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Abstract

Composite panels, by virtue of their outstanding mechanical proper-

ties, have found various applications in different sectors like aerospace

and transportation. Under certain assumptions like Kirchhoff–Love

and Mead-Markus hypotheses, certain high-order differential equa-

tions can be used for vibroacoustic modeling of composite panels.

However, for accurate modeling, updating parameters is an essential

stage. Herein, we aim to theoretically and experimentally review this

stage. For this purpose, a hybrid updating method is proposed, in-

corporating hierarchical functions, inhomogeneous wave correlation

approach, and least squares optimizations. Then various laboratory

measurements, including Laser Doppler Vibrometry measurements as

well as sound pressure levels, are analyzed. The measurements were

performed for a thick composite (sandwich) panel, and a thin com-

posite (laminate) one, along with two isotropic (steel and aluminum)

plates for additional validation. The experiments indicate the ability

of the hybrid approach to adjust parameters and precisely model vi-

broacoustic behaviors of the panels. Furthermore, the proposed hybrid
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1 INTRODUCTION 2

method can be used in studies whose goal is accurate vibroacoustic

modeling for psychoacoustic issues and perceptual validations, which

is also one of the future targets of this research.

Keywords— Updating; parameter identification; vibroacoustic; composite sand-

wich; composite laminate, orthotropic panels

1 Introduction

Nowadays in different sectors of high-tech industries like aerospace and high-speed

transportation, we can find an accelerating trend in the usage of composite ma-

terials due to their outstanding mechanical properties. Composite materials have

found a widespread acceptance in aeronautic and space studies during recent

decades (e.g. see Giurgiutiu (2015)), and today, new airframes mainly consist of

composites, such as Boeing 787 Dreamliner and Airbus A350 XWB in which com-

posites possess 80% participation by volume (e.g. see Mrazova (2013); Giurgiutiu

(2015)). Also, in the transportation industry, there are other advanced applica-

tions, where these materials have found an undeniable key role in manufacturing

high-speed trains, and they possess many advantages like lighter weight, accept-

able tensile strength, enhanced stability, corrosion resistance, sound baffling, and

design flexibility (e.g. see Fan and Njuguna (2016)).

The optimal design of composite structures is a burning issue (e.g, see Jones

(2018)), and having a precise prediction about their vibroacoustic behavior is an

essential stage for design optimization. The uncertainty remaining in numerical

models and their parameters is the major barrier to precisely modeling the struc-

ture dynamics (e.g. see Friswell and Mottershead (1995)). Hence, model and

parameter updating will be essential to reduce such uncertainty remaining in the

models, and their parameters (Friswell and Mottershead (1995)). The purpose

of parameter updating is to present physical meaning to a deficient model from

real experiments where the model suffers from a lack of precise knowledge about

mechanical parameters, boundary conditions, and component connections (Mot-

tershead and Friswell (1993)). Although in recent decades, many studies can be

found in this regard, this issue is still of great interest to many researchers for

either updating or identifying parameters in different case studies (e.g. see Girardi

et al. (2021); Standoli et al. (2021); Chengwei et al. (2022)).

In the research conducted in the nineties, one can come across useful studies for
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reviewing advanced methods of updating (e.g. see Friswell (1990), Mottershead

and Friswell (1993) and Humbert (1999)). These studies were then followed by

studies on parameter identification, model updating, damage identification, and

health monitoring in the context of different mechanical behaviors at the beginning

of the 21st century ( Farrar et al. (2001); Sinha et al. (2002); Carden and Fanning

(2004); Živanović et al. (2005); Kerschen et al. (2006)). Afterward, other studies

like Chen et al. (2006) performed analyses for investigating model and data uncer-

tainties in structural dynamics with a case study of composite sandwich panels.

Chen et al. (2006) dealt with the experimental identification, model updating, and

validation of a non-parametric probabilistic method.

Meanwhile, parameter identification was another important issue in the pa-

rameter updating associated with composite sandwich panels. For instance, for

the parameter identification, following Berthaut et al. (2005) which set the bases

of inhomogeneous wave correlation method (IWC), Ichchou et al. (2008) proposed

an approach and applied it to one and two-dimensional sandwich structures with

honeycomb cores. Their approach is founded on the k-space characteristics of

measured or simulated data and it starts from the spatially distributed fields of

a vibrating structure for identifying the complete dispersion curve. The method

of Ichchou et al. (2008) uses a harmonic field as the primary input, and then

the correlation between this harmonic field and an inhomogeneous wave is calcu-

lated, leading to a wavenumber-dependent objective function, called Inhomoge-

neous Wave Correlation (IWC). Also, the approach includes an inverse technique

for the optimization of the correlation index. Ichchou et al. (2008) successfully

compared the technique with another wavenumber identification tool proposed by

McDaniel et al. (2000) and McDaniel and Shepard Jr (2000). Finally, in this re-

search, parameter identification was attained via a least square algorithm, where

a sandwich honeycomb was examined via the proposed method, and the results

were successfully validated by an analytical model of Nilsson and Nilsson (2002).

Afterward, the IWC approach was also followed by other researchers in their pa-

rameter identification studies like Chronopoulos et al. (2013), Cherif et al. (2015),

and Van Belle et al. (2017).

Besides, nowadays by virtue of high-tech laser vibrometers and digital cameras,

we are able to carry out the parameter identification and updating via using full-

field vibration data. The increasing usage of these technologies in modal analysis

has made full-field measurement of vibration mode shapes available (Mottershead

et al. (2011)). Wang et al. (2011) presented a study on model updating from

full-field vibration measurement using digital image correlation. This study shows
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how such a comparison of structural responses between predictions and full-field

vibration measurements is an essential step in model updating.

In recent years, we can also come across other different studies for updat-

ing, optimizing, and identifying mechanical parameters of composite panels. For

instance, Esfandiari (2014) proposed a model updating algorithm for estimating

structural parameters at the element level using frequency domain representation

of the strain data. Also, Tsai et al. (2015) propounded the optimization approach

that could optimize material properties of a composite panel for a sound transmis-

sion problem. Wang et al. (2017) proposed a model updating method based on

acceleration frequency response function, and applied a Kriging model to structural

acceleration FRF-based model updating. Also, Cuadrado et al. (2019) provided an

approach for the model updating of uncertain parameters of carbon/epoxy com-

posite plates from experimental modal data.

Furthermore, along with the above-mentioned studies, another type of updating

method has emerged in recent years, which attempts to employ artificial intelli-

gence and machine learning techniques for updating parameters and models. For

example, Hwang and He (2006) proposed an adaptive real-parameter simulated

annealing genetic algorithm incorporated with natural frequency error function

to estimate elastic properties of composite materials. Also, De Albuquerque et al.

(2010) assessed delamination damages on composite plates using an Artificial Neu-

ral Network for the radiographic image analysis. Katunin and Przysta lka (2014)

performed a damage assessment on composite plates using fractional wavelet trans-

form of modal shapes with an optimized selection of spatial wavelets. Petrone and

Meruane (2017) used an inverse modeling method based on a parallel genetic algo-

rithm for updating mechanical properties throughout a composite panel in order

to get a good numerical-experimental correlation. Tam et al. (2019) proposed an

identification approach for isotropic and composite panels, known as, the two-stage

meta-heuristic hybrid GA-ACO-PSO optimization method that uses the natural

frequency error function, and FRF error function in its first and second stages,

respectively. Also, Khatir et al. (2021) proposed another two-stage approach to

study damage detection, localization, and quantification in Functionally Graded

Material (FGM) plate structures.

The integration of various methods to suggest a hybrid approach comes with

certain limitations such as challenges related to compatibility between the meth-

ods, heightened complexity for users, and the requirement for meticulous assess-

ments. However, these limitations can be largely addressed through the imple-

mentation of a specific structure, clear formulations and procedures, and detailed
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experimental evaluations. The main advantage of a hybrid method is the utiliza-

tion of the proven capabilities of previously established methods and its progres-

sive implementation, allowing for the controlled evaluation and enhancement of

the updated parameters and model at each stage. Herein, continuing the above-

mentioned studies, the proposed hybrid approach is founded on concepts of Hi-

erarchical functions, IWC approach, and least squares optimizations, and finally,

its abilities are successfully examined in laboratory experiments. Such validated

abilities of the proposed method for calculations up to high frequencies, normally

not considered in classical simulations, will also be capable of presenting accurate

modeling from a perceptual point of view in future psychoacoustic studies, which is

one of the future goals of this research, too. Herein, the originality of the proposed

hybrid approach owes much to the analytical formulations of the problems, using

the capabilities of the IWC technique during updating procedures, and complet-

ing the procedures with the total least square optimization, while the ground-truth

laboratory measurements accompany and control the procedures in all the steps.

The Hierarchical functions have facilitated the advantage of the hybrid method in

analyzing the problem analytically and preparing it for optimizations. Addition-

ally, the IWC approach has empowered the parameter identification and control of

initial values for the mechanical parameters of the composite panels. Lastly, the

utilization of the least squares methods has enhanced the optimization capabilities

of the hybrid approach.

Herein, the presentation is as follows: Section 2 presents the definitions and main

theoretical concepts of the problems. Section 3 is devoted to the methodology.

The hybrid approach adapted for updating parameters is discussed in this Section.

Then Section 4 presents laboratory experiments performed for required validations,

and also it presents the required discussions corresponding to experimental results.

Finally, Section5 ends this paper with concluding remarks.

2 Vibration of composite panels

In this Section, governing partial differential equations (PDEs), called 6th and

4th order problems, which are able to model the vibration behavior of different

composite panels, are discussed in detail.
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2.1 6th order problem

The 6th order problem refers to a sixth-order PDE for the vibroacoustic modeling

of composite sandwich panels, which accounts for various factors including trans-

verse shear deformation, normal deformation, and bending moments to accurately

predict the response to external loads. This problem was originally proposed by

Mead and Markus (1969) and subsequently developed further by other researchers

such as Narayanan and Shanbhag (1981, 1982). Today, the applications of this

model can be found in vibroacoustic studies of composite panels and beams. For

instance, Alvelid (2013) developed the 6th order problem for a three-layer sand-

wich beam with a viscoelastic layer in the middle. In this study, the problem was

solved in the case of a cantilever sandwich beam, and the results were compared

with Finite Element Method (FEM) calculations. Also, Droz et al. (2017) derived

analytical expressions for the equivalent bending and shear parameters by relating

them to the transition frequency and the maximal group velocity, and this study

employed the 6th order problem to investigate the group velocity. In a recent

study by Kohsaka et al. (2021), the vibration characteristics of a sandwich beam

with a lattice core were investigated using an analytical approach as well as finite

element analyses. The analytical approach focused on solving the 6th order prob-

lem to express the motion in terms of the transverse displacement.

In practice, since the shear effects are not usually negligible for composite sand-

wich plates, the flexural vibrating motions of such panels are usually expected to

satisfy high-order problems like the 6th order problem that can demonstrate the

flexural motion in a spatial-time domain. For this purpose, one considers a vibrat-

ing composite sandwich panel with a a × b rectangular shape (see Figure1). The

panel is excited by an external point force q(t, x, y) = q(t)δ(x−x0)δ(y−y0) exerted

at point (x0, y0). Then the 6th order problem is introduced as follows (Mead and

Markus (1969); Narayanan and Shanbhag (1981, 1982)):

Dt∇6w −Dtǵ(1 + Y )∇4w +M
∂2

∂t2
(∇2w − ǵw) = ∇2q − ǵq (1)

where w(x, y, t) is the transverse displacement, ∇6(•) = ∇2(∇2(∇2(•))), ∇4(•) =

∇2(∇2(•)), ∇2(•) = ∂2(•)
∂x2 + ∂2(•)

∂y2
is the Laplacian operator, ǵ = 2G(1−v2)/E1h1h2

is the shear parameter of the core, G is the shear modulus of the viscoelastic core,

Y = 3(1 + h2/h1)
2 is the geometric parameter, Dt is the total flexural rigidity, E1

is Young’s modulus of the face sheet, ν is the Poisson’s ratio of the plate material,

M = ρh is the mass per unit area of the entire sandwich, ρ is the total mass
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density of the composite panel, h1 and h2, respectively, are the thicknesses of the

face sheet and the constrained damping layer, h = 2h1 + h2 is the total thickness,

and q is the external point force loading on the panel (Narayanan and Shanbhag

(1982)). Figure 1 illustrates the geometrical configuration of the sandwich panel.

If we consider the case of free vibration when q(t, x, y) = 0, and assume the

plane wave ei(ωt−kxx−kyy) propagating within the plate, we can reach the 6th order

dispersion relation via the six order problem defined by Eq.(1) as follows:

−Dtk
6 −Dtǵ(1 + Y )k4 +Mω2(k2 + ǵ) = 0 (2)

where k =
√
k2x + k2y, and kx and ky are the wave numbers in the x and y directions,

respectively.

2.2 4th order problem

The shear effects are usually neglected for thin composite panels, and the flexural

vibrating motions of such panels are usually expected to satisfy the 4th order prob-

lem. According to the Kirchhoff-Love hypothesis and neglecting transverse shear

and rotary inertia, the 4th order problem governing the transverse displacement

w(x, y, t) of an undamped plate will be as follows (e.g. see Lesueur and Nicolas

(1989); Jones (1999)):

D11
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
+M

∂2w

∂t2
= q(t, x, y) (3)

where (x, y) ∈ [0, a] × [0, b], D11, D22, D12, and D66 are the bending rigidity

coefficients, ρ is the mass density, h is the thickness, and M = ρh is the mass per

unit area (herein, the geometrical configuration of the thin composite panel is the

same as that of Figure 1, except for taking into account the core thickness).

The well-known particular case of the 4th and 6th order problems when Dt = D11 =

D22 = D12 +2D66 = D, and g = 0 presents the governing vibration motion of thin

isotropic plates under Kirchhoff-Love hypothesis as follows (e.g. see Lesueur and

Nicolas (1989); Jones (1999)):

D∇4w(x, y, t) +M
∂2w(x, y, t)

∂t2
= q(t, x, y) (4)

In the current study, this particular case has also been used for validating the

efficiency of the proposed approach. In Section4, it has been used to model the
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behavior of two isotropic panels for further validating the approach.

In the case of free vibration when q(t, x, y) = 0, considering the wave ei(ωt−kxx−kyy)

propagating within the plate, the fourth order problem introduced by Eq.(3) leads

to the 4th order dispersion relation as follows:

D11k
4
x + 2(D12 + 2D66)k

2
xk

2
y +D22k

4
y −Mω2 = 0 (5)

where kx and ky are the wave numbers in the x and y directions, respectively.

Figure 1: The geometrical configuration for a thick composite sandwich plate

2.3 Modal decomposition

By a modal decomposition and taking into account an ad hoc damping loss factor

η for dissipation, the response H to a harmonic point force such q(t) = eiωt at

point (x0, y0), will be as follows (e.g. see Lafont et al. (2014)):

H (x, y;x0, y0;ω) =
∑
n≥0

Hn (ω)ψn (x0, y0)ψn (x, y) (6)
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where ψn denotes the modal function of mode n, the frequency response coefficient

{Hn(ω)} is obtained as Hn(ω) = M−1(ω2
n − ω2 + iηωnω)

−1
, and ωn is the angular

natural frequency belonging to the modal function ψn.

Based on the above modal decomposition for the harmonic response (i.e. Eq.6),

the transverse displacement w(x, y, t) can be modeled if the modes ψn can be

correctly calculated. Thus, according to Eq.(6), the function w̃ (x, y;ω) as the

Fourier transform function of w(x, y, t) is obtained by

w̃ (x, y;ω) =
∑
n≥0

q̃(ω)Hn (ω)ψn (x0, y0)ψn (x, y) (7)

where q̃(ω) is the Fourier transform of the external force q(t). For instance, in a par-

ticular case when the boundary condition is simply supported, we can have an ana-

lytical expression for the modal functions as {ψn = (2/
√
ab) sin(n1πx/a) sin(n2πy/b)}

(e.g. see Lafont et al. (2014); Le Bot (2015)) but in reality, such expressions of

modes are not enough and we should obtain reliable and accurate knowledge about

them. In the next section, we will also see how the modal functions can be pre-

dicted in terms of hierarchical trigonometric functions, and then real laboratory

measurements will assist us to have a reliable estimation of these critical functions.

3 Hybrid Updating Method

Herein, the methodology starts with the hierarchical functions required for mod-

eling high-order bending modes and consequently modeling the flexural vibration.

The variational formulation is analyzed via the hierarchical functions, and then

the IWC technique is presented for performing an initial tuning to mechanical

parameters used in the formulation. Afterward, the procedure of model updating

is explained, and at last, the methodology ends with the least square optimiza-

tion and updated values of the parameters. The structure and main stages of the

proposed hybrid updating method are illustrated by Figure 2.

3.1 Hierarchical functions and formulations

Hierarchical functions are employed to model flexural motion of the plate structure

where these functions are constructed by a type of trigonometric functions. The hi-

erarchical functions can provide us with a better convergence rate when predicting

high-order natural flexural modes of rectangular vibrating plates with any bound-
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Figure 2: The schematic diagram illustrating the hybrid updating method

ary conditions (Beslin and Nicolas (1997)). Hence, according to the Rayleigh–Ritz

method, the Fourier transform of the flexural displacement w̃ (x, y;ω) can be ap-

proximated by the following relation (Beslin and Nicolas (1997); Jaouen et al.

(2005)):

w̃ (x, y;ω) =
∑
n

w̃n(ω)ϕn(x, y) (8)

where {w̃n} are complex coefficients, and the hierarchical functions {ϕn} are de-

fined as follows:

ϕn(x, y) = αl(ξ)αk(η) (9)

where n = n(l, k), and ξ = 2x/a − 1 and η = 2y/b − 1 are dimensionless space

variables, and the functions {αl} are of the following form (Beslin and Nicolas

(1997); Jaouen et al. (2005)):

αl(ξ) = sin(alξ + bl)sin(clξ + dl) (10)

where the coefficients {al, bl, cl, dl} are defined in Table 1, and meanwhile, the order

l enables us to consider various Boundary Conditions (B.Cs) for the vibrating plate

as follows:

• Free B.C: l ≥ 1

• Simply Supported B.C: l = 2, 4 and l ≥ 5

• Clamped B.C: l ≥ 5
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Table 1: The coefficients {al, bl, cl, dl} required for defining the hierarchical
functions

al bl cl dl

l = 1 π/4 3π/4 π/4 3π/4

l = 2 π/4 3π/4 −π/2 −3π/2

l = 3 π/4 −3π/4 π/4 −3π/4

l = 4 π/4 −3π/4 π/2 −3π/2

l ≥ 5 (l − 4)π/2 (l − 4)π/2 π/2 π/2

Since the laboratory experiments were performed for vibrating plates under bound-

ary conditions near the clamped boundary condition, from here on the clamped

boundary condition is considered. However, according to the above-mentioned

theories, the concepts of the methodology will remain the same for other types of

conditions. Besides, in practice, the choice of a large value for parameter n in the

Rayleigh–Ritz approximation (i.e. Eq.8) enables us to estimate a greater number

of modes in the problem. On the other hand, to achieve convergence of the approxi-

mation and obtain an appropriate solution, the maximum number of modes should

be appropriately selected for the modal decomposition (i.e. Eq.(7)). It is possible

to demonstrate that the maximum number of modes N is a function of the desired

maximum frequency when the problem is treated as a two-dimensional system (e.g.

see chapter 6.3 in Le Bot (2015)). Now, according to the Rayleigh–Ritz approxi-

mation based on the hierarchical functions, we can reach variational formulations

for both the 4th and 6th order problems.

3.1.1 For 4th order problem

So, if the hierarchical function ϕm with the order m plays the role of a test function

in the variational formulation for the 4th order problem (see Eq.3), we will have

the following equation for the case of free vibration (i.e. when q = 0):

D11

∫ b

0

∫ a

0

∂4w̃

∂x4
ϕmdxdy + 2(D12 + 2D66)

∫ b

0

∫ a

0

∂4w̃

∂x2∂y2
ϕmdxdy+

D22

∫ b

0

∫ a

0

∂4w̃

∂y4
ϕmdxdy −Mω2

∫ b

0

∫ a

0
w̃ϕmdxdy = 0

(11)
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and subsequently, according to the Rayleigh–Ritz approximation (i.e. (8)), we will

also have

D11

∑
n

w̃n

∫ b

0

∫ a

0

∂4ϕn
∂x4

ϕmdxdy + 2(D12 + 2D66)
∑
n

w̃n

∫ b

0

∫ a

0

∂4ϕn
∂x2∂y2

ϕmdxdy+

D22

∑
n

w̃n

∫ b

0

∫ a

0

∂4ϕn
∂y4

ϕmdxdy −Mω2
∑
n

w̃n

∫ b

0

∫ a

0
ϕnϕmdxdy = 0

(12)

Thus, according to the integration by parts and the characteristics of the hierar-

chical functions defined for the clamped boundary condition (i.e. when n,m ≥ 5),

we have

D11

∑
n

w̃n

∫ b

0

∫ a

0

∂2ϕn
∂x2

∂2ϕm
∂x2

dxdy + 2(D12 + 2D66)
∑
n

w̃n

∫ b

0

∫ a

0

∂2ϕn
∂x∂y

∂2ϕm
∂x∂y

dxdy+

D22

∑
n

w̃n

∫ b

0

∫ a

0

∂2ϕn
∂y2

∂2ϕm
∂y2

dxdy −Mω2
∑
n

w̃n

∫ b

0

∫ a

0
ϕnϕmdxdy = 0

(13)

Accordingly, the above equation changes into Kw̃− ω2Mw̃ = 0 where w̃ = [w̃n],

and the stiffness matrix K = [Kmn] and mass matrix M= [Mmn] belonging to the

4th order problem are defined as follows:

K = [Kmn] =

[∫ b

0

∫ a

0
(D11

∂2ϕn
∂x2

∂2ϕm
∂x2

+ 2(D12 + 2D66)
∂2ϕn
∂x∂y

∂2ϕm
∂x∂y

+D22
∂2ϕn
∂y2

∂2ϕm
∂y2

)dxdy

]
(14)

M = [Mmn] =

[
M

∫ b

0

∫ a

0
ϕnϕmdxdy

]
(15)

3.1.2 For 6th order problem

Similarly, based on the 6th order problem introduced by Eq.1, we can also obtain

the following formulation for the case of free vibration in the 6th order problem

(i.e. when q = 0):

Dt

∫ b

0

∫ a

0
∇6w̃ϕmdxdy −Dtǵ(1 + Y )

∫ b

0

∫ a

0
∇4w̃ϕmdxdy

−Mω2

∫ b

0

∫ a

0
(∇2w̃ − ǵw̃)ϕmdxdy = 0

(16)
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So, subsequently, the Rayleigh–Ritz approximation (i.e. (8)) implies that

Dt

∑
n

w̃n

∫ b

0

∫ a

0
∇6ϕnϕmdxdy −Dtǵ(1 + Y )

∑
n

w̃n

∫ b

0

∫ a

0
∇4ϕnϕmdxdy

−Mω2
∑
n

w̃n

∫ b

0

∫ a

0
(∇2ϕn − ǵϕn)ϕmdxdy = 0

(17)

Therefore, using the integration by parts, and considering the characteristics of

the hierarchical functions defined for the clamped boundary condition (i.e. the

hierarchical functions with the orders n,m ≥ 5), we will obtain

Dt

∑
n

w̃n

∫ b

0

∫ a

0
∇3ϕn ·∇3ϕmdxdy +Dtǵ(1 + Y )

∑
n

w̃n

∫ b

0

∫ a

0
∇2ϕn∇2ϕmdxdy

−Mω2
∑
n

w̃n

∫ b

0

∫ a

0
(∇ϕn ·∇ϕm + ǵϕnϕm)dxdy = 0

(18)

where the dot · is the sign of the inter product, ∇3(•) = ∇(∇2(•)), and ∇(•) =

(∂(•)∂x ,
∂(•)
∂y ) is the gradient operator. Consequently, the above relation is also formed

into Kw̃ − ω2Mw̃ = 0, and the stiffness matrix K = [Kmn] and mass matrix

M= [Mmn] corresponding to the 6th order problem are obtained as follows:

K = [Kmn] =

[∫ b

0

∫ a

0
Dt(∇3ϕn ·∇3ϕm + ǵ(1 + Y )∇2ϕn∇2ϕm)dxdy

]
(19)

M = [Mmn] =

[
M

∫ b

0

∫ a

0
(∇ϕn ·∇ϕm + ǵϕnϕm)dxdy

]
(20)

The above formulation for the 6th order problem indicates that the stiffness and

mass matrices are formed by (semi-) inner products of Sobolev spaces (cf. Adams

and Fournier (2003)).

3.2 Inhomogeneous wave correlation technique

First, we need to have a certain initial knowledge about the mechanical parame-

ters including Young modulus, Poisson ratio, shear modulus, and bending rigidity

coefficients for constructing the governing equations. Although one can usually

obtain such initial knowledge of the parameters from previous studies, and any
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initial information about the parameters is enough to theoretically perform the

updating procedure, and we do not expect much from their precision, in practice

these initial values should be both reliable and acceptable. For this purpose, we

can utilize methods of property identification for identifying effective structural

properties. Hence, as introduced in Section 1, according to the abilities of the

inhomogeneous wave correlation method (IWC) technique (Berthaut et al. (2005);

Ichchou et al. (2008)), this approach can be helpful in this step, and hence, herein,

we used IWC technique for initially tuning the mechanical parameters of com-

posite panels before performing the model updating and associated optimizations.

The IWC approach starts with an acquired full field of the vibrating panel, for

constructing the k-space. This technique uses the acquired full field of vibration

like w as the primary input, which can be acquired in a controlled laboratory con-

dition via Laser precise Doppler Vibrometers (LDVs) or precise digital cameras.

Then the correlation between the full field and an inhomogeneous wave ok,γ.θ is

calculated. This correlation leads us to a wavenumber-dependent objective func-

tion, the so-called Inhomogeneous Wave Correlation (IWC) as follows (Berthaut

et al. (2005); Ichchou et al. (2008)):

IWC(k, γ, θ) =

∣∣∣∫ b
0

∫ a
0 wok,γ.θdxdy

∣∣∣√∫ b
0

∫ a
0 |w|2 dxdy

∫ b
0

∫ a
0 |ok,γ.θ|2 dxdy

(21)

where ok,γ.θ = e−ik(θ)(1+iγ(θ))(x cos(θ)+y sin(θ)), k(θ) is the wave number in the direc-

tion θ, and γ(θ) is the wave attenuation defined by Lyon et al. (1995). So, the

maximization of the above IWC objective function implies the identification of the

complex wave number k for the given direction θ in the k-space. Then, based on

the identified wave number in various directions of the k-space as well as consid-

ering the dispersion relations (i.e. (2) and Eqs.(5)), we can perform identification

of mechanical properties of the composite panel too, see (Ichchou et al. (2008)).

In the current study, this approach has been used for initially predicting the me-

chanical effective properties of panels before going through the model updating

and associated optimization.

3.3 Model updating

Experimental knowledge about the full vibration field of the vibrating panel is

required for adjusting the models and their associated parameters. Nowadays,

such experimental data about the full vibration field can be acquired via advanced
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scanning laser vibrometers or high-speed cameras (Stanbridge et al. (2004); Mot-

tershead et al. (2011); Wang et al. (2011)). In this step, we apply the mode shapes,

extracted from the full-field vibration data, acquired from laboratory experiments,

to the models of the 4th and 6th order problems (in the next Section the procedure

required for extracting the modes from the experimental data has been discussed).

So, first assume that the columns of the matrix ΨM = [ψM
l ] = [ψM

l (xk, yk)] con-

tains the measured values of the mode shapes acquired in laboratory experiments

(where ψM
l is the lth column of the matrix ΨM , which contains the measured val-

ues of the lth modal function ψn, and ψM
l (xk, yk) is the measured value of the lth

mode at the node k with coordinates (xk, yk)]). The measured values of the mode

shapes should be projected to the hierarchical base functions. For this purpose,

the measured values of the lth mode shape at the node k can be approximated by

the Rayleigh–Ritz method and hierarchical function as follows (see Eq.(8)):

ψM
l (xk, yk) =

∑
n

ΨM
nl (ω)ϕn(xk, yk) (22)

The above relation constitutes a system of linear equation, where on the left-hand

side we have the measured values of the mode shapes [ψM
l (xk, yk)], and on the

right-hand side we have the known coefficients [ϕn(xk, yk)] (the known values of

nth hierarchical functions at the node k). So, by means of solving the above linear

system, we can reach another form of the measured mode matrix ΨM = [ΨM
nl ] that

is actually the projection of the measured modes onto the hierarchical functions.

Furthermore, before using this matrix it is recommended to normalize its columns

in the following way: Ψl := Ψl

(
ΨT

l MΨl

)− 1
2 where Ψl is the lth column of the

matrix ΨM before normalization, i.e. Ψl is the measured lth mode shape and

formed by the hierarchical functions before normalization. For more information

on this type of normalization (e.g. see Baruch (1978)).

Now, the measured values of the mode shapes are ready to be used by the model

updating. Thus, for the 4th and 6th order problems (see Subsections 3.1.1 and 3.1.2)

if we suppose that the stiffness matrix K is more affected by the uncertainties than

the mass matrix M, we can consider the mass matrix M as the reference matrix.

So, by means of the following least squares optimization, Baruch method, we can

find the correction to the stiffness matrix δK as well as the optimized matrix of

mode shapes Ψ̂ as follows (see Baruch (1978); Humbert (1999)):
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∥∥∥M− 1

2 δKM− 1
2

∥∥∥2
F
→Min

K̂Ψ̂ = MΨ̂Ω2
M

K̂ = K̂T

,


∥∥∥M 1

2 δΨ
∥∥∥2
F
→Min

Ψ̂TMΨ̂ = I
(23)

where δK = K̂ − K, and δΨ = Ψ̂ − ΨM is the correction to the mode shapes,

also, ∥•∥F is the Frobenius norm, and ΩM is a diagonal matrix whose diagonal

elements consists of measured values of angular natural frequencies corresponding

to the measured modes. Baruch (1978) showed that the solution to the above

optimization will be as follows:

δK = −KΨ̂Ψ̂TM−MΨ̂Ψ̂TK + MΨ̂Ψ̂TKΨ̂Ψ̂TM + MΨ̂Ω2
MΨ̂TM

Ψ̂ = ΨM (ΨT
MMΨM )−

1
2

(24)

Herein, the above solution enables us to update the associated stiffness matrices

obtained by Eqs.(14) and (19), and consequently, it will enable us to update the

corresponding parameters of the 4th and 6th order problems as discussed in the

following subsection.

3.4 Total least squares optimization

Accordingly, suppose that the vector p = [pi] consists of the parameters to be

updated. We know that the stiffness matrix is a function of the parameters (i.e.

K = K(p) and Knm = Knm([pi])). Hence, we have

δKnm =
∑
i

∂Knm

∂pi
δpi (25)

So, considering the correction to the stiffness matrix δK = [δKnm] obtained via

Eq.(24) and laboratory experiments, the above equation for all the elements of the

matrix δK = [δKnm] constitutes a system of linear equations like b = Ax where x

as the unknown vector consists of the corrections to the parameters (x = δp = [pi]),

the vector b = [δKnm] as the known data consists of the elements of δK obtained

via Eq.(24), and the matrix A = [∂Knm
∂pi

] is formed by the derivatives of the elements

of the stiffness matrix as discussed in the following.
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3.4.1 For 4th order problem

For the 4th order problem, we have three independent parameters, which can be

estimated via the above-mentioned linear problem. According to (14) formulating

the stiffness matrix of the 4th order problem via the hierarchical functions, the

three independent parameters are p1 = D11, p2 = D12 + 2D66, and p3 = D22, and

we have (see (14))

∂Kmn

∂p1
=
∂Kmn

∂D11
=

∫ b

0

∫ a

0

∂2ϕn
∂x2

∂2ϕm
∂x2

dxdy (26)

∂Kmn

∂p2
= 2

∫ b

0

∫ a

0

∂2ϕn
∂x∂y

∂2ϕm
∂x∂y

dxdy (27)

∂Kmn

∂p2
=
∂Kmn

∂D22
=

∫ b

0

∫ a

0

∂2ϕn
∂y2

∂2ϕm
∂y2

dxdy (28)

3.4.2 For 6th order problem

Also, for the 6th order problem, we have two independent parameters whose cor-

rections can also be estimated by Eq.(25). Hence, according to (19) formulating

the stiffness matrix of the 6th order problem via the hierarchical functions, the

two independent parameters are the total flexural rigidity p1 = Dt, and the shear

parameter of the core p2 = g′, and we have (see (19))

∂Kmn

∂p1
=
∂Kmn

∂Dt
=

∫ b

0

∫ a

0
∇3ϕn ·∇3ϕmdxdy (29)

∂Kmn

∂p2
=
∂Kmn

∂g′
= (1 + Y )

∫ b

0

∫ a

0
∇2ϕn∇2ϕmdxdy (30)

3.4.3 Updating parameters

Accordingly, now we can solve Eq.(25) for finding the corrections to the parameters

and consequently updating the parameters. Herein, we employed the total least

squares method (TLS) for adjusting and solving Eq.(25). The total least squares

method is a natural generalization of the least squares method, recommended for

solving a system of linear equations when all the given data including both the
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model A and b suffer from uncertainties, and it has a wide range of applications in

system theory, signal processing, and computer algebra (Markovsky and Van Huffel

(2007)). In order to estimate the residual parameters [δpi] and subsequently update

the parameters [pi], according to the total least squares method, the solution to

the equation Eq.(25) formed into b = Ax will be as follows (see Markovsky and

Van Huffel (2007)):

δp̂ = x̂ = (ATA− σ2n+1I)
−1ATb (31)

where the elements of A = [∂Knm
∂pi

] are obtained by Eqs.(26) to (29), σn+1 is the

smallest singular value of the matrix [A b], and I is the identity matrix. So, at last

the updated parameters p̂ will be obtained by adding the estimated corrections

δp̂ to the initial parameters p (i.e. p̂ = p + δp̂).

4 Experiments

We chose four plates including a thick sandwich composite plate (with a Nomex

honeycomb core), and a Carbon-Fiber-Reinforced Polymer (CFRP) laminate com-

posite plate as well as two isotropic plates (aluminium and steel ones). Nomex

honeycomb cores have been widely used in composite sandwich panels. Nomex

(DuPont de Nemours, Inc.) honeycomb cores can be an appropriate choice for

manufacturing thick sandwich panels concerning their environmental resistance,

flammability properties, dielectric properties, and galvanic compatibility with face

sheets (Roy et al. (2014)). On the other hand, Carbon fiber reinforced plastics

(CFRP) laminate is a type of composite panel, which is made of extremely strong

and light fiber-reinforced plastics that contain carbon fibers, have found extensive

usage as structural components in various types of advanced structures (cf. Qi

et al. (2019)). In addition to the two composite plates, we also examined two

isotropic ones (aluminium and steel). The usage of the isotropic plates had the

advantage that the updating approach could additionally be tested and validated

for the special case of the 4th order equation (i.e. Eq.(4)) that is applicable for

isotropic plates, too.

In this study, the above experimental plates sometimes referred to as specimens,

are examined in controlled laboratory conditions in a semi-anechoic chamber whose

dimensions were 3.4m(W ) × 5m(L) × 1.9m(H). The semi-anechoic chamber pos-

sessed a measuring window (with dimensions 60cm× 40cm), which could be used

for vibroacoustic measurements of vibrating plates (the semi-anechoic room was

coupled to another untreated room) (see Figure 4 ).
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4.1 Experimental set-up

The experimental set-up of the current study has been summed up by Figure 3,

and some views of the laboratory configuration have been shown by Figure 4. For

performing vibration measurements, a scanning laser vibrometer system (PSV-

300-F/S High Frequency Scanning Vibrometer System), manufactured by Polytec

Co., has been used. The scanning laser vibrometer system was used to measure the

full-vibration field associated with the flexural displacement of the vibrating plates

from the inside of the semi-anechoic chamber when the plates were been shaken

from the other side of the measuring window (see Figure 4). The specimens were

installed in the 40cm× 60cm measuring window in such a way that the boundary

condition of the vibrating plates was similar to a clamped boundary condition. For

this purpose, in the experiments of each specimen, all the screws of the measuring

window frame were installed with a torque of 30Nm (see Figure 4 (b)). Also,

a shaker was used for a point-wise excitation of the plates from the back while

it was attached to a piezoelectric sensor as the force transducer with sensitivity

105.5mV/N for measuring and sending the force signal to the spectrum analyzer

(see Figure 4 (c)). In addition to the laser measurements, the sound radiated from

the vibrating plates in the semi-anechoic chamber was recorded at a distance of

50cm from the middle of the vibrating plates. Herein, the sounds were recorded

with an omnidirectional microphone, manufactured by Brüel & Kjær Co., with a

sensitivity equal to 27.3mV/Pa. After calibration, the sound pressure level (SPL)

was calculated. Figure 4 (e) illustrates the microphone facing the vibrating plate

and recording the sounds. Also, the scanning laser system was equipped with a

spectrum analyzer acquiring the signals sent from the laser vibrometer as well as

other sensors including the piezoelectric sensor and the microphone. The spectrum

analyzer enabled a white noise signal to be generated and sent to a signal generator

for producing the voltage required by the shaker. Then, the laser vibrometer,

microphone, and piezoelectric sensor of the force transducer simultaneously sent

their signal to the spectrum analyzer that gathered the spectra of all the data in

a unique database including the spectra belonging to all the sensors.

4.2 Characteristics of specimens

The four specimens had the dimensions 42cm× 62cm that could be clamped and

installed in the measuring window. One of the specimens was a thick sandwich

plate with a Nomex honeycomb core covered by two face sheets, and its total
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Figure 3: The schematic diagram of the experimental set-up

thickness was equal to 13.9mm. The two face sheets of this composite structure

are made of two CFRP plates, seemingly woven, surrounding the Nomex honey-

comb core, where the thickness of each face sheet and core is 0.2mm and 13.5mm,

respectively. According to the literature, we could have an initial prediction on

some characteristics of the core. According to the mechanical characterization

study of Nomex honeycomb core done by Zhou et al. (2021), the equivalent shear

modulus of the core was initially taken as 50Mpa. Also, each face sheet was ini-

tially assumed to be equivalent to a laminate composed of CFRP plys with a

layout [0/90]. According to the studies of Shahdin et al. (2011); Qi et al. (2019);

Zhou et al. (2021), the mechanical properties of the CFRP plys with epoxy matrix

after curing were considered as what presented in Table 2. The other specimen

was a composite laminate plate made of 25 CFRP plys with a symmetric layout

as [(+45/-45/0/+90/0/+45/-45/0/+90/0/+45/-45)2 0]S. For this laminate plate,

herein sometimes called a thin composite plate, the mechanical characteristics of

each ply after curing were also assumed to be equal to what is presented in Table

2. The aforementioned values of the mechanical properties for each component of

the two composite panels enabled the study to have an initial evaluation of the
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Figure 4: Some views of the configuration associated with the laboratory experiments:
a) the PSV-300-F/S Scanning Vibrometer head, b) the clamped boundary condition

performed with a torque equal to 30Nm for screws of the window frame, c) the shaker
attached to the plate and connected to a piezoelectric sensor sending the force signal, d)
the measuring window, and the floor covered by soundproofing forms e) the microphone

recording the sound, f) the spectrum analyzer, g) the spectrum analyzer software

effective mechanical properties of the composite panels. Accordingly, a prediction

on the equivalent values of the bending stiffness coefficients could be obtained by

calculating the ABD stiffness matrix in classical laminate theory (CLT) where the

bending stiffness could be initially estimated as follows:

Dij =
1

3

∑
k

Q̄k
ij(z

3
k − z3k−1) (32)

where [Q̄k
ij ] is the transformed reduced stiffness matrix, zk is the represents the

vertical position in the kth layer of the composite plate from the mid-plane mea-

sured in meters, and i, j = 1, 2, 6 (e.g. see Kaw (2005); Daniel et al. (2006)). In

addition, we had a 3mm thick aluminum plate, as well as a 0.85mm thick steel

plate. At the initial step, the Young modulus and Poisson ratio of the aluminium

specimen were presumed to be equal to 70GPa and 0.33, and also, for the steel

specimen to be equal to 210GPa and 0.28, respectively. Furthermore, the pre-

cise values of the mass density associated with specimens could be obtained via

measuring the dimensions and the weights of the specimens. Thus, the measured

values of the mass densities corresponding to the composite thick sandwich, thin

composite laminate, and the aluminium and steel plates have been obtained equal
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Table 2: The initial information on the mechanical parameters. The mechan-
ical properties of each CFRP ply with epoxy matrix after curing are based
on the assessments of Shahdin et al. (2011); Qi et al. (2019); Zhou et al.
(2021), and those of the Nomex core are based on the studies of Adams and
Maheri (1993); Zhou et al. (2021). The mass densities were measured in the
laboratory experiments

E1 E2 G12 ν h [mm] ρ [kg/m3]

CFRP ply 140 GPa 7 GPa 3 GPa 0.3 0.14-0.2 1506

Nomex core 100 MPa 100 MPa 50 MPa 0.25 13 80

Aluminium 70 GPa 70 GPa 30 GPa 0.33 3 2648

Steel 210 GPa 210 GPa 80 GPa 0.29 0.85 7769

to 138, 1506, 2648, and 7769 kg/m3, respectively.

Accordingly, we could reach initial approximations of the flexural bending stiffness

coefficients associated with the plates. According to Table 2, the shear modulus of

the composite sandwich was assumed to be equal to 50MPa, and its total flexural

stiffness coefficient Dt required by the 6th order problem (see Eq.(1)) was obtained

equal to 935Nm. Similarly, according to the initial information on the mechani-

cal parameters, the flexural bending stiffness corresponding to the aluminium and

steel plates were equal to 176Nm, and 12Nm, respectively. Besides, according to

Eq.(32) as well as the information of Table 2, the orthotropic bending coefficients

of the thin composite laminate plate were equal to D11 = 237Nm, D22 = 163Nm,

D12 = 72Nm, and D66 = 75Nm. In this work, at the initial stage, we used these

initial values of the bending stiffness for providing an initial prediction on the vi-

broacoustic behaviors of the specimens when they are mechanically excited with

a white-noise point-wise force.

4.3 Vibration measurements

The full-field vibration measurements for all the specimens were performed via

the PSV-300-F/S laser doppler vibrometer (LDV) while the shaker was exerting

a point-wise excitation with a white-noise behavior to the specimens. The ana-

lyzer of the PSV-300-F/S system provided the shaker with the white noise signal,

and the LDV enabled non-contact vibration measurements of the specimens’ sur-

faces to be undertaken. The LDV directed laser beams at the surface of interest,
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and the vibration amplitude and frequency were extracted from the Doppler shift

of the reflected laser beam frequency due to the motion of the vibrating plates.

Originally, the output of an LDV is a continuous signal presenting the velocity

field of the vibrating plates, which could be converted to the full-filed vibration

field. Also, herein, we performed the laser scanning on 1855 nodes for both the

sandwich and laminates plates, and on 2109 and 2035 nodes for the aluminum

and steel plates, respectively. It means that the average spatial resolution of the

laser scanning was between 0.87cm to 0.94cm. The measurement acquired for the

frequency range [3.125Hz, 10kHz] with the frequency resolution equal to 3.125Hz.

Since one of the future goals of this research is the use of the measurements in fu-

ture psychoacoustic experiments, herein the maximum frequency range of the LDV

system (i.e. [3.125Hz, 10kHz]) has been selected to perform measurements. For

extracting the natural frequencies and their corresponding mode shapes from the

full-field vibration field, we adopted a technique for the identification of frequency

response function (FRF), based on the concept of the Single-input multiple-output

(SIMO) systems. For this purpose, first, a number of the laser observation nodes

for each plate were selected, where the velocity was measured for the desired fre-

quency range [3.125Hz, 10kHz]. Then considering the observed force signal as a

single-input (SI) and considering the measured velocity as the Multiple-outputs,

we could form a SIMO system, and hence, its natural frequencies could be ex-

tracted from the system by the Least-Squares Complex Exponential Method. The

least-squares complex exponential method estimates the FRF corresponding to

each Single-input multiple-output (SIMO) system and fits to the response a set of

complex damped sinusoids using Prony’s method (see Heylen et al. (1997);He and

Fu (2001);Brandt (2011); Ozdemir and Gumussoy (2017)). In the next step, the

measured values of the model shapes were used in the updating procedures.

4.4 Updating procedures

First, parameter identification was performed for the problems formulated by the

hierarchical functions. Although prior knowledge of the properties of the speci-

mens’ components (cf. Table 2 and Section 4.2) can be helpful to have a prediction

on the mechanical parameters of the specimens, in practice such prior information

may be far from the reality and may mislead the problems about the true solutions.

As described in Section 3.2, the identification of the properties was performed by

the IWC technique. For this purpose, considering the full-field vibration mea-

surements for each specimen, the wave numbers corresponding to 20 frequencies
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Table 3: The mechanical properties of the composite sandwich, laminate,
aluminium, and steel plates, identified by the IWC technique

Sandwich Laminate Aluminium Steel

Dt = 1093Nm D11 = 259Nm, D22 = 136Nm E = 76GPa E = 213GPa

Gc = 68MPa D12 + 2D66 = 189Nm

and in 180 directions could be extracted from the measurements by means of the

maximization of the IWC function (see Eq.(21)). Herein, for the frequencies, the

center frequencies of one-third octave bands from 125Hz to 10kHz were used, and

the 180 directions were equal to 1 degree to 180 degrees. On the other hand, the

dispersion equations enable mathematical relationships between the frequencies,

their corresponding wave numbers, and the mechanical properties (see Eqs.(5) and

(2)). So, these mathematical relationships could provide us with a system of equa-

tions finding the mechanical properties of the specimens (see Ichchou et al. (2008)).

Table 3 summarizes the properties obtained by the IWC technique.

In the next step, the mechanical parameters identified by the IWC technique

were used in the model updating procedures. Herein, the 6th order problem (i.e.

Eq.(1)) was used for the formulation and modeling associated with the thick com-

posite sandwich plate; the 4th order problem with its general form (i.e. Eq.(3))

was used for the modeling of the thin composite laminate specimen, and also,

the particular case of the 4th order problem adapted for thin isotropic plates (i.e.

Eq.(4)) was also utilized for the formulation and modeling corresponding to the

aluminium and steel plates. Therefore, applying the identified parameters to the

analytical formulations of the stiffness and mass matrices introduced by the hierar-

chical functions (i.e. Equations (14), (15), (19), and (20) ), we could analytically

calculate these matrices, and then apply them to the model updating solution

(i.e. Eq. (24)). The model updating solution requires the measured mode shapes,

which we could extract from the full-field laser measurement. The updated modal

shapes are one of the main outputs of the model-updating procedures (see (24)),

and since they are essentially needed for the modal decomposition and for finding

the final solution to the problem, we need to have an idea on their quality. Modal

Assurance Criterion (MAC) is a type of correlation criterion, which makes it pos-

sible to measure the quality of calculated mode shapes, and also enables to match

two families of modes. For instance, for the calculated and measured modes, the
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cross MAC is defined and calculated as follows (e.g. see Humbert (1999)):

MAC (ψM
l , ψl) =

∣∣ψM
l · ψl

∣∣√
ψM
l · ψM

l

√
ψl · ψl

(33)

where · denotes the inner product, and the vectors ψM
l and ψl are the lth measured

and calculated modes, respectively. The MAC values are between 0 and 1, and a

value close to 1 indicates a good correlation between the calculated and measured

modal shapes. In Figures 5 to 8, the MAC values have been illustrated for cases

performed before and after the updating procedures. As seen in these figures, after

applying the updating procedures to the modal shapes, we can see that the values

of the cross MAC have been enhanced for all the calculated modes associated

with all the plates. The figures demonstrate that the updating procedures for

the problems associated with the 4 specimens could enhance the MAC matrices

by decreasing the elements other than the diagonal and increasing the diagonal

elements of the MAC matrices and pushing them toward 1 (for example, compare

Figures 5 (a) and (b)). It means that the updated mode shapes are closer to the

real measured values by comparison with the old ones obtained before the updating

while they also satisfy the 4th or 6th order problems. In fact, at the first step, the

hierarchical functions could provide reliable modelings of the problems, and they

were so helpful in presenting the approach with the required formulations, but

in practice, such modelings are not enough for precise vibroacoustic predictions,

and the updating procedures based on real data are required, which can enhance

the modeling and its corresponding parameters, and move the models towards the

reality. Herein, the MAC shows such achievement in bringing modeling to reality.

Consequently, based on Eq.(31)), the updating approach will present the required

corrections to the parameters identified by the IWC approach, and find the final

updated parameters for each specimen. Table 4 has summarized the corrected

values of the mechanical parameters.

In the above-mentioned procedures for identifying the parameters, we did not

use the initial information (Table 2) on the mechanical parameters. As mentioned

before, we used this initial knowledge only for obtaining a prediction of the vi-

broacoustic behaviors of the specimens, and now these values can be helpful to

have an independent assessment of the updated parameters. The presented ap-

proach only depends on the IWC approach for identifying the parameters before

the model updating procedures. Comparing Table 4 and Table 2, we can realize

that although the updated values and the initial values have been obtained inde-
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Figure 5: The MAC corresponding to the composite sandwich specimen: a) a view of
the elements of the MAC matrix before the updating, and b) after the updating

Figure 6: The MAC corresponding to the composite laminate specimen: a) a view of
the elements of the MAC matrix before the updating, and b) after the updating

pendently, they are close to each other. For instance, the estimated total bending

stiffness of the composite sandwich plate Dt = 1034Nm (see table 4) implies that

the Young modulus of the face sheet to be equal to 153GPa. This value is in good

agreement with the assessments of Qi et al. (2019) if the mechanical properties of

the face sheet are approximated by a CFRP laminate with layout [0/90]. Qi et al.
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Figure 7: The MAC corresponding to the aluminium specimen: a) a view of the
elements of the MAC matrix before the updating, and b) after the updating

Figure 8: The MAC corresponding to the steel specimen: a) a view of the elements of
the MAC matrix before the updating, and b) after the updating

(2019) proposed a method for predicting the mechanical properties of CFRP based

on cross-scale simulation. In this study, a series of experiments were performed

in order to show that the results of the prediction approach and the experiments

are in good agreement. The preliminary information on mechanical properties of

the CFRP ply, summarized in Table 2, is based on this research. Moreover, con-

sidering this research, the values of the mechanical properties of the CFRP could
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Table 4: The updated mechanical properties of the composite sandwich,
laminate, aluminium, and steel plates

Sandwich Laminate Aluminium Steel

Dt = 1034Nm D11 = 274Nm, D22 = 126Nm E = 74GPa E = 202GPa

Gc = 71MPa D12 + 2D66 = 182Nm

present a prediction on the flexural bending stiffness coefficients of the laminate

plate, too. For this purpose, considering the layout [(+45/-45/0/+90/0/+45/-

45/0/+90/0/+45/-45)2 0]S for the composite laminate plate, and based on Eq.

(32) and Table 2, the flexural bending stiffness coefficients of the laminate were

obtained as D11 = 237Nm, D22 = 163Nm, D12 = 72Nm, and D66 = 75Nm, which

are in a good agreement with both the IWC results (cf. Table 3), and the updated

parameters (Table 4). Furthermore, the Nomex core shear modulus, which is iden-

tified by the IWC approach and updated by the updating approach, is not far from

the assessments of the studies carried out by Adams and Maheri (1993) and Zhou

et al. (2021). Table 2 includes an approximate prediction on the mechanical prop-

erties of Nomex honeycomb, based on the studies of Adams and Maheri (1993),

and Zhou et al. (2021).

4.5 Vibroacoustic comparisons

For the vibroacoustic assessment of the proposed approach, we made two types

of comparisons using vibration measurements (acquired by the LDV instrument),

and SPL recorded by the microphone. Figure 9 illustrates a comparison between

the average of the measured vibration field and the simulated one for the frequency

interval [0Hz,3kHz]. In this figure, it is clearly seen that the updating procedures

could significantly enhance the simulations performed based on the sixth-order

problem. In this figure, the agreement of the average value of the simulated vi-

bration after updating with the actual value taken with the laser system is clearly

evident. On the other hand, the disparity between the simulated values prior to

the updating and the measured values may primarily be attributed to uncertain-

ties in the initial values of mechanical parameters and the unknown intricacy of

the boundary conditions, necessitating the usage of the updating method.

Moreover, according to these results, it is understood that the Root Mean Square

(RMS) of the errors associated with the simulations in the two states after and
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before the updating for the composite panel was 4.32 × 10−7m and 2.44 × 10−8m,

respectively, and this means that the updating method has the ability to improve

the simulation by around 17.7 times from this point of view (herein, the simulation

error is obtained from the difference between the simulation values and the values

taken with the LDV system).

In addition, the same comparison between the sound pressure levels of the sounds

radiated from the vibrating plate has been carried out. The SPL at a distance of

50cm from the middle point of the vibrating plates, has also been acquired for the

additional assessment of the updating approach. The measured sound pressure

spectrum was compared with the simulated ones. For simulating the SPL at an

arbitrary distance from the vibrating plate in the semi-anechoic chamber, we used

the modeled full-vibration field and the well-known Rayleigh integration with time

dependence eiωt as follows (e.g. see Fahy (2000)):

p (x, y, z;ω) = iωρ0

∫∫
S
v(x′, y′)

eikR

2πR
dx′dy′ (34)

where the plate is supposed to be embedded in a rigid baffle, the acoustic pressure

is assumed to be radiated from the plate in fluid half-space z > 0, p (x, y, z;ω)

is the pressure field at the location (x, y, z), ω is the angular frequency, ρ0 is the

air density, v (x′, y′) is the vibration velocity at the point (x′, y′)located in the

plate area S, k = ω
c0

is the wavenumber, c0 is the sound speed in the air, and

R =
√

(x− x′)2 + (y − y′)2 + z2. The modal decomposition described in Section

2.3 is employed for modeling the velocity v = ωw, and the displacement field

w over the plate. For this purpose, the updated modes were used, and the fre-

quency response could be obtained by the natural frequencies estimated by the

Least-Squares Complex Exponential Method, introduced in Section 4.3. Besides,

this method had the ability to present us with an average prediction on the loss

damping factor η of the specimens. The least-squares complex exponential method

can be utilized to analyze the frequency response function (FRF) of vibration ob-

tained from the laser measurements. In fact, the least-squares complex exponential

method applies the Prony’s method to the FRF, which allows to fit a collection

of complex damped exponential functions to the FRF, using a least squares opti-

mization. The complex exponential functions represent the modes present in the

FRF, and meanwhile, the poles of these complex damped exponential functions

correspond to the complex frequencies at which the FRF exhibited decay and os-

cillation. By estimating the damping ratios using the complex frequencies, namely

the poles, the loss damping factors can be determined too (see chapter 9.5 in He
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and Fu (2001)). Accordingly, the average loss damping factor for the compos-

ite sandwich, laminate, aluminium, and steel plates were equal to 0.0916, 0.0451,

0.0158, and 0.0087, respectively. The range of these average values is consistent

with prior research that has explored nearly related case studies regarding the loss

damping factor (e.g. see Ghinet and Atalla (2011); Li and Narita (2013); Cherif

et al. (2015); Sarlin et al. (2012)).

In addition, the measurements allowed for the calculation of modal density and

modal overlap factor (MOF). Modal density was determined by counting the nat-

ural frequencies that were detected by the Least-Squares Complex Exponential

Method. The MOF could also be calculated by incorporating the loss damping

factor (η) and the modal density (d) for a given frequency (f), resulting in the

equation MOF = dηf . The findings revealed that the average modal densities

for the composite sandwich, laminate, aluminium, and steel plates were 0.007,

0.01, 0.012, and 0.016, respectively. Correspondingly, the average MOF values

were 3.07, 2.23, 0.95, and 0.71, respectively. As the investigation encompassed a

wide frequency range, including high frequencies, it was anticipated the average

MOF values would be high. Comparing these values with the average loss damp-

ing factor, it becomes evident that the modal overlap factor in the experiments

was primarily influenced by the loss damping factor, rather than the modal den-

sity. Hence, amongst the specimens, the composite sandwich exhibited the highest

MOF due to its superior loss damping factor (e.g., see Ege et al. (2009); Denis

et al. (2014) for more information on MOF and its interpretation).

Consequently, Figure 10 shows the measured SPL spectrum and ones simulated

before and after the updating for the composite sandwich plate. In Figure 10,

especially in the zoom window for the frequency range of 0 to 2000 Hz, it is evi-

dent that the updated simulation is more consistent with the actual measurement

acquired by the microphone. In other words, these SPL results also indicate the

ability of the updating approach in improving the calculation associated with the

6th order problem of the sandwich panel.

Also, for the composite laminate specimen, similar vibroacoustic comparisons

between the measurements and the simulated ones could be performed. Figures

11, and 12 show the comparisons corresponding to the average vibration field and

the sound pressure level corresponding to the composite laminate panel, respec-

tively. According to these figures, we can see the improvements in the simulations

for both the vibration and the SPL after applying the updating procedures to

the calculations. So, the vibration observations taken with the LDV system show

how the RMS value of the simulation error in the state of applying the updating

method compared to the state before applying the updating method has decreased
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Figure 9: The average of the vibration field for the composite sandwich plate, measured
by the LDV system (Laser), compared with the simulations done before and after the

updating (Simu (before and after))

Figure 10: The SPL comparison corresponding to the composite sandwich plate,
between the simulations (before and after updating) and microphone measurement; the

small zoom window shows such SPL comparison for low frequencies

from a value of 3.37 × 10−7m to a value of 1.16 × 10−7m, which shows that the

modeling and simulation of vibration field for the laminate panel have improved
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by about 2.93 times from the point of view of the RMS errors.

Figure 11: The average of the vibration field for the composite laminate plate,
measured by the LDV system (Laser), compared with the simulations done before and

after the updating (Simu (before and after))

Furthermore, for the other specimens, aluminium, and steel plates, we also car-

ried out similar comparisons between the measurements and the simulated ones.

As discussed before, the measurements associated with the aluminium and steel

plates have been performed as extra validations for the updating procedures associ-

ated with the 4th order problem (see Eq.(4)). Figures 13, and 15 have summarized

the comparisons corresponding to the average vibration field over the aluminium,

and steel plates, respectively, and also, Figures 14, and 16 illustrate the compari-

son of the SPL spectra for the frequency interval [0, 1000]Hz before and after the

updating procedures. According to these figures, similar to the results of the com-

posite panels (sandwich and laminate ones), we can see the enhancement in the

simulations for both the vibration and the sound pressure levels. Based on the

results obtained with the LDV (laser) system, the RMS of the simulation error in

two states, before and after the updating, was obtained for the aluminum plate,

respectively, 5.30× 10−7m and 1.19× 10−7m, and similarly, for the steel plate, the

values of 1.45 × 10−6m and 4.47 × 10−7m were obtained, respectively. Therefore,

this means that from the RMS point of view, the updating method has been able

to enhance the modeling and simulation corresponding to the aluminum and steel

plates by 4.46 and 3.25 times, respectively, which are actually the improvement to
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Figure 12: The SPL comparison corresponding to the composite laminate plate,
between the simulations (before and after updating) and microphone measurement; the

small zoom window shows such SPL comparison for low frequencies

the model of the 4th order problem.

4.6 Discussion of results

The results were also consistent with previous research in which almost similar case

studies were conducted. For example, in the numerical calculations, in order to

preliminarily have the mechanical properties of the composite sandwich and lam-

inate specimens, the characteristics of the CFRP ply with epoxy matrix as well

as the Nomex core were extracted from some previous studies such as Shahdin

et al. (2011); Qi et al. (2019); Zhou et al. (2021); Adams and Maheri (1993); Zhou

et al. (2021) (see Section 4.2). Then, at each stage, the calculated parameters were

compared with these preliminary values. Of course, the final updated parameters,

while being close to such preliminary values, have also enhanced the vibroacoustic

simulations. According to these results, the shear modulus of the Nomex core of

the composite sandwich panel as one of the updated parameters was obtained at

the IWC and final steps of the proposed hybrid approach, equal to 68MPa and

71MPa, respectively, which are close to the preliminary value obtained from the lit-

erature. Similarly, according to the previous studies on the mechanical properties
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Figure 13: The average of the vibration field for the aluminium plate, measured by the
LDV system (Laser), compared with the simulations done before and after the updating

(Simu (before and after))

Figure 14: The SPL comparison corresponding to the aluminium plate, between the
simulations (before and after updating) and microphone measurement

of the CFRP ply with epoxy matrix, at first, the bending stiffness coefficients cor-

responding to the composite laminate and sandwich panel, could also be initially

assessed via the classical laminate theory. Then the bending stiffness coefficients,
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Figure 15: The average of the vibration field for the steel plate, measured by the LDV
system (Laser), compared with the simulations done before and after the updating (Simu

(before and after))

Figure 16: The SPL comparison corresponding to the steel plate, between the
simulations (before and after updating) and microphone measurement

obtained at the IWC and final steps, were able to show their good agreement with

such preliminary assessment (cf. Tables 2 to 4 in Section 4).
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5 Conclusions

This study aimed to develop a hybrid updating approach adapted for the 4th and

6th order problems, required for the vibroacoustic modeling of composite panels.

This approach is based on the hierarchical functions for analytically formulating

the problems, IWC technique for the initial identification of parameters, and least

squares optimizations including Baruch and total least squares method for updat-

ing models and parameters. The approach utilizes the IWC method, employing

the 4th and 6th order dispersion relations for parameter identification. It follows

the model updating process via the Baruch method, which is fed with the param-

eters identified by the IWC. The hierarchical functions provide the models with

analytical formulations facilitating the Baruch method, and the solutions provided

by the Baruch method are used for finalizing the parameter updating process via

the total least squares method. In fact, in the proposed hybrid approach, the

methods are employed step by step, utilizing their respective capabilities in each

stage to complement one another (see Section 3).

Herein, the main idea of the research was examined by laboratory experiments,

including laser doppler vibrometry (LDV) measurements and sound recording for

measuring spectra of sound pressure levels (SPL). The measurements were per-

formed for some panels, including a composite sandwich panel, and a composite

laminate one, as well as two isotropic plates for additional assessments. The ef-

ficiency of the method was attained through the progressive implementation of

the proven capabilities of the aforementioned methods, where the progressive im-

plementation facilitated the controlled evaluation of parameters, and avoided any

time-consuming trial and error procedures. It was examined by different vibroa-

coustic comparisons between the measurements and the simulations enjoying up-

dated parameters. The LDV measurements indicated the ability of the approach

in enhancing the simulations for modeling the vibration field. Furthermore, the

comparison associated with the measured SPL spectra could experimentally vali-

date the accuracy of the simulated vibration. Such ability of the updating method

in the precise modeling of the SPL can also be beneficial for the vibroacoustic

modeling required in future psychoacoustic and perceptual assessments, which is

one of the future goals of this research, too.

Moreover, the improvement of the Modal Assurance Criterion (MAC) can also be

mentioned as one of the numerical achievements. As seen in Section 4.4, the pro-

posed method could significantly enhance the cross Mac between the calculated

and measured modes.
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Accordingly, the study successfully attained a high level of agreement among all

the collected data, which encompassed laboratory vibroacoustic measurements,

mathematical simulations enhanced through updating procedures, and prelimi-

nary information on mechanical parameters. This consistency serves as evidence

of the capabilities of the proposed hybrid approach for model and parameter up-

dating, particularly in addressing 4th and 6th order problems, with a specific focus

on thin and thick composite panels. These findings hold significant promise for

conducting accurate simulations essential to the integrated vibroacoustic and psy-

choacoustic design of composite panels in future studies.
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