subject is growing since the last fifteen years, most
of the studies focused on rigid foil. Only a few involved flexible foil, and they
mainly concerned experimental works, showing that it is still very difficult to
numerically reproduce the FSI case of a chordwise flexible foil with high fidelity.
However, Hoerner et al. [5, 6] showed in recent experimental studies that in the
operational characteristics of a Vertical Axis Turbine (VAT), blades with high
flexibility deliver significantly higher torque and can reduce structural loads,
extending turbine lifetime. These potential improvements of turbine efficiency
seem to be explained by the influence of the chordwise flexibility on dynamic
stall which implies a drag reduction.
To simulate cases of that kind, a high fidelity FSI solver is required. Such
tool must be able to handle cases with turbulence and complex geometries,
for the fluid as well as for the solid. This involves a FSI solver with different
characteristics:

• For the flow solving, it is essential to correctly capture the velocity gra-
dients close to the blade, which can be difficult with techniques based on
immersed boundaries [7], given that the interpolations near the interface
can be a source of error [8]. Besides, as a fine description of boundary
layer at high Reynolds number requires small cell sizes, ensure the com-
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putation accuracy in cases with large structure displacements involves a
fine grid resolution in an extended region. The necessary large amount of
cells would induce prohibitively high computational cost. On the contrary,
body fitted techniques do not suffer from these deficiencies, but require a
mesh movement computation.

• In regard to the computation of the structure deformation, several meth-
ods exist, generally based on different types of finite element. Nonethe-
less, accurately describe the foil geometry and internal stress, especially
in cases of chordwise flexibility, implies a solid solver that can use 3D
solid elements, where FSI solvers sometimes prefer to use membrane or
shell elements [9, 10]. These elements are highly adapted to reproduce the
structure behaviour with the corresponding geometry, but do not allow to
reproduce structures with more complex geometry, such as a foil.

• Furthermore, flexible blades are composed by material with density com-
parable with the water density, implying that the FSI coupling can be
very unstable and requires a strong coupling [11]. A monolithic approach
can overcome this issue [12], but this solution lacks adaptability, so that a
partitioned scheme is favored in most of recent studies [13]. This method
allows to fully benefit of highly advanced solvers for both fields of appli-
cation [8].

These requirements explain the limited number of numerical studies concerning
flexible foil. However, some FSI solvers have been developed to face this chal-
lenge. For instance, MacPhee et al. [14] managed to simulate a three flexible
blades turbine using the Unsteady Reynolds-Averaged Navier-Stokes (URANS)
approach with the k-ω-SST model for turbulence. They found an increase of
power coefficients around 9.6% in comparison to the same turbine with rigid
blade. Similar method has been used by Marinić-Kragić et al. [15] to reproduce
a Savonius-type wind turbine and they also found an additional 8% increase in
the power coefficient. Nevertheless, Reynolds-Averaged Navier-Stokes (RANS)
based FSI solvers do not always provide reliable results, because the pressure
distribution is not accurate enough to conveniently determine dynamic stall
separation point position. This is why Hoerner et al. [5] suggest that three-
dimensional Large-Eddy Simulations (LES) approach is required to reproduce
with high fidelity a high Reynolds number case involving a chordwise flexible
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blade.
As detailed in [16], LES-based FSI solvers face different issues, because they
demand higher grid quality than RANS approach and impose a fine time and
space resolution. When this mesh resolution changes over time because of the
deformations of the fluid domain, additional errors arise due to the lack of
commutation between the time and space partial derivatives, and the filtering.
These time and space commutation errors have been largely studied [17, 18] and
they impose to have smooth variations of the filter width in both space and time.
Also, the moving grid quality can be difficult to maintain, as it requires robust
and efficient mesh movement method, especially for unstructured grids. Very
few LES-based FSI solvers have been developed [16, 19, 20, 21], but they never
use 3D solid elements, making a chordwise flexible foil simulation impossible.
To the best of authors’ knowledge, LES-based FSI solvers meeting all the previ-
ous requirements do not exist in the literature so far. That is why the motivation
of this study is to present the design of a high fidelity FSI solver, able to re-
produce a wide variety of FSI configurations. It uses a LES solver based on
Finite Volume Method (FVM) for the flow and Finite Element Method (FEM)
for the structure displacement prediction, with unstructured grids for both do-
mains. This approach allows the numerical simulation of 3D turbulent FSI cases,
without geometry restriction, even implying large deformations. For that, an
original mesh movement method based on pseudo-solid approach coupled with
Dynamic Mesh Adaptation (DMA) has been developed. Besides, it is based on
a partitioned coupling scheme, allowing low density ratios of the structure to
the fluid. This paper is organized as follows. After a brief presentation of the
numerical methodology used for both fluid and solid fields in section 2, a focus
is performed in section 3 on the original method developed for the unstructured
fluid mesh movement. In section 4, the FSI coupling scheme is explained in
details. The present FSI solver is then validated on a 2D laminar (section 5)
and a 3D turbulent benchmarks (section 6). Finally, an experiment involving a
chordwise flexible blade is simulated in section 7.

2. Numerical methodology

All the present work has been performed based on the YALES2 library [22].
It can handle structured or unstructured meshes with a high number of elements
thanks to a double domain decomposition. At first, the mesh is partitioned into
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sub-parts which are affected to each computational core. Then, the sub-parts
are split again into cell group of prescribed size. This technique allows for easily
optimizing the use of processor memory with cache-aware algorithms and may
also be exploited by deflation algorithms [23], in order to fully benefit from
high-performance computing on massively parallel machines.

2.1. Computational Fluid Dynamics (CFD) solver

The equations describing the flow dynamics are the Navier-Stokes equations.
To take into account moving bodies, the Arbitrary-Lagrangian-Eulerian (ALE)
approach is used. With the latter, which consists in integrating the governing
equations on deformable control volumes, nodes of the computational mesh are
moved as Lagrangian points. In order to express the modified Navier-Stokes
equation in the ALE framework, the material time derivative has to be defined.
If nodes are moved at a velocity ẋ, then the material time derivative can be
written as

du

dt
=
∂u

∂t
+ c · ∇u , (1)

where c = u − ẋ is the relative velocity between material and mesh points.
Thus, the governing equations can be rewritten as follow

∂u

∂t
+ (c · ∇)u = −∇P

ρf
+ ν∆u +∇ · τSGS + g , (2)

∇ · u = 0 , (3)

where u is the vector field of material velocity, P the pressure, ρf the fluid
density, ν the kinematic viscosity, τSGS the sub-grid scale (SGS) stress tensor
in LES approach and g the gravitational acceleration. Additional details for
the ALE technique can be found in [24] and its implementation in the YALES2
framework in [25]. In the ALE solver, a FVM with a central 4th-order numerical
scheme is used for spatial discretization. For the sake of clarity, next equations
in this part are written without SGS stress tensor and without the gravitational
acceleration.

Eq. (2) are solved by using a projection method for pressure-velocity cou-
pling [26]. It consists in a “velocity prediction” step, which allows to compute
an intermediate velocity u∗n+1 from the given velocity un by integration of the
Navier-Stokes equations without the pressure term. In the ALE approach, and
by using the first order explicit Euler time advancement scheme for simplicity,
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this step reads,
u∗n+1 − un

∆t
= −(cn · ∇)un + ν∇2un . (4)

In YALES2, a 4th-order Runge–Kutta scheme is used for time advancement [27].
The velocity at the end of the time-step, un+1, is then related to the intermediate
one, u∗n+1, by

un+1 − u∗n+1

∆t
= −
∇Pn+ 1

2

ρf
. (5)

Taking the divergence of Eq. (5) and considering that un+1 has to satisfy the
divergence free condition, the Poisson equation is obtained

∆Pn+ 1
2

=
ρf
∆t
∇ · u∗n+1. (6)

This linear system is solved using a Deflated Preconditionned Conjugate Gra-
dient (DPCG) solver [23]. Finally, the last step is the “velocity correction” step
where the newly obtained pressure field Pn+ 1

2
is used to correct u∗n+1 by solving

Eq. (5).
It must also be noted that the integration volume Ω is chosen so that it

verifies:
Vn+1 − Vn = ∆t

∫
Ω

∇ · ẋn+1 dΩ , (7)

where Vn is the control volume at time tn. This relation, known as the Dis-
crete Geometric Conservation Law (DGCL) [28, 29], states that for each control
volume, the volume change between tn and tn+1 must be equal to the volume
swept by the control volume faces during ∆t.

2.2. Computational Structural Mechanics (CSM) solver

The equilibrium equation governing the solid dynamics can be written in a
Lagrangian frame such as:

ρs
∂2d

∂t2
= ∇ · σ + b . (8)

Here, ρs refers to the solid density, d the displacement, σ the Cauchy stress
and b the body force applied on the solid. In the Structural Mechanics Solver
(SMS), a classical finite element framework is used for spatial discretization,
with second-order 2D or 3D solid elements like 9-nodes quadrilateral or 27-nodes
hexahedron. This choice of element for FSI coupling framework, combined with
unstructured grid solver for the fluid side, gives the possibility to consider a
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broader range of FSI configurations.
With a finite element formulation, Eq. (8) becomes [30]:

M
∂2d

∂t2
+

∫
Ω

B̂TSdΩ = f (9)

where M is the mass matrix, B̂ the strain-displacement matrix, S the second
Piola-Kirchhoff stress and Ω the domain in the reference configuration. Here, d

and f are vectors that contain displacements and forces of each domain node,
including the hydrodynamic forces at the solid boundaries in FSI cases. As Ω,
B̂ and S depend on the deformation state, Eq. (9) can be noted

Md̈n+1 + P(dn+1) = fn+1 (10)

at each discrete time tn+1. To solve this non-linear equation, a Newton-Raphson
method is applied here, so that the problem becomes the minimization of the
function Ψ written

Ψ(dn+1) = fn+1 −Md̈n+1 −P(dn+1) . (11)

To the first order, this equation can be approximated as

Ψ(di+1
n+1) ≈ Ψ(di

n+1) +

(
∂Ψ

∂d

)i

n+1

ddi
n+1 = 0 (12)

with i the Newton iteration counter. Thus, one Newton iteration consists in
solving Eq. (12) and find the displacement increment dd. To this purpose, the
tangent stiffness matrix KT has to be computed as

KT =
∂P

∂d

Kab
T =

∫
Ω

B̂T
a DT B̂bdΩ + GabI

(13a)

(13b)

where I is the identity matrix and Gab, the geometric stiffness term, can be
written

Gab =

∫
Ω

Na,ISIJNb,JdΩ . (14)

In Eq. (13b), DT is the matrix of tangent moduli, deduced from the constant
elastic moduli CIJKL.

With the Saint-Venant-Kirchhoff model [30] used here, the stress-strain re-
lation is

SIJ = CIJKLEKL (15)
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where E is the Green strain.
For time integration, the generalized-α [31] method has been chosen. Thus, the
linear system obtained in Eq. (12) is solved using a Preconditionned Conjugate
Gradient (PCG). This results in a new displacement increment dd used to move
the domain. The process then repeats until∥∥Ψ(di+1

n+1)
∥∥
∞ ≤ εnewton (16)

where εnewton is a chosen convergence criterion.

3. Mesh movement solver

As discussed in the first section, immersed boundaries methods do not al-
low the precise description of geometries which is critical to accurately predict
boundary layers in turbulent cases. Therefore, body fitted meshes are preferred.
Besides, the FSI coupling takes place at the interface between fluid and struc-
ture, so that the fluid domain has to move according to the solid displacement.
This imposes to compute a grid movement for the entire fluid domain while
maintaining suitable cells quality. This is particularly challenging for cases with
large deflection on unstructured grid, because the mesh has no preferential di-
rection contrary to structured mesh. This facilitates the distribution of the
deformation among cells with algebraic methods such as transfinite interpola-
tion (TFI) [32, 33], tension spring [34] analogy or torsion spring analogy [35].
These methods are either not appropriate for unstructured meshes because it
implies interpolation along mesh lines, or too expensive for large scale problems,
as explained in [36].

Furthermore, to be able to reproduce numerically fluid structure interaction
cases with turbulent flows, mesh movement method has to be suitable for a grid
with a large number of elements and different mesh size variation, especially for
LES which requires fine grid resolution. However, precision of spatial schemes
suffers from mesh distortion [37], so that it is preferable to avoid to deform the
mesh in regions where strong velocity gradients occur. Thus, mesh movement
requires an algorithm that can be fully parallelized and allowing to control
which regions of the domain will withstand the deformation. For this work, a
pseudo-solid method has then be developed [38, 39].
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3.1. Pseudo-solid method

The goal of this method is then to define mesh deformation field in the ALE
approach. The principle is to consider the fluid domain as a linear elastic solid.
The new nodes position is then computed as the equilibrium position of this
“pseudo” solid material. In this context, inertial effects are not advisable here
so time dependencies are ignored. The mesh movement consists then in solving a
linear static problem, and the displacement constrains that the domain undergo
become usual boundaries conditions of a solid with imposed displacement. With
a finite element formulation, it gives

Kd = f , (17)

with K the stiffness matrix, d the nodes displacement and f the forces including
only the displacement conditions. With this formulation, the equilibrium posi-
tion of the pseudo-solid is considered to be the mesh configuration at t = t0 = 0.

As explained above, it is very useful to select regions of the domain that will
move without cell deformation, and the zone that will withstand the deforma-
tion. The pseudo-solid method is very convenient for this purpose because it
only requires to change the element pseudo-Young modulus E, that will directly
affect the cell flexibility. In fact, for an heterogeneous solid, the part that will
deform first is the less rigid one. Moreover, in most of cases, the smallest cells
are regrouped close to the flexible body because it corresponds to the zone of
interest, and it is essential to maintain the quality of these cells. Therefore, the
generic technique developed here to compute the pseudo-Young modulus field of
the pseudo-solid consists in establishing a E profile as a function of the distance
from the object R.

In this study, this distance R is computed with a geometrical method for
unstructured simplicial meshes [40]. The pseudo-Poisson ratio of all elements is
0.2 and their pseudo-Young modulus E is computed as

E(R < Rmin) = 100Eint

E(Rmin ≤ R ≤ Rmax) = Eint −
(R−Rmin)(Eint − Emin)

Rmax −Rmin

E(R > Rmax) = Emin

Eint = Eminyr

(18a)

(18b)

(18c)

(18d)

where the pseudo-Young modulus ratio yr, Rmin and Rmax are user’s parame-
ters. On the other hand, the value of Emin has no influence since it is a linear
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Figure 1: From top to bottom: distance field from the object R and pseudo-Young modulus
field E.

elastic problem. This method ensures that for R < Rmin, cells are not deformed
and only move according to the imposed displacement, thanks to the high jump
of E at Rmin. On the contrary, the mesh deformation takes place in the transi-
tion zone between Rmin and Rmax. The size of the regions can be easily adapted
for the different cases with these two parameters. However the deformation is
not uniform in the transition zone, because for yr = 1, only cells at R = Rmin

are deformed, and for high value of yr, most of the deformation will be taken
by cells at R ≈ Rmax. The suitable value for yr then depends on the size of the
transition zone, the displacement amplitude and the cells size distribution. An
example of both R and E fields can be visualized in Fig. 1, where the geometry
used corresponds to the case presented in section 5.

This method has proven to be efficient but could be improved; the cells
quality of the elements with the lowest E frequently dropped indeed first, but
the deformation did not sufficiently affect cells closer to the object so that the
computations stopped and failed even though cells at Rmin ≤ R ≤ Rmax were
still nearly non deformed.
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Figure 2: Representation in 2D case of a cell (in purple) and of its reference shape (in green).

3.2. Adjustment of pseudo-material properties

In order to improve the previous method, the idea is to make the cells pseudo-
Young modulus E depend on their quality. The latter can be determined quan-
titatively by computing the cells skewness S defined by

S =
Vref − V
Vref

(19)

where V is the cell volume and Vref is the volume of the equilateral tetrahedron
in 3D (or triangle in 2D), which fits in the same circumsphere as the one of the
element (Fig. 2).

This criterion is then used to adjust the pseudo-solid elements flexibility
during the simulation such as

E(tn+1, S(tn)) =

[
Eint − E(t0)

][
S(tn)− S(t0)

]
Smax − S(t0)

+ E(t0). (20)

where Smax is chosen at 0.90. Note that the pseudo-Young modulus at the
beginning of the computation E(t0) is established according to the Eq. (18).
Equation (20) is applied only for cells where R > Rmin because the properties
of cells close to the object have to be as homogeneous as possible to guarantee
that these elements are not deformed.
However, this single modification is not enough to considerably improve the
method. In fact, the solving of Eq. (17) for a strong displacement will result in
a mesh with a deformed cells zone. That will induce an increase of the pseudo-
Young modulus of these cells (Eq. (19)), so that they will become more rigid
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Figure 3: Skewness field of a test case with imposed displacement for the moving boundary
at different instants.

than their neighbours. The solving at the next time step will then lead to a
mesh where that same zone has not been deformed because of the previously
computed high value of E, but their neighbours on the contrary will withstand
all the deformation. The issue here is that the solved problem is still defined
according to the initial configuration, and therefore the cell skewness S cannot
evolve progressively. To make this technique efficient, the reference configura-
tion used to compute the stiffness matrix K has to be updated at each time
step with the new node position, which means to update continuously the equi-
librium position of the pseudo-solid. The computed displacement becomes then
an increment ddn+1 used to move nodes between their position at tn and the
new one at tn+1.

An example of application of the full method is given in Fig. 3. It shows
skewness fields of a test case where a domain boundary, the rod behind the
cylinder, moves according an imposed sinusoidal displacement at different mo-
ments.

For this test, a mesh with inhomogeneous cell size has been used; close to
the cylinder and the rod, a zone with small elements can be identified. The
mesh movement strategy has to ensure that these cells will not be too much
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deformed as explained in previous section. With the present method, the good
behaviour is obtained by choosing a correct value for Rmin. The different snap-
shots highlight that the skewness in this region remains intact. Moreover, it
can also be seen that the two critical zones in terms of skewness progressively
appear; one at R = Rmin and the other at R = Rmax. That can be explained
by the stronger pseudo-Young modulus gradients of theses regions. Neverthe-
less, the two last snapshots prove that the rigidification of these cells leads to a
smooth cell deformation, which results in a satisfying skewness distribution.

A comparison of the method of section 3.1 and the method of section 3.2
is given in Fig. 4. It shows that without the new formulation, only elements

Figure 4: Comparison of the pseudo-solid method of section 3.1 (top) and the method of
section 3.2 (bottom).

with low value of E tend to deform, while the other cells in the transition
zone remain nearly unchanged. With the adjustment of pseudo-material ele-
ments properties, it is clear that the skewness field is much more homogeneous,
thanks to the rigidification of close wall cells. This last technique appeared
consequently more robust to handle strong displacement and maintain a lower
maximum skewness. An example of pseudo-Young modulus after a large dis-
placement is given in Fig. 5. It emphasizes that regions forced to stretch see
their cell skewness decrease, and on the other hand compressed regions undergo
growing skewness. This causes a pseudo-Young modulus profile quite different
from the one at t = 0 given in Fig. 1.
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Figure 5: Pseudo-Young modulus field after large deflection of the rod while adjusting the
pseudo-material properties with Eq.(20).

This efficient mesh deformation method presents then the advantage to be
robust, easy to implement and without parallelization issues. Furthermore, it
allows to control which mesh region can be deformed or not.

3.3. Dynamic mesh adaptation

However, for certain cases with very large deformation, moving or rotating
object, mesh movement method alone cannot conserve a mesh describing the
changing geometry. The only solution is then to produce a completely new
mesh, adapted to the new geometry i.e to perform dynamic mesh adaption.
In YALES2, the re-meshing step is based on MMG, the sequential anisotropic
mesh adaptation library for tetrahedral (3D) and triangle elements (2D) [41].
The parallel mesh adaptation strategy proposed by Benard et al. [42] is ap-
plied. The benefit of DMA has already been discussed in various configurations
including simulations of multiphase flows [43, 40] or moving bodies [44]. To
avoid to perform the grid adaptation procedure at each time step, a criterion
on the maximum allowed rate of element deformation is defined based on the
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element skewness. After each time step, the mesh quality is assessed by com-
puting the maximum skewness in the computational domain ‖S‖∞. If this value
exceeds a given threshold Slim, the re-meshing step (grid adaptation procedure)
is triggered, and all data field are interpolated on the new mesh. To combine
efficiently this feature with the pseudo-material method, the stiffness matrix K

has to be updated at each re-meshing step. In fact, a new mesh with a low
maximum skewness has to be considered as a new equilibrium position. Be-
sides, the previous E field resulting from adjusting the pseudo-Young modulus
as a function of skewness becomes irrelevant because the skewness field is com-
pletely changed. The distance from the object R is then recomputed and a new
pseudo-Young modulus field is established from Eq. (18). The entire method
for mesh movement developed in this work is summarized in Fig. 6.

Figure 6: Scheme of the mesh movement method developed in this work.

4. FSI coupling algorithm

FSI simulations consist in coupling fluid (ALE) and solid (SMS) solvers. The
coupling conditions occur at the interface Γ between fluid and solid as,

un+1 = ẋn+1 =
dn+1 − dn

∆t

fn+1 =

∫
Γ

(
µ
∂un+1

∂n
− Pn+1n

)
dΓ

(21a)

(21b)

with µ the dynamic viscosity and n the normal direction to Γ pointing on the
solid to fluid direction, with ∂/∂n the derivative with respect to this normal
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vector. In fact, solid imposes its velocity to fluid while fluid applies force on
solid through viscous shear and pressure. The coupling is then performed by
data exchange between solvers at the interface Γ ensured by the CWIPI (Cou-
pling With Interpolation Parallel Interface) library [45]. This library allows
to compute data interpolation based on boundary nodes coordinates, which is
mandatory when meshes are not coincident. It can work with two meshes com-
posed of different element type and it also manages the parallel communications
allowing to benefit of the massively parallel performance of each solver.

4.1. Coupling scheme

As explained in the introduction, the coupling approach is called partitioned
coupling [8]. This choice is motivated by the flexibility of this approach to con-
sider turbulent flows in complex geometries. Nonetheless, this method can lead
to stability issues when used with a loosely coupling approach where displace-
ments and forces are exchanged only once per time step [46]. In doing so, low
density ratio ρs/ρf cases cannot be reproduced because of the well known added
mass effect [47]. Therefore a strongly coupled approach is used in this work,
consisting in exchanging data between solvers until convergence. This ensures
the consistency of the two solutions. The FSI coupling scheme is given Fig. 7
and is similar to the one proposed by Breuer et al. [16]. This coupling scheme
can be detailed into different steps:

1. The n + 1 time iteration begins with computation of the time step value
∆tf given the stability condition of the Runge–Kutta method used by fluid
solver. Note that the SMS uses the generalized-α [31] temporal scheme
which is unconditionally stable. Thus, ∆tf is sent from the fluid to the
solid and ∆ts = ∆tf is imposed for the SMS.

2. New displacement of the interface Γ is estimated thanks to the following
extrapolation

d0
n+1 = dn + α0∆tfvn + α1∆tf (vn−1 − vn) (22)

where v is the solid velocity, and αi are interpolation coefficients. For
α0 = 1 and α1 = 0, Eq. (22) corresponds to a linear extrapolation while
for α0 = 1 and α1 = 1/2 it corresponds to a quadratic extrapolation. This
last option leads to a faster convergence so it is used in this work.
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Figure 7: FSI coupling scheme used for the present work.

3. Mesh movement is solved thanks to the method explained in section 3
with the displacement condition d0

n+1. That results in a nodes velocity
field ẋ0

n+1 used to perform the "velocity prediction" step, Eq. (4). The
intermediate velocity u∗n+1 obtained is stored apart.

4. A new pressure field is then determined with Eq. (6) and used to perform
the "velocity correction step" via Eq. (5). With the resulting pressure and
velocity fields, the fluid force applied on the solid fkn+1 can be computed.
Here the upper index k corresponds to the number of subiterations in the
FSI loop. Note that absence of this index refers to converged values of
previous time step.

5. The fkn+1 field is sent from the fluid to the solid by means of the CWIPI
library.

6. The displacement dk
n+1 in the solid is computed with the methodology

detailed in section 2.2.

7. At this stage, both fluid and solid have been solved at least once. The
dynamic equilibrium is then checked to verify the consistency of the two
solutions. This consists in checking∣∣∣∣dk

n+1 − dk−1
n+1

∣∣∣∣
∞∣∣∣∣dk

n+1 − dn
∣∣∣∣
∞
≤ εFSI , (23)
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where εFSI is a chosen convergence criterion. If the FSI solution is con-
verged, the solution at the considered time is finally determined and next
time step can be started.

8. Otherwise, the computed displacement has to be underrelaxed on Γ with

d̃k
n+1 = ωdk

n+1 + (1− ω)dk−1
n+1 (24)

where ω is a constant underrelaxation factor defined by the user. This
value can also be computed at each subiteration by different means [48]
but tests for our cases show that these methods did not allow to guarantee
stability. Then, an accurate value of ω has to be found for the different
cases; a too large value will make the computation diverge or will cause
instability on fluid forces. On the other hand, the lower ω is, the greater
will be the total number of subiterations NFSI required before reaching
convergence.

9. The underrelaxed displacement d̃k
n+1 is then sent to the fluid via CWIPI.

10. A new field of ẋk
n+1 is computed thanks to the mesh movement solver

(MMS). It has to be precised that before the solving, the domain is put
back to its position at tn. A new increment of displacement has to be
computed but the adjustment of pseudo-material parameters with Eq. (20)
has to be done only once the convergence is reached.

With the previously stored velocity prediction u∗n+1 and the updated ẋk
n+1, new

pressure and velocity fields can be determined so that step 4 can be repeated
and updated fluid forces fk+1

n+1 can be computed, closing so the FSI loop. This
method thus ensures stability with a partitioned coupling and can be easily
implemented, but presents the main drawback that the computational cost will
depend on the number of FSI subiterations necessary to reach convergence.

The skipping of the velocity prediction once in the FSI loop was initially
proposed by Fernandez et al. [49]. It allows to reduce computational cost and
it has been shown that it does not affect the final result.

5. Verification in a canonical case

In order to assess the present methodology, a 2D laminar FSI test case is
first considered: the benchmark proposed by Turek and Hron [50]. This nu-
merical case consists in the interaction between an elastic rod and a laminar
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Figure 8: Sketch of the studied numerical test case.

Geometry parameters Value [m]

Cylinder diameter D = 0.1

Cylinder center x-position Lc = 0.2

Cylinder center y-position Hc = 0.2

Channel lenght L = 2.5

Channel height H = 0.41

Deformable structure length l = 0.35

Deformable structure thickness h = 0.02

Table 1: Dimensions of the sketch in Fig. 8.

incompressible flow. The benchmark proposes to validate each solver indepen-
dently in preliminary tests. Therefore, three different test cases including mesh
convergence studies are presented in this part.

5.1. Case presentation

This case is inspired by the older benchmark of an incompressible flow around
a cylinder [51] except that a flexible rod is attached to the back side of the cylin-
der. The geometry and dimensions are given in Fig. 8 and Tab. 1. By measuring
from the left bottom corner of the channel, the cylinder center position is then
C = (0.2, 0.2) while the rod tip is situated at A = (0.6, 0.2). It should be no-
ticed that the setup is intentionally non-symmetric (with Hc 6= H/2) to prevent
any influence of the computation precision. For the three following tests, re-
sults of the present study will be compared with results of previous simulations
extracted from [50, 52]. In particular results will be compared with the simula-
tions performed by Turek and Hron [50], who initially proposed this benchmark.
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M1f M2f M3f Turek and Hron [50]

∆x1 [m] 1× 10−3 8× 10−4 6× 10−4 N.A.

∆x2 [m] 1.25× 10−2 1× 10−2 0.75× 10−2 N.A.

Nelem (×103) 73 98 173 37

Table 2: Characteristics of the three meshes used for CFD3.

Their simulations are performed based on a fully implicit monolithic ALE-FEM
method with a fully coupled multigrid solver [12].

5.2. CFD tests

To first validate the fluid solver alone, the benchmark proposes three cases
with different physical parameters: the case named CFD3 is chosen here. The
solid is considered perfectly rigid so that the test case focuses on the laminar
flow description around the cylinder and the attached rod. Quantities used
for comparison will then be the fluid forces applied on the whole submerged
body, computed according Eq. (21b), for a fully developed flow and for one full
period of the oscillation. For this case, a non stationary regime is reached where
pressure distribution fluctuates.
The flow is considered as incompressible, with a density ρf = 1000 kg/m3 and a
kinematic viscosity of νf = 0.001 m2/s. A parabolic velocity profile u(x = 0, y)

is prescribed at the inlet as

u(x = 0, y) = 1.5u∞
y(H − y)

(H/2)2
. (25)

In CFD3 case, u∞ = 2 m/s leading to a Reynolds number Re = 200 which
leads to vortex shedding behind the cylinder, as illustrated in Fig. 9. No-slip
boundary conditions are applied at channel walls and at the body.

Simulations are performed on three different meshes, M1f , M2f and M3f
composed by triangles. They are characterized by two metric values, ∆x1 and
∆x2, which correspond to cell size close to the cylinder and the rod, and to
the cell size in the rest of the domain, respectively. Theses values are given in
Tab. 2.

The timestep ∆t used here is computed following the Courant-Friedrichs-
Levy (CFL) convective time step constraint by keeping CFL number smaller
than 0.8. This leads to a time step value around 139 µs, 113 µs and 84 µs
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Mean Drag [N] Amp. Drag [N] Mean Lift [N] Amp. Lift [N] f [Hz]

Turek and Hron [50] 439.45 5.6183 -11.893 437.81 4.3956

M1f 433.69 6.4297 -7.0625 485.57 4.4326

M2f 435.35 6.3794 -7.4314 478.94 4.4347

M3f 435.01 6.0761 -10.505 462.78 4.4373

Table 3: Results of the CFD3 benchmark proposed by Turek and Hron [50].

for meshes M1f , M2f and M3f , respectively. Note that these time steps are
significantly smaller than in [50], where ∆t = 0.01 s and ∆t = 0.005 s have been
tested.

As precise above, oscillating fluid forces are compared here. Amplitudes,
mean value and frequencies have been computed for each mesh and are presented
in Tab. 3. The results appear in agreement with the simulations performed
by Turek and Hron [50]. The discrepancies on the results can probably be
explained by the difference between both simulation set-up. The CSM solver is
now considered in next section.

5.3. CSM tests

The solid solver needs now to be validated with pure structural test. This test
consists in computing the deformation of the flexible rod in a gravitational field
g = (0, 2) m/s2 without taking into account the fluid. In this study, the CSM3
test is chosen because it is the only time dependant case. It starts from the
undeformed configuration and as there is no damping, the structure immediately
oscillates periodically. The material is characterized by a Poisson’s ratio of
νs = 0.4, a Young modulus of E = 1.4 MPa and a density of ρs = 1000 kg/m3.
As significant deformations are expected, the Saint-Venant-Kirchhoff material
model is used.

Three meshes have been made for this test, corresponding only to the de-
formable part of the body because the cylinder is always considered perfectly
rigid. These meshes are only composed by 9-nodes quadrilaterals of size ∆x

given in Tab. 4.
As the structure is clamped to the backside of the cylinder, a non displace-

ment boundary condition is applied to the corresponding nodes. The chosen
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M1s M2s M3s Turek and Hron[50]

∆x [m] 4× 10−2 2× 10−2 1× 10−2 N.A.

Nelem 9 18 70 5120

Table 4: Characteristics of the three meshes used for CSM3.

Mean dx [mm] Amp. dx [mm] Mean dy [mm] Amp. dy [mm] f [Hz]

Turek and Hron [50] -14.305 14.305 -63.607 65.160 1.0995

M1s -14.057 14.057 -63.367 63.367 1.1074

M2s -14.398 14.394 -64.113 64.436 1.1053

M3s -14.257 14.452 -64.163 64.872 1.0972

Table 5: Results of the CSM3 benchmark proposed by Turek and Hron [50].

time step is ∆t = 0.005 s (same than in [50]) and is applied with the generalized-
α method with the spectral radius ρ∞ = 0.8.

For comparison, displacement of previously defined point A is tracked in
time. Once again, mean values, amplitudes and frequencies are computed for
displacements dx and dy along x-axis and y-axis, respectively. All results are
gathered in Tab. 5.

Differences with Turek and Hron results [50] are here minor, even though
grid used in the reference study is much finer (5120 elements). Efficiency of
9-nodes quadrilaterals seems here confirmed. This close agreement allows then
to successfully validate the CSM solver.

5.4. FSI tests

Finally, to validate the coupling between fluid and solid solvers, the FSI3
benchmark has been reproduced. The fluid forces are now applied to the flexible
structure so that it deforms and starts interacting with the flow. Fluid properties
are the same as in CFD3 but for the solid, the Young modulus is chosen as E =

5.6 MPa. This case is particularly challenging because ρf = ρs = 1000 kg/m3,
which maximizes the importance of the added-mass effect. Besides, the channel
is narrow compared to the expected structure deflections; that imposes a very
efficient mesh movement algorithm to keep a low maximum skewness. The
method presented in section 3 is used here with Rmin = 0.02 m, Rmax = 0.2 m
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Mean dx [mm] Amp. dx [mm] f dx [Hz] Mean dy [mm] Amp. dy [mm] f dy [Hz]

min and max from [50, 52] -3.04 / -2.48 2.53 / 2.87 10.1 / 11.63 1.27 / 1.55 34.38 / 36.63 4.98 / 5.5

M1f&M1s -3.08 2.86 11.1 1.41 36.22 5.53

M2f&M2s -3.06 2.82 11.02 1.30 36.16 5.51

M3f&M3s -3.01 2.77 10.99 1.42 35.89 5.49

Table 6: Results of the FSI3 benchmark proposed by Turek and Hron [50]. Minimum and
maximum values of previous simulations extracted in Ref. [50, 52] are given for comparison.

and yr = 100. These values allow the most refined zone close to the body to
remain intact while coarser regions close to the channel walls will withstand the
deformation. That can be seen in Fig. 9 which shows the resulting grid M1f
when the rod is at the maximum deflection. The method ensures a good grid
quality without needs of dynamic mesh adaptation step. Concerning the FSI
coupling, the convergence criterion defined in Eq. (23) is set at εFSI = 1×10−5

and the underrelaxation factor is ω = 0.1. Because of the density ratio ρs/ρf =

1, higher values of ω do not allow to reach convergence inside the FSI loop.
Nonetheless, it results in a relatively low mean number of subiterations NFSI of
15.04 while this number averaged 55.21 in [16] for the same value of ω. However,
Breuer et al. [16] managed to reach convergence with ω = 0.5 and NFSI = 9.38

which was not possible in the present study.
In the original case, the authors propose to progressively establish the flow

starting with a zero velocity field in all the domain. Note that this cannot
be done with the present algorithm because the fluid forces were so low that
the importance of the added mass effect was relatively too important. Such
an unstable configuration surely requires a more stable monolithic approach.
Therefore, the coupling has here been started with a fully developed flow, as
computed in CFD3 case.

Figure 9 also depicts an instantaneous velocity field. The vortex shedding at
the cylinder is clearly visible and induces oscillating forces applied in the entire
body as it has been seen in the CFD3 case of section 5.2. Theses forces cause
the flexible structure displacement resulting in periodic displacement of the rod
behind the cylinder.

For comparison, sinusoidal displacement of previously defined point A are
measured and presented in Fig. 10 and in Tab. 6. Even if numerical methodolo-
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Figure 9: Velocity field and deformed mesh of FSI3 benchmark reproduced with M1f & M1s.
Note that the domain has been cropped on the right side to focus on the deformable part.

Figure 10: Displacement of point A along x-axis (top) and y-axis (bottom) obtained with
M3f&M3s and results of the reference study [50].
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gies between the present study and the work of Turek and Hron [50] are different,
the results appear in agreement. Note that for this case, a comparison of results
obtained by 7 other groups have been reported in [52], including a variety of
numerical methods. For each quantities, the minimum and maximum values are
reported in Tab. 6. Given the complexity of the present case, a spreading of the
tip displacement prediction can be noticed, and the results of the present study
appear in agreement with these previous simulations. Consequently the overall
agreement with reference data enables to validate the present FSI solver.

Another proposed benchmark FSI2 [50] has also been reproduced and sat-
isfying results have been obtained. In this test case, ρs/ρf = 10 which makes
the coupling less unstable. This allows to apply an underrelaxation of ω = 0.3

and convergence is reached with a number of FSI subiterations that averages
4.5. Contrary to the FSI3 case, here the larger deflections impose the use of
the dynamic mesh adaptation. Results of this case can be visualized in the
supplementary material.

6. Validation on a realistic complex case

For completeness, the FSI solver is now validated on the experimental case
performed by Kalmbach et al. [53], named FSI-PfS-2a. This case deals with a
turbulent flow which leads to large deformation of the structure.

6.1. Case presentation

This test case is derived from the 2D case considered in the previous section;
it consists of a cylinder fixed in a water channel. A flexible rubber structure with
an attached steel weight is clamped behind it. The geometry and dimensions
are detailed in Fig. 11 and Tab. 7.

The inflow velocity uinflow is set at 1.385 m/s which gave experimentally
nearly symmetrical, large and reproducible structural displacement. The mea-
sured inflow turbulence level is Tuinflow = 0.02 and is considered sufficiently
low to be ignored in the rest of the study, a choice motivated by previous
studies which also did not take it into account [54, 55]. The water density is
ρf = 1000 kg/m3 and the dynamic viscosity is µf = 0.001 Pas. The structure
is composed of two different materials; the flexible part was made with para-
rubber while the bonded rear mass is made of steel. All properties can be found
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Figure 11: Sketch of the studied experimental test case. Extracted from [53].

Geometry parameters Value [m]

Cylinder diameter D = 0.022

Cylinder center x-position Lc = 0.077

Cylinder center y-position Hc = 0.120

Test section lenght L = 0.338

Test section height H = 0.240

Test section width W = 0.180

Deformable structure length l1 = 0.050

Deformable structure height h = 0.002

Deformable structure width w = 0.177

Rear mass length l2 = 0.010

Rear mass height h = 0.002

Rear mass width w = 0.177

Table 7: Dimensions of the sketch in Fig. 11.
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in Tab. 8. The rear mass is here added to emphasize the structure motion and
trigger the second swiveling mode, unlike the first case FSI-PfS-1a [54].

Density
[kg/m3]

Young’s
modulus
[MPa]

Poisson’s
ratio

Flexible structure
(para-rubber)

1090 4.1 0.48

Rear mass
(steel)

7850 2.1× 105 0.3

Table 8: Structure properties for the FSI-PfS-2a case.

The Reynolds number based on cylinder diameter gives Re = 30 470 and it is
observed experimentally that the flow is in a sub-critical regime. The boundary
layers around the cylinder are still laminar but the flow becomes turbulent
downstream. At this point, a large variety of spatial and temporal frequencies
appears but only the lowest ones can be found in the structure displacement.
The flexible part thus deforms in the second swiveling mode with a frequency
of fFSI = 11.25 Hz.

6.2. Numerical setup

In order to reduce computational cost, a subset case had been used in [54]
where dimensions along z-axis were reduced. Structure width then became
w′ = l1 + l2, and the gap between channel walls and the structure was ignored
so that the test section width W ′ was equal to w′. For the full case, these walls
were assumed slip while periodic boundary conditions were used for the subset
case. Results comparison in terms of structure deflection but also flow field
between the two cases concluded that this simplification was valid. Only the
subset case is then considered in the present study with the difference that the
small gap between flexible part and channel walls was considered. Test section
height then becomes W ′ = l1 + l2 + (W − w). Therefore, solid nodes on these
sides are free and a boundary condition that imposes a zero z-displacement is
not mandatory. For the fluid, slip walls are assumed for these boundaries to
maintain the blocking effect and limit flow recirculating and thus reproduce the
same effect than in the experimental setup.
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Considering that the flow relatively far from the body will not affect the
structure motion, fluid mesh has been refined in the zone of influence around
the cylinder and the plate. First cell size close to the body is equal to 9×10−3D

and slowly decreases to 2.3× 10−2D in the rest of this region, as it can be seen
in Fig. 12. Consequently, a grid composed of about 40 million tetrahedra is
generated. As precised above, all channel walls are considered slip because the

Figure 12: Fluid mesh metric field (log scale)(left) and solid mesh (right) used to reproduce
the FSI-PfS-2a case.

full resolution of their boundary layers would be too costly. On the other hand,
the cylinder and the structure are defined as no-slip walls. Once again, the
timestep of the simulation is based on the CFL condition leading to ∆t ≈
5× 10−5 s. For the flow simulation, LES is performed and the SGS model used
here is the dynamic Smagorinsky model [56]. The pseudo-solid mesh movement
is used with Rmin = 0.0025 m, Rmax = 0.08 m and yr = 100 and is combined
with dynamic mesh adaptation.

Thanks to CWIPI (section 4), the two meshes do not need to be coincident.
Thus, the solid mesh is composed by 900 27-nodes hexahedrons of size equal
to structure height h and can be visualized in Fig. 12. The nodes against the
cylinder are fixed but all the other ones are free to move, building five solid faces
coupled with the fluid. For temporal advancement, the generalized-α method
is used with a spectral radius ρ∞ = 1.0. In a similar manner than in [55], no
structural damping are applied.

As explained in the previous section, the flow is first established before start-
ing the FSI coupling. The underrelaxation factor is ω = 0.2 and the FSI con-
vergence criterion εFSI is equal to 5 × 10−4. It results in a mean number of
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subiterations NFSI = 22.6. A cluster specifically designed for memory bound
applications (eg: CFD codes such as YALES2) was used. It is based on AMD
Epyc 7302 processors with 16 cores and 128Mo of L3 cache, providing high mem-
ory bandwidth for each cores. Nodes with 128GB of RAM and two processors
are connected with an InfiniBand HDR100 network (100Gb/s). The computa-
tion of the FSI-PfS-2a case was carried out on 240 cores for the fluid and 16
cores for the solid, so that one physical second could be predicted in 519 hours
wall-clock, i.e 133kH.CPU.

6.3. Results

A visualization of the resulting simulation is given Fig. 13 and an animation
is available in the supplementary material. It shows that even if the structure
displacement is mainly two dimensional, three-dimensional flow structures ap-
pear in the wake of the cylinder. Furthermore, the velocity and vorticity fields
shown in Fig. 14 highlight the fact that the structure motion can deviate the
vortex trajectories.

Figure 13: Visualization of the Q-criterion for the FSI-PfS-2a case. Structure is colored by
the normalized y-displacement.

In order to compare with experimental data, a probe is positioned on the
solid at 2 mm from the plate tip. To verify if the displacement can be considered
uniform along the z-axis, normalized y-displacement dy/D is measured at plate

29



Figure 14: Visualization of the normalized velocity field, vorticity field and deformed mesh
(from top to bottom) for the FSI-PfS-2a case. Note that the fields have been cropped, entire
domain can be seen in Fig. 12.
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center z = 0.0 and extremities z ± 0.03. The time evolution of these quantities
is plotted in Fig. 15. It can be seen that deviation between the three results

Figure 15: Normalized y-displacement at different z locations.

is minor, confirming that dy/D can be computed as a mean value of this three
points. This mean value is then averaged in 23 sub-parts of the phase in order to
compare with experimental data. Results are accumulated on 5 periods leading
to a mean standard deviation of about 0.01. The two phase-averaged dy/D

signals are shown in Fig. 16 where standard deviation of each point is also
represented. This figure highlights the good agreement between the numerical

Figure 16: Comparison of the numerical and experimental averaged phase of normalized y-
displacement.

results and the experimental data. Table 9 gathers the maximum, minimum,
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dy/D|max dy/D|min Mean dy/D Amp. dy/D f dy/D [Hz]

Exp 0.667 -0.629 0.019 0.648 11.25

This study
0.632

(5.27%)
-0.627
(0.37%)

0.002
(86.37%)

0.629
(2.89%)

11.73
(4.23%)

Table 9: Numerical results and comparison with the experiment.

amplitudes, mean value and frequency of the normalized y-displacement.
The asymmetries of experimental data are unexpected considering the sym-

metry of the entire setup, but may be explained in [55]. After careful analysis,
it was concluded that errors were related with the assembly of the structure,
especially the bond between the rubber plate and the cylinder and the bond
between the cylinder and the test section. That explains the undesired mean
value of dy/D of 0.019 while no mean displacement is expected in this direction
due to symmetry. This experimental issue makes the precise comparison with
the reference value for dy/D|max and dy/D|min irrelevant, but the amplitude
of the structure oscillation is still valid and the numerical result deviates only
of about 2.9%. This is also true for the predicted frequency where the error
is around 4.2%. The overall agreement with experimental values confirms that
the present FSI solver is able to predict turbulent case with large deformation
with high fidelity.

7. Application case: simulation of a chordwise flexible pitching foil

In order to illustrate the potential of the FSI solver for its intended use, a
simulation of an experimental case involving a chordwise foil is finally presented.
More details can be found in [57].

7.1. Case presentation

The case is inspired by the experimental work of Hoerner et al. [6] to show
how hyperflexible foils effectively adapt dynamically their shape and passively
control the flow through deformation. The case consist to a pitched hydrofoil
surrounded by a water stream. The experimental case with the largest foil
deformation has been retained in this work. In this case, the hydrofoil has a
symmetric NACA0018 geometry with a chord equal to 66 mm. It is composed
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by a milled aluminum pieces reach up to the first quarter of the chord, whereas
a carbon fiber with a thickness of 0.3 mm is embedded in this part and the rest
of the trail is composed by silicone embodiment. The imposed pitching leads a
variation in time of the angle of attack, α, as,

α = arctan
( sin (2πft)

λ+ cos (2πft)

)
, (26)

with f = 2.63 Hz the frequency, λ = 2, and t the time. The rotation axis
of the foil is located at first quarter of the chord. Finally, the inflow velocity,
u∞ = 3.07 m.s−1, leads to a chord-based Reynolds number equals to 202, 620.
From experiments measure of foil deformation and left and drag force measured
on the foil are available. The deformation is characterized by the angle of
deformation β is defined in Fig 17. Therefore, for the rigid foil, it gives α = β.

Figure 17: Definition of the angle of deformation β.

7.2. Numerical setup

The numerical configuration stays close to the experimental setup. How-
ever, some simplifications have been performed to reduce the computational
cost. Concerning the geometry, the channel width is reduced from 2.65C to 1C.
Preliminary tests have indeed shown that this change has not affected signifi-
cantly the fluid forces per unit of length. Also, the gap between the extremity
of the foil and the channel wall is not taken into account, and the channel
walls are considered slip to avoid strong mesh constraint to capture boundary
layers at the channel wall. No-slip boundary condition is applied on the foil.
Finally the gravity is taken into account and water is considered with a density
ρf = 1000 kg.m−3 and a dynamic viscosity µf = 0.001 Pa s. A flexible and a
rigid foil cases are considered. From preliminary study a fluid mesh composed
by 27 millions of tetrahedrons is used.
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For the flexible foil, the first quarter of the chord (the part in aluminum) is
considered as a perfectly rigid solid. The computational domain for the struc-
tural mechanics solver (SMS) is then reduced to the silicone and carbon parts,
and displacement was set on the solid face which is in contact with the alu-
minium part. Moreover, the differences in Young modulus values between the
silicone and the 0.3 mm carbone part induce high condition number of the
SMS linear system. An “artificial” single material has been preferred to re-
duce computational cost.It has been measured that this simplification made the
computation 29 times faster. From tests, the Young modulus was chosen as
E = 1.28 MPa, the density as ρ = 1250 kg.m−3. The poisson ratio was set to
zero to prevent foil distension in spanwise direction. Finally, a mesh composed
by 1900 10-nodes tetrahedrons is used.

As regards the FSI coupling, the underrelaxation factor is ω = 0.5 and
the FSI convergence criterion εFSI is equal to 5 × 10−4. Moreover, in order
to stabilize the FSI coupling and reduce the number of subiterations NFSI

required, structural damping is added. It finally results in a mean number of
subiterations NFSI = 3.39. The cluster presented in section 6.2 was also used,
but this time with 20 cores for the solid and 225 for the fluid, so that one period
of foil oscillation could be predicted in 53.25 hours wall-clock, i.e 13kH.CPU.
It is only 6 times more than the computational cost of the rigid case simulated
with the same fluid mesh.

7.3. Results

First, numerical results are compared with experimental data in terms of
lift, drag and deformation angle β in Fig. 18. It can be seen that the results
are in correct agreement with the experiment for the forces and for the foil
deformation. The flow behaviour have then been well reproduced, allowing
physical insights given that the solid problem simplification does not affect the
flow configuration once the foil behaviour is similar. For the analysis of the FSI
phenomenon, different post-processings have been done.

An animation showing the results is given in the supplementary material.
At first, comparison of rigid and flexibles cases is shown by Fig. 19 with visu-
alizations of the vorticity volume rendering for different angle of attack. The
dynamic stall can clearly be seen. It causes the generation of a first vortice
above the foil. This will create a low pressure region, attracting the surround-
ing fluid, especially fluid coming from the other side of the foil. This finally

34



0 1 2 3 4 5 6

−40

−20

0

20

40

L
if

t/
L

(N
/m

)

Exp Flexible Y2

0 1 2 3 4 5 6−5

0

5

10

15

20

D
ra

g/
L

(N
/m

)

0 1 2 3 4 5 6

time/T

−20

0

20

a
n
g
le

(◦
)

α

Exp β

Y2 β

Figure 18: Comparison of forces and foil deformation with the experimental data for the
flexible case.
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Figure 19: Vorticity volume renderings of rigid (left) and flexible (right) foil cases.
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lead to the generation of a second vortice at the trailing edge. For the flexible
case, the generation of this second vortice induces the foil deformation. The
low pressure region appears indeed where the foil thickness is relatively small,
and the pressure difference is sufficiently strong to deform significantly the foil.
This finally leads to sigificantly different flow configurations between rigid and
flexible cases.

Figure 20: Velocity, skewness and pressure fields computed for the rigid (top) and the flexible
(bottom) foil at α = 29.1◦.

This observation is confirmed by the analysis of the velocity and pressure
fields shown in Fig. 20. The two vortices can be observed as well as the low
pressure regions. The pressure distribution applied on the foil is then very
different between the rigid and flexible case, explaining the differences in lift
and drag measured in the experiment [6]. On this figure, the skewness fields
are also shown to highlight the difference of method used for mesh movement
between the two cases, given that it is more complicated to move the fluid mesh
when the foil is deforming.

Foil relative displacement compared to the rigid case for an angle of attack
of α = 29.1◦ is finally given in Fig. 21. It can be noticed that at the maximum
deflection, deformation reaches 35% of the chord. This case then confirms that
the developed FSI solver is able to reproduce cases of chordwise flexible foil with
large deformation. Such simulations should lead to a better understanding of
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Figure 21: Relative displacement of the foil compared to the rigid case at α = 29.1◦.

the link between the dynamic stall and the flexible foil deformation in future
works.

8. Conclusion

The necessity to numerically reproduce turbulent FSI case with complex ge-
ometries is growing proven by the emergence of research works involving chord-
wise flexible blade. These studies are promising but remain mainly experimental
because the simulation of such cases with a high level of fidelity is extremely
challenging. It indeed requires 3D LES to predict the dynamic stall with ac-
curacy, and 3D solid element to handle large deformation of the structure. In
this context, the present work proposes a LES-based FSI solver using 3D solid
elements for the solid and unstructured grid for fluid and solid solvers. This ap-
proach aims at being universal and is based on a partitioned coupling scheme,
allowing low density ratios of the structure to the fluid. For the mesh move-
ment solving, an original pseudo-solid method has been developed and can be
used with dynamic mesh adaptation strategy. This method proved to be robust
and appropriate to FSI case with large deformation. The resulting FSI solver
is suited for massively parallel computing and can be used without geometry
restriction. Both fluid and solid solvers have been validated independently be-
fore validation of the FSI solver on a 2D laminar benchmark, including mesh
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convergence study. The methodology has then been successfully applied to real-
istic complex case with high Reynolds number. Numerical results have shown a
satisfactory agreement with the available experimental data. Finally, an exper-
iment involving a chordwise flexible foil is successfully simulated with a 3D LES
approach. This had never been reported in the literature so far and confirms
the potential of the FSI solver for its intended use.
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