Evaluation Framework for ML-based IDS - Archive ouverte HAL
Poster De Conférence Année : 2023

Evaluation Framework for ML-based IDS

Résumé

Intrusion detection is an important topic in cybersecurity research, but the evaluation methodology has remained stagnant despite advancements including the use of machine learning. In this paper, we design a comprehensive evaluation framework for Machine Learning (ML)-based IDS and take into account the unique aspects of ML algorithms, their strengths, and weaknesses. The framework design is inspired by both i) traditional IDS evaluation methods and ii) recommendations for evaluating ML algorithms in diverse application areas. Data quality being the key to machine learning, we focus on datadriven evaluation by exploring data-related issues.
Fichier principal
Vignette du fichier
Evaluation_Framework_for_ML_based_IDS.pdf (182.3 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04164441 , version 1 (18-07-2023)

Identifiants

  • HAL Id : hal-04164441 , version 1

Citer

Solayman Ayoubi, Gregory Blanc, Houda Jmila, Sébastien Tixeuil, Thomas Silverston. Evaluation Framework for ML-based IDS. RESSI 2023 : Rendez-vous de la Recherche et de l'Enseignement de la Sécurité des Systèmes d'Information, May 2023, Neuvy-sur-Barangeon, France. ⟨hal-04164441⟩
128 Consultations
193 Téléchargements

Partager

More