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Abstract

In a first time we present a version of the Poincaré-Lefschetz theorem for certain cellular cosheaves

on a particular subdivision of a CW-complex K. To that end we construct a cellular sheaf on K whose

cohomology with compact support is isomorphic to the homology of the initial cosheaf. In a second time we

use the first result to generalise the tropical version of the Lefschetz hyperplane section theorem to singular

tropical toric varieties and singular tropical hypersurfaces.

Introduction

Given a regular CW-complexK, we define dihomologic cosheaves onK to be a mild generalisation of the concept

of cellular cosheaves on a CW-complex. These objects can be seen as a system of coefficients that associate

a group to every pairs of adjacent cells of the complex K. For a broad variety of examples these cosheaves

correspond to classical cellular cosheaves on a suitable subdivision of K. In a first time we tackled the question:

Can we compute the homology of F from a reduced quantity of data ? Given a set of hypotheses about the local

homology of F we are able to construct a cellular sheaf whose cohomology with compact support is isomorphic

to the homology of F . We went from data carried by adjacent pairs of cells in K to data carried by individual

cells.

Theorem 1 (Cellular Poincaré-Lefschetz Theorem). Let K be a finite dimensional, locally finite and regular

CW-complex, n ∈ N, and F a dihomologic cosheaf whose local homologies H∗(K;Fe) vanish at all cells e

in dimension different from n. Then, for 0 ≤ k ≤ n, we have a canonical isomorphism between Hk(X;F )

and Hn−k
c (X;Hn(F∗)). In particular Hk(K;F ) vanishes for k > n. If in addition, K has dimension n, this

isomorphism comes from an injective quasi-isomorphism Cn−∗
c (K;Hn(F∗))→ Ω∗(K;F ).

This statement reminded us of the Poincaré-Lefschetz duality which can be found as one of its direct

corollaries.

Corollary 1. If X is a homology n-manifold then Hk(X;Z) ∼= Hn−k
c (X; ∂X; oZ) for oZ the system of local

orientations defined on X \ ∂X by x 7→ Hn(X;X − x;Z).

This is the application of Theorem 1 to the constant cosheaf Z and in this special case the proof is the

same as the one given by Zeeman in [Zee63]1. We want to emphasise that we chose the name dihomologic in

reference to Zeeman’s theory of dihomology [Zee62a, Zee62b, Zee63]. A statement similar to Theorem 1 could

be derived the assumptions on the local homology of F . However, in this case we would associate a complex of

cellular sheaves to F whose cohomology with compact support (or more precisely hypercohomology) would be

isomorphic to the homology of F . If F was the subdivision of a cosheaf on K the statement would be close to

Verdier duality of cellular cosheaves given by Curry in [Cur12]. Another corollary of Theorem 1 is a version of

Serre duality for flat vector bundles on a homology manifolds.

1E. C. Zeeman. Dihomology III. A Generalization of the Poincaré Duality for Manifolds, Theorem 1 p.159.
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Corollary 2. If X is a homology n-manifold and E is a flat bundle of F-vector spaces of finite rank over X

then:

Hk(X;E) ∼=
(
Hn−k

c (X; ∂X; oF ⊗F E
∗)
)∗
.

The second theorem is a generalistaion of the tropical version of the Lefschetz hyperplane section theorem

given by C. Arnal, A. Renaudineau and K. Shaw in [ARS21]2 and its extension by E. Brugallé, L. Lopez de

Medrano and J. Rau in [BLdMR22]3 to non-convex triangulations. Tropical homology is defined as the homology

of certain dihomologic cosheaves on a convex polyhedral subdivision K of a convex polytope P . If we consider

an hypersurface of the toric variety Y associated with P in [IKMZ19] I. Itenberg, Katzarkov, G. Mikhalkin and

I. Zharkov gave two families of cosheaves:

F (1)
p ⊂ F (0)

p , p ∈ N,
whose homologies are respectively the tropical homology groups of the hypersurface and of the toric variety Y .

The tropical version of the Lefschetz hyperplane section theorem describes the nature of the morphisms induced

in homology by the inclusions:

Hq(K;F (1)
p )→ Hq(K;F (0)

p ).

C. Arnal, A. Renaudineau and K. Shaw showed in [ARS21] that when the toric variety Y associated with P

is smooth and K is an unimodular triangulation these morphisms are isomorphisms when p + q < dimP − 1

and surjevtive when p + q = dimP − 1. Considering a tropical hypersurface of Y implies the convexity of the

subdivision K. However, the definition of the cosheaves F
(1)
p and F

(0)
p , p ∈ N, still makes sense for non-convex

subdivisions and E. Brugallé, L. Lopez de Medrano and J. Rau showed that this statement remains true when

the convexity hypothesis is dropped. We also state our result without assuming the subdivision to be convex.

Using Theorem 1 we are able to extend the statement to orbifold toric varieties modulo a change of coefficients.

The toric variety associated with P is orbifold when the polytope P is simple. When this the case we define

two integers δ(P ), θ(K) ≥ 1 respectively associated with the polytope and the subdivision and we show that:

Theorem 2. Let R be a ring in which both δ(P ) and θ(K) are invertible, the homological morphisms:

ip,q : Hq(K;F (1)
p ⊗R)→ Hq(K;F (0)

p ⊗R) ,

induced by the inclusions ip : F
(1)
p → F

(0)
p are:

• isomorphisms for all p+ q < dimP − 1 ;

• surjective morphisms for all p+ q = dimP − 1.

The number δ(P ) is linked to the singularities of Y . Its value is 1 if and only if Y is smooth. On the other

hand, even if the number θ(K) is determined by the proper singularities4 of the tropical hypersurface, i.e. of

the subdivision K, it is less fine than δ(P ) as θ(K) = 1 on every unimodular triangulations but the converse

does not even imply that K is a triangulation.

In addition of Theorem 2 we recover the formulæ giving the dimensions of the homology groups of the

sheaves F
(0)
p , corresponding to the rational Betti numbers of the toric variety Y .

Proposition 3.7 1. For every ring R in which δ(P ) is invertible, and every p ∈ N, the only non-trivial

homology group of the cosheaf F
(0)
p ⊗ R is Hp(K;F

(0)
p ⊗ R). Moreover this module is free of rank hp(P

◦), the

p-th h-number of the polar polytope P ◦ of the simple polytope P . More precisely:

rkR Hp(K;F (0)
p ⊗R) =

p∑
k=0

(−1)p−k

(
n− k

p− k

)
fn−k(P ),

where fk(P ) is the number of k-faces of P .

We divide this text into three parts. The first is devoted to the introduction of the objects of cellular

homology we study here. In particular we introduce the dihomologic pseudo-subdivision of a regular CW-

complex K and study its properties. In the second part we state and prove Theorem 1 and its corollaries. In

the last section we apply the previous results to prove Theorem 2.

2C. Arnal, A. Renaudineau and K. Shaw. Lefschetz Section Theorems for Tropical Hypersurfaces, Theorem 1.2 .1349.
3E. Brugallé, L. Lopez de Medrano and J. Rau. Combinatorial Patchworking: Back from Tropical Geometry, Proposition 3.2

p.15.
4In the sense : non-inherited from the singularities of Y .
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1 CW-Complexes and Cellular Homology

CW-complexes were introduced by J. H. C. Whitehead in Combinatorial homotopy. I, [Whi49]. Their underlying

topological spaces, their supports, form a broad family of spaces usually considered well-behaved. Some of the

sheaves defined on their support are particularly adapted to their structure. They can be described by a

relatively small amount of data and their cohomology can be computed the techniques of cellular cohomology.

In the following paragraphs we give a succinct presentation of the objects at play in this text.

CW-Complexes

Definition 1.1 (CW-complex). A CW-complex K is the data of a Hausdorff topological space |K|, called the

support of K, filtered by closed subsets ∅ = K(−1) ⊂ K(0) ⊂ ... ⊂ K(k) ⊂ ... ⊂ |K| called the skeleta of K

whose union covers |K|. Such filtration has to satisfied the additional properties:

1. For every k ≥ 0 and every connected component ek of K(k) \K(k−1), called an open k-cell, there exists a

surjective continuous map from the closed k-dimensional ball onto the closure ēk carrying homeomorphi-

cally the open ball onto ek, such a map is called a characteristic map of the open cell ek;

2. |K| has the weak topology : a subset A ⊂ |K| is closed if and only if its intersection A ∩ ēk with every

closed cell is closed ;

3. Every skeleton K(k) has the weak topology in the same sense as in point 2.

We call the dimension of K, dimK, the smallest integer from which the filtration (Kk)k≥−1 is stationary. It

might be ∞. A sub-complex L of K is determined by a closed subset |L| for which the induced filtration:

∅ = L(−1) ⊂ L(0) ⊂ ... ⊂ L(k) ⊂ ... ⊂ |L| with L(k) = |L| ∩K(k) for all k ∈ N,

turns it into a CW-complex of its own right. The intersection of sub-complexes is again a sub-complex. For A

any subset of |K| we set K(A) to be the smallest sub-complex containing A in its support i.e. the intersection

of all sub-complexes containing A in their support.

Examples. 1. The most basic examples are given by simplices and all the geometric realisations of simplicial

complexes as defined in [Whi39]. More generally, a polyhedral complex is an example of CW-complex.

By a polyhedral complex we mean a collection K of polytopes5 in a real vector space that contains all

the faces of its polytopes and in which two distinct polytopes intersect on a common face (which might

be empty). In a polyhedral complex the open cell corresponding to a polytope is its relative interior, that

is to say the topological interior of the polytope in the affine space it spans.

2. An extremely classical example is given by the real projective spaces. They filter themselves RP0 ⊂ RP1 ⊂
... ⊂ RPn by inclusion on the first coordinates and the partition of RPn into open cells corresponds to a

decomposition into affine spaces, one for every 0 ≤ k ≤ n. By extension, the inductive limit RP∞ is also

a CW-complex for the induced filtration.

Definition 1.2. A CW-complex is called locally finite if all of its points has a neighbourhood that meets only

finitely many open cells.

Any finite (with finitely many cells) CW-complex is obviously locally finite. Among our examples, RP∞ is

not locally finite as the neighbourhood of a point in the open cell Rk will meet all the open cells Rn for n ≥ k.

Proposition 1.1 (J. H. C. Whitehead. Combinatorial homotopy. I [Whi49], (G), pp.225-227, (M), pp.230-231.).

A CW-complex is a normal and locally contractible topological space.

Definition 1.3. A regular CW-complex is one that admits for each cell a characteristic map that is a homeo-

morphism on the entire closed ball.

It implies in particular that every closed cell of a regular CW-complex is homeomorphic to a closed ball. It

excludes the CW-complex structure of the real projective spaces (apart from the trivial case RP0) given by affine

spaces as every positive dimensional closed cell is a projective space, different from a closed ball. An important

5a convex hull of a finite number of vertices.
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example of regular CW-complex is given by geometric realisations of simplicial complexes for which every closed

cell is a closed simplex, hence topologically a closed ball. Likewise a polyhedral complex is necessarily a regular

CW-complex.

For a general CW-complex the formula e1 ≤ e2 ⇐⇒ ē1 ⊂ ē2 defines an order on the cells. When the

CW-complex is regular this order shares the same properties as the inclusion of faces in a simplicial complex.

Lemma 1.2. For any two open cells e1, e2 of K a regular CW-complex, e1 meets the closure of e2 if and only

if it is fully contained in it:

e1 ∩ ē2 ̸= ∅ ⇐⇒ e1 ⊂ ē2.

One can find a proof in [CF67]6. Therefore, in a regular CW-complex whenever a cell e1 meets the closure

of another one e2 we have e1 ≤ e2 and we say that e1 is a face of e2. If e1 is distinct from e2 we say that e1 is a

proper face of e2 and denote it e1 < e2. Furthermore, if e1 ≤ e2 or e2 ≤ e1 we say that e1 and e2 are adjacent.

Lemma 1.3. In a regular CW-complex K the support of the sub-complex K(e) for any open cell e is its closure

ē.

Lemma 1.4. Let k ∈ N and ek+2 be an open cell of K a regular CW-complex. For all faces of codimension 2

ek of ek+2 there are exactly two cells of codimension 1 between ek and ek+2:

card{ek+1 | ek < ek+1 < ek+2} = 2.

Lemma 1.5 (Open Star). For e a cell of a regular CW-complex K the union of all the cells having e as a face,

called the open star of e, is an open subset of |K|.

Proofs of these statements are given in [CF67]7. In a locally finite CW-complex K the open star of a cell is

a finite union of cells so its closure, the closed star of the cell, is a finite sub-complex of K. The collection K−e

of all the cells whose closure avoid e is the complement of the open star of e and is a sub-complex of K. Its

underlying topological space is a deformation retract of |K| \ e and is the largest sub-complex of K contained

in the complement |K| \ e. Likewise we define for a subset A of |K|, K −A to be the largest sub-complex of K

contained in |K| \A.

Definition 1.4 (Subdivisions). A subdivision K ′ of a CW-complex K is a CW-complex on the same support

|K ′| = |K| in which every cell e′ ∈ K ′ is contained in a cell e ∈ K. Another way of saying it is that the partition

of |K| into open cells of K ′ is finer than the partition given by K.

Figure 1: The barycentric subdivision of the triangle.

A common example of subdivision is given by the barycentric subdivision SdS of a simplicial complex S,

see for instance Figure 1. It is described abstractly as follows : the vertices of SdS are given by the simplices

of S and the simplices of SdS by the flags of simplices of S. More concretely a collection of simplices of S say

{σ0, ..., σk} is a simplex of SdS if and only if they can be totally ordered by adjacency i.e. there is a permutation

π of the indices {0, ..., k} such that:

σπ(0) < ... < σπ(n).

One can define an homeomorphism between the geometric realisation of SdS and the geometric realisation

of S by sending each vertex of SdS to the barycenter of its corresponding simplex in S and extending such map

by linearity. An example of such homeomorphism is depicted in Figure 2.

6G. Cooke and R. Finney. Homology of cell complexes, pp.229-230, R.R.1.
7Ibid. in order, Proposition 1.6, p.30, Theorem 4.2, pp.231-232, Lemma 4.1, p.230.
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Figure 2: The homeomorphism from the barycentric subdivision of the segment to the initial segment.

The image of the skeletal filtration of SdS under such homeomorphism defines a subdivision of the CW-

complex induced by S in the sense of the previous definition. Note that if instead we chose to send each vertex

of SdS to an arbitrary point in the open cell defined by the corresponding simplex in S (and then extending

the map by linearity) we would also have defined a subdivision of S, equivalent in a combinatorial way, to the

previous one. We could say that the barycentric subdivision is only defined unequivocally on the abstract level.

The same abstract procedure can be performed with a regular CW-complex K. Its barycentric subdivision SdK

is defined to be the following simplicial complex:

1. Every cell of K corresponds to a vertex of SdK;

2. A finite set of cells of K corresponds to a simplex of SdK if and only if it is totally ordered by adjacency.

Proposition 1.6. For every regular CW-complex K, the geometric realisation of SdK is homeomorphic to |K|
in such a way that SdK can be seen as a subdivision of K.

This proposition, proven in [LW69]8, allows us to see a regular CW-complex as “a simplicial complex in

which the simplexes are more efficiently combined into closed cells.”9 Another feature of simplicial complexes

shared by regular complex is the following:

Proposition 1.7. In a regular CW-complex the open stars of cells are contractible.

Proof. The geometric realisation of SdK lives in the real vector space V spanned by the cells of K. We use

the same symbol to denote a cell ek and its associated generator in V . Hence an element of V is a formal finite

linear combinations of the cells of K. We endow this vector space with the norm 1:∣∣∣∣∣∣∑
e∈K

xee
∣∣∣∣∣∣
1
=
∑
e∈K

|xe|.

The geometric realisation |SdK| is the union of the convex hulls of the sets of cells {ek0 , ..., ekn} corresponding
to barycentric simplices i.e. flags of cells. It is a subset of the intersection of the unit sphere with the positive

ortant V+ := {
∑

e∈K xee ∈ V | xe ≥ 0}. For a flag of cells ek0 < ... < ekn let us denote here the corresponding

open simplex by:

(
ek0 ; ... ; ekn

)
:=

{
n∑

i=0

xie
ki | ∀i, xi > 0 and

n∑
i=0

xi = 1

}
.

An open cell ek of K corresponds under the homeomorphism of Proposition 1.6 to the union of the open

barycentric simplices
(
ek0 ; ... ; ekn

)
for which ekn = ek. Therefore the open star S of ek is in this context:

S =
⋃

ek0<...<ekn

ek≤ekn

(
ek0 ; ... ; ekn

)
.

Now define the family of bounded linear operators (Φt : V → V )0≤1≤t by Φt = (id−π)+ tπ for π the projection

to the sub-space spanned by the ep that does not contain ek parallely to the sub-space spanned by those that

contain it. Let U be the open set of V+ of vectors that have at least one coordinate indexed by a cell that

contains ek strictly positive. We have S = |SdK| ∩ U . For all t ∈ [0; 1] the map:

8A. Lundell and S. Weingram. The Topology of CW Complexes, Theorem 1.7, pp.80-81.
9Ibid. p.77.
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Ψ : [0; 1]× U −→ U

u 7−→ ||u||1
||Φt(u)||1Φt(u) ,

is continuous and every partial map Ψ(t;−) stabilises S. The image Ψ(0;S) is the union of the open barycentric

simplices
(
ek0 ; ... ; ekn

)
for which ek ≤ ek0 . Note that the restriction of every map Ψ(t;−) is constant on this

set. Therefore Ψ(0;S) is a deformation retract of S. Now this set retracts on the barycentre of ek by simple

convex interpolation (t;u) ∈ [0; 1]×Ψ(0;S) 7→ (1− t)u+ tek thus S is contractible.

When we consider the barycentric subdivision of a finite regular CW-complex we increase considerably the

number of cells. There is however a less expensive procedure that builds for any regular CW-complex K a

“pseudo-subdivision” that sits between K and SdK. By pseudo-subdivision we mean a certain recombination

of the barycentric simplices that looks a lot like a regular subdivision.

Definition 1.5 (Dihomologic Pseudo-subdivision). For K a regular CW-complex and ep ≤ eq a pair of adja-

cent cells we define its associated dihomologic pseudo-cell to be the union of the open barycentric simplices10

associated the flags ek1 < ... < ekn for which ep = ek1 and ekn = eq. These “open” pseudo-cells partition the

simplicial complex SdK. We call such partition the dihomologic pseudo-subdivision of K. We say that the

dihomologic pseudo-cell associated with the pair ep ≤ eq has dimension q−p. Figure 3 illustrates this procedure

on a disc.

Figure 3: The dihomologic pseudo-subdivision of a regular CW-complex structure of the disc.

This partition shares many properties with a regular subdivision of K but may fail to define a CW-complex

structure on |K|. In full generality the closure of dihomologic pseudo-cells might not be homeomorphic to closed

balls. However, for a broad variety of examples, this is indeed a regular subdivision of K.

Remark 1.1. We chose to use the terminology “dihomologic” because Zeeman’s dihomology bicomplex, c.f.

[Zee62a, Zee62b, Zee63], would be the cellular chain complex of this pseudo-subdivision. This bicomplex was

latter (dually) rediscovered by Forman in [For02] under the name of “combinatorial differential forms”.

Proposition 1.8. Let ep ≤ eq be a pair of adjacent cells of K. The closure of the pseudo-cell associated with

ep ≤ eq, is a pure collapsable simplicial complex of dimension q − p. Moreover, any codimension 1 simplex of

the open pseudo-cell is exactly contained in two of its maximal simplices.

Proof. Let ep ≤ eq be a pair of adjacent cells. If ep = eq the associated pseudo-cell is a single vertex and the

statement of the proposition is true. Now suppose ep is a proper face of eq. The closure of the associated

pseudo-cell is the union of the barycentric simplices whose flags ek1 < ... < ekn satisfy ep ≤ ek1 < ... < ekn ≤ eq.

This is a simplicial sub-complex of SdK. A maximal simplex of this closed pseudo-cell is given by a maximal

chain of adjacent cells of K starting from ep and ending at eq. Since K is regular such chain necessarily has

length q−p+1, so the corresponding simplex has dimension q−p. Hence, the closed pseudo-cell is a pure (q−p)-
dimensional simplicial complex. If q − p = 1, this closed pseudo-cell corresponds to the closed barycentric edge

ep < eq. This is a collapsable complex. If q− p > 1, the maximal simplices of the closed pseudo-cell correspond

to flags ep < ep+1 < ... < eq−1 < eq. They all have a codimension 2 free face, associated with ep+1 < ... < eq−1.

If we collapse all such simplices we obtain the union of the closed (q− p− 1)-simplices associated with the flags

of the form ep < ek1 < ... < ekq−p−2 < eq. All such simplices are now maximal and contain each a free face

of codimension 2, namely ek1 < ... < ekq−p−2 . We can recursively perform such collapses to end up with the

10The open simplex on a vertex set v0, ..., vn is the set
{∑n

i=0 tivi | ∀i, ti > 0 and
∑n

i=0 ti = 1
}
.
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barycentric edge ep < eq. Thus the closed pseudo-cell of the pair ep ≤ eq is collapsable. For the final part, a

simplex of codimension 1 of the open pseudo-cell is given by a flag ep < ek1 < ... < ekq−p−2 < eq of length q− p

and has the form ep < ... < ei < ei+2 < ... < eq. Since K is regular there is exactly two (i+ 1)-cells between ei

and ei+1, hence two (q − p)-simplices.

Proposition 1.9. The open pseudo-cell associated with the pair ep ≤ eq meets the closed pseudo-cell indexed

by the pair ep
′ ≤ eq

′
if and only if it is fully contained in it. This only happens when ep

′ ≤ ep ≤ eq ≤ eq
′
.

Moreover, if ϵ0 is an open pseudo-cell of dimension k included in a closed pseudo-cell ϵ̄2 of dimension k + 2

then there is exactly two open pseudo-cells ϵ1 of dimension k + 1 such that ϵ0 ⊂ ϵ̄1 and ϵ1 ⊂ ϵ̄2.

Proof. The first part is a consequence of the definition. For the second part choose ϵ0 corresponding to a pair

ep+a ≤ ep+a+k and ϵ2 to a pair ep ≤ ep+a+k+b satisfying ep ≤ ep+a ≤ ep+a+k ≤ ep+a+k+b. By assumption, we

have a + b = 2 and three different cases can occur : one of the two numbers a, b is 2 and the other 0 or both

equal 1. The two first cases are symmetric. If it’s a that equals 2 we have ep ≤ ep+2 ≤ ep+2+k ≤ ep+2+k and

the two (k+1)-pseudo-cells between ϵ0 and ϵ1 are those associated with the two pairs ep+1 ≤ ep+2+k with ep ≤
ep+1 ≤ ep+2. The symmetric case is similar. If both a and b equal 1 then we have ep ≤ ep+1 ≤ ep+1+k ≤ ep+2+k

and the two (k + 1)-pseudo-cells between ϵ0 and ϵ1 are those associated with the two pairs ep ≤ ep+1+k and

ep+1 ≤ ep+2+k.

In the light of this property it makes sense to talk about adjacent pseudo-cells as we do for cells of regular

CW-complexes. As in the regular case, if ϵ and ϵ′ are adjacent pseudo-cells with ϵ ⊂ ϵ′ we say that ϵ is a face of

ϵ′. If in addition ϵ ̸= ϵ′ we say that ϵ is a proper face of ϵ′. Also we see here that two dihomologic pseudo-cells

meet on a common faces if their intersection is not empty. Note that this property might not be true in K,

two closed cells meet on the union of their common faces if the intersection is non-empty. Let ep < eq be a

proper adjacent pair of cells of K and denote ϵ their associated pseudo-cell. The simplicial complex supported

on the closure, (SdK)(ϵ), is the join of the barycentric edge ep < eq and a sub-complex A(ep; eq) ⊂ SdK. This

sub-complex is the collection of all the barycentric simplices indexed with the flags ek1 < ... < ekn for which

ep < ek1 and ekn < eq.

Proposition 1.10. The support of A(ep; eq) is a connected (q − p− 2)-dimensional homology manifold whose

(p+ 1)-fold suspension is homeomorphic to a (q − 1)-sphere.

Let us recall the definition:

Definition 1.6 (Homology Manifold). A homology manifold of dimension n ∈ N is the support X of a regular,

finite dimensional, locally finite CW-complex for which the graded local homology group H∗(X;X \ {x};Z) of
every point x ∈ X is isomorphic to either H∗(Rn;Rn \ {0};Z) or 0. The boundary of X denoted ∂X is the set

of points x ∈ X for which H∗(X;X \ {x};Z) = 0.

Proof. Let B denote the simplicial complex (SdK)(ēq \ eq) and e0 < ... < ep be a complete flag of cells of K.

The simplicial complex A(ep; eq) is the link in B of the barycentric simplex associated with e0 < ... < ep. B

is a simplicially triangulated (q − 1)-sphere thus in application of Proposition 1.3 from [GS80]11 the (p + 1)-

fold suspension of A(ep; eq) is homeomorphic to a (q − 1)-sphere. The Mayer-Vietoris long exact sequence

in singular homology implies that if ΣA is the suspension of a topological space A we have H0(ΣA;Z) = Z,
Hk(ΣA;Z) ∼= Hk−1(A;Z) for all k ≥ 2 and the exact sequence:

0→ H1(ΣA;Z)→ H0(A;Z)→ Z→ 0 .

So A has the homology of a k-sphere if and only if the l-fold suspension ΣlA has the homology of an (l + k)-

sphere. Therefore the simplicial complex A(ep; eq) has the integral homology of a (q − p − 2)-sphere. For the

remaining part of the proposition we note that if the barycentric n-simplex with indexing flag ek0 < ... < ekn

belongs to A(ep; eq) then its link L in this complex is the join:

A(ep; ek0) ∗A(ek0 ; ek1) ∗ ... ∗A(ekn−1 ; ekn) ∗A(ekn ; eq).

Hence, its (p + n + 2)-fold suspension is homeomorphic to a (q − 1)-sphere and L has the integral homology

of a (q − p − n − 3)-sphere. Now A(ep; eq) is a pure simplicial complex of dimension (q − p − 2) in which

the link of every n-dimensional simplex has the homology of a (q − p − n − 3)-sphere. This is a homology

11D. Galewski and R. Stern. Classification of Simplicial Triangulations of Topological Manifolds, Proposition 1.3 p.5.
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manifold of dimension (q−p−2). Indeed, if x is a point of |A(ep; eq)| that belongs to the relative interior of the

barycentric n-simplex σ, then, by excision, Hk(|A(ep; eq)|; |A(ep; eq)| \ {x};Z) = Hk(|S|; |S| \ {x};Z) for all k

with S the closed star of σ. Note that |S| is contractible and |S| \ {x} is non-empty so H0(|S|; |S| \ {x};Z) = 0,

Hk(|S|; |S| \ {x};Z) = Hk−1(|S| \ {x};Z) for k ≥ 2 and :

0→ H1(|S|; |S| \ {x};Z)→ H0(|S| \ {x};Z)→ Z→ 0 .

Since |S| is homeomorphic to the topological join σ ∗ |L| for L the link of σ, |S| \ {x} is homotopic to the n-fold

suspension of |L|. By assumption |L| has the homology of a (q−p−n−3)-sphere so |S| \ {x} has the homology

of a (q − p − 3)-sphere. Combining this with the relation observed by the relative homology of (|S|; |S| \ {x})
with the homology of |S| \ {x} we find that Hk(|A(ep; eq)|; |A(ep; eq)| \ {x};Z) ∼= Hk(Rq−p−2;Rq−p−2 \ {0};Z)
for all k and A(ep; eq) is a compact (q − p− 2)-homology manifold without boundary.

As a direct consequence we get that:

Proposition 1.11. The closed pseudo-cells associated with the adjacent pairs of the form e0 ≤ ep are homeo-

morphic to closed balls.

Proof. It follows from the previous observation that the support of this closed pseudo-cell is homeomorphic to

the topological join [0; 1]∗|A(e0; ep)| which is the cone over the suspension of |A(e0; ep)|. By the last proposition

this suspension is a (p− 1)-sphere so the closed pseudo-cell is actually a closed ball.

For ϵ a dihomologic pseudo-cell associated with a pair ep ≤ eq, its “boundary” ϵ̄ \ ϵ is the support of the

simplicial join of the union of the barycenters of ep and eq with A(ep; eq) (so the suspension of A(ep; eq)). From

that description we see that it is the union of dihomologic pseudo-cells that are faces of ϵ.

We will see further that the dihomologic pseudo-subdivision also shares a lot of homological features with a

regular subdivision. Now we state a condition that ensures the regularity of this pseudo-complex.

Proposition 1.12. If K is not only regular but also satisfies that the induced CW-complex on every closed

cell K(e) is shellable in the sense of [Bjö84] then every closed dihomologic pseudo-cell is also shellable. As

a consequence, the geometric realisation of every closed pseudo-cell is actually homeomorphic to a closed ball

making the dihomologic pseudo-subdivision a regular subdivision of K.

Proof. Let eq be a cell of K. From the first part of Proposition 4.4 of [Bjö84]12 we know that the barycentric

subdivision of K(eq) is a shellable simplicial complex. For ep ≤ eq a face of eq we expressed the associated closed

dihomologic pseudo-cell ϵ̄ as the simplicial join of a closed interval and the simplicial complex A(ep; eq). As in

the proof of Proposition 1.10 we can write this complex as the link of a barycentric simplex σ with indexing

flag e0 < e1 < ... < ep < eq in Sd (K(eq)). The link of σ is shellable by Lemma 8.7 of [Zie95]13. The complex

A(ep; eq) is a pure (q − p − 2)-dimensional shellable simplicial complex in which every codimension 1 simplex

belongs to exactly two maximal simplices, hence it is homeomorphic to a sphere by Proposition 4.3 of [Bjö84]14.

Finally, the closed dihomologic pseudo-cell ϵ̄ is the support of a shellable simplicial complex homeomorphic to

a closed ball.

Figure 4: The dihomologic subdivision of the triangle.

When K is a polyhedral complex the theorem of Bruggesser and P. Mani [BM71]15 ensures that it satisfies

the hypotheses of the last proposition and the dihomologic pseudo-subdivision is an actual regular subdivision.

12A. Björner. Posets, Regular CW Complexes and Bruhat Order, Proposition 4.4 p.12.
13G. Ziegler, Lectures on Polytopes, Lemma 8.7 p.237.
14A. Björner. op. cit., Proposition 4.3 p.12.
15H. Bruggesser and P. Mani. Shellable decompositions of cells and spheres, Corollary p.203.
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This is especially the case when K is a simplicial complex. In this particular case the associated dihomologic

subdivision even has the structure of a cubical complex, c.f. Figure 4. It comes from the following triangulation

of the cube [0; 1]n: order its vertex set {0; 1}n with the product order16 and consider the convex hulls of the flags

of such vertices as the simplices of the triangulation. The triangulation of the 3-dimensional cube is illustrated

in Figure 5.

Figure 5: The subdivision of a cube into six tetrahedra, the convex hull of
{
(0; 0; 0); (1; 0; 0); (1; 0; 1); (1; 1; 1)

}
is marked.

It produces a triangulation of the n-cube into n! simplices. Observe now that the ordered set of vertices

of [0; 1]n is naturally isomorphic to the lattice of subsets of a set with n elements. Moreover, if σ ≤ τ are a

pair of adjacent simplices of relative codimension n, the lattice of intermediary simplices {σ ≤ ν ≤ τ} is the

same as the lattice of faces of the link of σ in τ (empty face included) i.e. the lattice of subsets of a set with

dim(τ) + 1− (dim(σ) + 1) = n elements. For more general polyhedral complexes the shapes of the pseudo-cells

can be different, as shown in Figure 6.

Figure 6: The dihomologic subdivision of an octahedron.

16(xi)1≤i≤n ≤ (yi)1≤i≤n if and only if xi ≤ yi, for all 1 ≤ i ≤ n.
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However, even when K doesn’t satisfies the hypotheses of the Proposition 1.12 all the 2-dimensional di-

homologic pseudo-cell are squares because of Lemma 1.4, c.f. Figure 7. Finally in low dimension the pseudo

subdivision is always regular:

Proposition 1.13. Let ep ≤ eq be an adjacent pair of cells of K. If, 2 ≤ q − p ≤ 4, then A(ep; eq) is

homeomorphic to a sphere. If q = p+ 5, A(ep; eq) is a 3-dimensional integral homology sphere.

ek

ek+1
1 ek+1

2

ek+2

≥ ≤

≥ ≤

ek

ek+1
1

ek+2

ek+1
2

Figure 7: The lattice of faces and the dihomologic square associated with a pair of relative codimension 2.

Proof. As shown in Figure 7 the simplicial complex A(ep; ep+2) consists of two vertices and therefore is a 0-

sphere. If we look at A(ep; ep+3) the link of every simplex is either empty or a A(ek; ek+2) so A(ep; ep+3) is

actually a manifold by Proposition 1.3 of [GS80]17. Therefore by Proposition 1.10, it is a 1-dimensional integral

homology sphere, so a circle. Now for A(ek; ek+4) we have from the proof of Proposition 1.10 that the link

of every simplex is either empty or a join of a A(ek; ek+2) with a A(ek; ek+3) which we have just shown to

be spheres. Therefore, A(ek; ek+4) is a 2-dimensional integral homology sphere. By classification of compact

orientable 2-dimensional manifolds it is homeomorphic to a 2-sphere. For the last part our previous arguments

show that the A(ep; ep+5) are 3-dimensional integral homology spheres.

Remark 1.2. The 3-dimensional closed pseudo-cells are not only closed balls but even trapezohedra i.e. similar

to Figure 8. The family of such polyhedra is indexed by an integer n at least equal to 3 for which we find “the

cube”.

e0

e3

e0

e3

Figure 8: The shape of the dihomologic cell associated with the adjacent pair e0 ≤ e3.

A direct consequence of Proposition 1.13 and Proposition 1.11 is:

Proposition 1.14. If dimK is at most 5 its dihomologic pseudo-subdivision is a regular subdivision.

17D. Galewski and R. Stern, Classification of Simplicial Triangulations of Topological Manifolds, Proposition 1.3 p.5.
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Cellular Sheaves and Cosheaves

In this paragraph K denotes a regular CW-complex.

Definition 1.7 (Constructible Sheaves). A sheaf F on |K| is called constructible with respect to the CW-

complex structure if its restriction to every open cell is constant.

Such sheaves are among the “simplest ones” on |K| as they are reducible to combinatorial data. The

knowledge of their section groups above every open star as well as the restrictions morphisms between these

stars is enough to characterise the sheaf completely up to isomorphism. The key facts about these sheaves is

the following : for every cell e of K, if S denotes its open star and x ∈ e then the two following morphisms are

isomorphisms:

F (S) F |e(e) Fx.rest. stalk

See for instance [Kas84]18. Since e is connected and locally connected the fact that F |e(e)→ Fx is an isomor-

phism follows from the constance of F |e. Let F (e) denote the group F |e(e) of values of F |e. From the previous

observation we gain a “restriction map” between F (eq) and F (ep) for all pairs of adjacent cells eq ≤ ep, coming

from the commutative diagram:

F (eq) F (ep)

F (Seq ) F (Sep)

rest. to F |eq (eq) ∼=

Sep⊂Seq

rest.

rest. to F |ep (ep)∼=

with Seq and Sep the respective open stars of eq and ep. The data of the groups F (ep) together with the

morphisms connecting them, defined from the topological sheaf F , is called a cellular sheaf:

Definition 1.8 (Cellular Sheaf). A cellular sheaf on K is the data of a covariant functor:

F : Cell K →ModR,

from the category of cells of K with arrows given by adjacency to the category of R-modules (for some commu-

tative ring R). We call the images of the arrows by such functor its restriction morphisms. For two adjacent

cells ep ≤ eq and f ∈ F (ep) we will denote by f
∣∣eq
ep

the image of f in F (eq) by the restriction morphism.

A typical example of cosheaf on a topological space is the assignment to every open set its ring of continuous

functions with compact support. The definition of cellular cosheaf is dual to the definition of cellular sheaves.

Definition 1.9 (Cellular Cosheaf). A cellular cosheaf on K is the data of a contravariant functor:

F : (Cell K)op →ModR,

from the category of cells of K with arrows given by adjacency to the category of R-modules (for some com-

mutative ring R). We call the images of the arrows by such functor its extension morphisms. For two adjacent

cells ep ≤ eq and f ∈ F (eq) we will denote by f
∣∣eq
ep

the image of f in F (ep) by the extension morphism.

Every functorial operation performed on Abelian groups, or more generally on modules over a given com-

mutative ring, such as direct sums, products, tensor products, etc. can be performed as well on cellular sheaves

and cosheaves by performing it group by group over every cell. Also we can construct a cosheaf from a sheaf

F by considering for G a fixed group the contravariant functor e 7→ Hom(F (e);G) with adjoint arrows. This

construction also goes the other way around when one start with a cosheaf.

Definition 1.10 (Morphisms of Sheaves and Cosheaves). A morphism of cellular sheaves (or cosheaves) f :

F → F ′ is a natural transformation. Such morphism is said to be injective (resp. surjective, resp. invertible)

if the associated morphisms fe : F (e) → F ′(e) are injective (resp. surjective, resp. invertible) for all cells e.

The kernel, image, and cokernel of such morphism f are the “cell-wise” kernel, image, and cokernel. They are

(co)sheaves themselves with the induced restriction/extension morphisms because f is a natural transformation.

18M. Kashiwara,The Riemann-Hilbert Problem for Holonomic Systems, Proposition 1.3 p.323.
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The most basic example of such objects are given by local system of coefficients. We see such local systems

as fibre bundles of discrete groups above |K|. Since every cell is connected and contractible the restriction of

its sheaf of continuous sections to any cell is constant. Therefore, it satisfies the hypothesis of the definition

and induces a cellular sheaf. It has the property that all its restriction morphisms are invertible. This is even

a way to characterise such local systems. This special property also allows us to see it as a cellular cosheaf

by inverting every arrows. Indeed, the commutativity conditions on the composition of such morphisms are

automatically satisfied from the ones given by the cellular sheaf structure. Another family of examples is given

by the characteristic cosheaves associated with sub-complexes:

Definition 1.11. Let K ′ be a sub-complex of K and G be an Abelian group (or a module over a commutative

ring) we denote by
[
K ′;G

]
the cellular cosheaf defined by:

e ∈ K 7−→
{

G if e ∈ K ′

0 otherwise
,

with extension morphisms given either by the identity of G or the zero morphism whenever one of the two

groups involved is trivial. If a cell belongs to K ′ then all of its faces belong to it too. As a consequence

the commutativity conditions are satisfied for every triplet of adjacent cells gives rise to one of the following

commutative diagrams:

G 0 0 0

G G 0 0

G G G 0

id

id

0

0

0

0

0

0

id id 0 0

Whenever K ′′ is a sub-complex of K ′ we have a natural injective morphism of cosheaves
[
K ′′;G

]
→
[
K ′ ;G

]
either given by the 0 morphism or the identity. We will denote the resulting quotient by

[
K ′;K ′′;G

]
. It is G on

the cells of K ′ not contained in K ′′ and 0 elsewhere. A sub-family of these examples will be of particular interest.

They are the “local” cosheaves
[
K;K − e ;G

]
, for e a cell of K, whose value is G only on the cells containing e.

For a cell e, the cosheaves
[
K(e) ;G

]
and

[
K;K − e ;G

]
are the dual constructions of the elementary cellular

sheaves considered by A. Shepard in his thesis [She85]. They were also considered later by J. Curry in [Cur12]

for instance.

Definition 1.12 (Localisation of a cellular cosheaf). Let F be a cellular cosheaf on K and e a cell. We denote

by Fe the tensor product F ⊗Z
[
K;K − e ;Z

]
and call it the localisation of F at e. For e′ another cell Fe(e

′)

is F (e′) if e′ ≥ e and 0 otherwise, its extension morphisms are then appropriately given by the extension

morphisms of F or 0. Moreover, the natural projection
[
K;K− e ;Z

]
→
[
K;K− e′ ;Z

]
for adjacent cells e ≤ e′

induces a surjective localisation morphism Fe → Fe′ .

Definition 1.13 (Subdivision). If K ′ is a subdivision of K there is a subdivision functor from the category of

cellular cosheaves of K (resp. cellular sheaves). If F is a cosheaf (resp. sheaf) on K its subdivision F ′ is given

for all cell e′ ∈ K ′ by:

F ′(e′) = F (e),

for e the only cell of K containing e′. The extension (resp. restriction) morphisms are the adequately derived

from those of F . If e′0 ≤ e′1 are contained in the same cell the morphism is the identity. If they are not it is

given by the morphism associated with the only pair of cells e0 ≤ e1 of K satisfying e′0 ⊂ e0 and e′1 ⊂ e1.

Definition 1.14 (Dihomologic Cellular Sheaves and Cosheaves). A dihomologic cellular cosheaf (resp. sheaf )

on K is the data of a contravariant (resp. covariant) functor F from the category associated with the set of

dihomologic pseudo-cells of K ordered by adjacency to the category of R-modules. As in the case of cellular

sheaves and cosheaves a morphism of such objects is defined to be a natural transformation of functors. The

notions of injectivity, surjectivity and invertibility are also defined “cell-wise” and so are the kernels, images

and cokernels.

Formally, a dihomologic cellular cosheaf consists of an assignment of a module F (ep; eq) to every pair of

adjacent cells ep ≤ eq and morphisms connecting them. Because of the commutativity conditions on the
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compositions of such morphisms it is only necessary to define them on elementary adjacency relations. By that

we mean that if the dihomologic pseudo-cell of the pair ep ≤ eq is a face of the pseudo-cell ep
′ ≤ eq

′
then we

have ep
′ ≤ ep ≤ eq ≤ eq

′
and the commutative diagram of extension morphisms:

F (ep
′
; eq

′
)

F (ep; eq
′
) F (ep

′
; eq)

F (ep; eq)

(5)

(3)(1)

(2) (4)

Knowing the morphism (5) only amounts to knowing the composition of (1) and (2) or (3) and (4). So to

describe such F completely we can only provide the groups and the extension morphisms when we “increase

the first coordinate” and “decrease the second one” and verify that these satisfy the commutative diagram:

F (ep
′
; eq

′
)

F (ep; eq
′
) F (ep

′
; eq)

F (ep; eq)

Definition 1.15 (Dihomologic Subdivision of Cellular Sheaves and Cosheaves). Let F be a cellular cosheaf

(resp. sheaf) on K its dihomologic subdivision F ′ is the dihomologic cellular cosheaf (resp. sheaf) that associates

to every pair of adjacent cells ep ≤ eq the module:

F ′(ep; eq) := F (eq),

with extension (resp. restriction) morphisms coming from those of F and illustrated in the following commuta-

tive diagram (resp. with opposite arrows) for elementary adjacency relations ep
′ ≤ ep ≤ eq ≤ eq

′
:

F (eq
′
)

F (ep
′
; eq

′
)

F (eq
′
) F (ep; eq

′
) F (ep

′
; eq) F (eq)

F (ep; eq)

F (eq)

id

∣∣∣eq′
eq

∣∣∣eq′
eq

id

Whenever the dihomologic pseudo-subdivision of K is a regular subdivision this construction corresponds to

the usual subdivision of cosheaves (resp. sheaves) of Definition 1.13. The open cell eq is covered by the open

dihomologic (pseudo)-cells associated with the adjacent pairs of the form ep ≤ eq.

Definition 1.16 (Localisation by fixing the first coordinate). Let F be a dihomologic cosheaf on K. For e a

cell of K we define the local cellular cosheaf Fe on K by the formula:

e′ ∈ K 7−→
{

F (e; e′) if e′ ≥ e

0 otherwise
,

with extension morphisms either 0 or given by F . We call it local as it is invariant by the operation of localisation

at e : (Fe)e = Fe. Moreover, if we apply this process to a dihomologic cosheaf F ′ obtained by subdividing a

cellular cosheaf F , we recover the localisation operation previously defined. The situation is illustrated in the

following commutative diagram:
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{
Cosheaves of K

} {
Dihomologic cosheaves of K

}

{
Cosheaves of K

} {
Dihomologic cosheaves of K

}
loc. at e

subd.

fix. loc. at e loc. at (e≤e)

subd.

(D1)

Cellular Homology and Cohomology

In this paragraph, K denotes a locally finite regular CW-complex. When one computes the homology of the

CW-complex K cellularilly by filtering, the singular chain complex for instance, by its skeleta, one ends up on

the E1-page with the cellular chain complex of K : the k-th group in this complex is given by the direct sum

of free Abelian groups of rank 1, one for each k-cell. These groups, that we redefine below, are a key ingredient

in cellular homology. Its two generators correspond to the two orientations of the cell.

Definition 1.17 (Oriented Cells, J. Munkers, Elements of Algebraic Topology [Mun84], §39. pp.222-231.). Let

e be a k-cell ofK. We call an orientation of e a generator of the group Z(e) := Hk(|K|; |K|\e;Z) = Hk(ē; ē\e;Z)
computed with the singular homology. We will call the latter group the group of oriented coefficients of e and

say that [e] is an oriented k-cell when [e] is an orientation of the k-cell e. Whenever ep−1 is a codimension 1

face of ep we have a boundary morphism Z(ep)→ Z(ep−1) defined by the composition :

Hk(ē
p; ē p \ ep) Hk−1(ē

p \ ep) Hk−1(ē
p \ ep; ē p \ (ep ∪ ep−1)) Hk−1(ē

p−1; ē p−1 \ ep−1) ,(1) (2) (3)

with all four homology groups computed with integer coefficients. The morphism (1) is the connection morphism

of the homological long exact sequence associated with the pair (ē p \ ep) ⊂ ē p, (2) is the reduction modulo

ē p \ (ep ∪ ep−1), and (3) is the inverse of the excision isomorphism. The image of an orientation [ep] under

this morphism is nothing but the Z(ep−1)-component of its boundary when seen as a relative cellular chain. It

is a generator of Z(ep−1). The first map, the connection morphism, comes from the boundary operator of the

singular homology chain complex and therefore relies on the canonical orientation of Rn. For a singular simplex

σ on Conv({0, ..., n}) we have the formula:

∂σ =

n∑
i=0

(−1)iσi ,

with σi the restriction of σ to Conv({0, ..., n} \ {i}). The convention on the orientation of such restriction σi is

then given by “outward pointing normal vector” as illustrated in Figure 9.

0

2

1

∂

0

2

1

Figure 9: The orientation of the boundary.

These boundary morphisms satisfy the well known property that if ep is a codimension 2 face of some cell

ep+2 and ep+1
1 , ep+1

2 denote the two codimension 1 faces of ep+2 adjacent to ep then the two compositions of

boundary morphisms Z(ep+2)→ Z(ep+1
1 )→ Z(ep) and Z(ep+2)→ Z(ep+1

2 )→ Z(ep) are opposite of each other.

In particular, composing boundary morphisms between oriented coefficients does not define a cellular cosheaf.

Definition 1.18 (Dihomologic Orientations). Let ϵ be the dihomologic pseudo-cell associated with an adjacent

pair ep ≤ eq, we define its group of oriented coefficients to be:
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Z(ϵ) = Z(ep; eq) := Hom(Z(ep);Z(eq)).

We call a generator of such group an orientation of ϵ or a relative orientation of the pair ep ≤ eq and denote

such element by the symbol [ep; eq]. If ϵ′ is a codimension 1 face of the pseudo-cell ϵ we also have a boundary

morphism Z(ϵ)→ Z(ϵ′) defined by the boundary morphisms between the groups of oriented cells of K and, up

to sign, by the functorial properties of the bifunctor Hom, as shown in the diagram below.

Z(ep; eq) Z(ep+1) Z(eq)

Z(ep+1; eq) Z(ep; eq−1) Z(ep) Z(eq−1)

(−1)p+1Hom(∂;id) (−1)pHom(id;∂′)
∂ ∂′ (D2)

Note that if ϵ is a dihomologic pseudo-cell of dimension k its closure can be expressed as the cone over a space

that has the homology of a (k− 1)-sphere. In that description ϵ would correspond to the open cone. Therefore,

the singular homology of ϵ̄ relatively to ϵ̄ \ ϵ is isomorphic to singular homology of a k-ball relatively to its

boundary. Thus, we could equivalently define Z(ϵ) to be Hk(ϵ̄; ϵ̄ \ ϵ;Z) as in the case of a regular CW-complex.

Indeed, for an adjacent pair ep ≤ eq of K indexing the pseudo-cell ϵ, there is a canonical isomorphism between

the group Hq−p(ϵ̄; ϵ̄ \ ϵ;Z) and Hom(Z(ep);Z(eq)). If we represent a cell ep by a p-dimensional real vector space

inside a q-dimensional vector space (representing eq) then the dihomologic pseudo-cell ϵ indexed by ep ≤ eq

represents a supplementary sub-space of the former in the latter. An orientation of such supplementary space

allows by wedge product to orient the q-dimensional vector space from an orientation of the p-dimensional one.

The situation is explained by the cohomological bilinear cup product:

∪ : Hp(ē p; ē p \ ep)⊗Hq−p(ϵ̄; ϵ̄ \ ϵ)→ Hq(ē q; ē q \ eq).

It is non-degenerate. To see it one can notice that all the spaces considered are supports of simplicial complexes

so each of these groups can be computed simplicially. A generator of Hp(ē p; ē p \ ep) is represented by the

simplicial cocycle whose value is 1 on the barycentric simplex indexed by a complete flag e0 < ... < ep and 0

elsewhere. Likewise, a generator of Hq−p(ϵ̄; ϵ̄\ ϵ) is represented by the simplicial cocycle whose value is 1 on the

barycentric simplex indexed by a complete flag ep < ... < eq and 0 elsewhere. Their cup product is the simplicial

cocycle whose value is 1 on the barycentric simplex indexed by the complete flag e0 < ... < ep < ... < eq and 0

elsewhere. It represents a generator of Hq(ē q; ē q \ eq). It gives rise to an isomorphism:

Hq−p(ϵ̄; ϵ̄ \ ϵ) ∼= Hom
(
Hp(ē p; ē p \ ep);Hq(ē q; ē q \ eq)

)
.

Using the universal coefficients theorem [CE56]19 three times this isomorphism becomes:

Z(ϵ) ∼= Hom
(
Hom

(
Hom(Z(ep);Z); Hom(Z(eq);Z)

)
;Z
)
.

Since all the groups involved are free we can compose it with the musical isomorphism of the trace scalar

product:

Hom
(
Hom

(
Hom(Z(ep);Z); Hom(Z(eq);Z)

)
;Z
)
∼= Hom

(
Hom(Z(eq);Z); Hom(Z(ep);Z)

)
,

and then with the transposition:

Hom
(
Hom(Z(eq);Z); Hom(Z(ep);Z)

)
∼= Hom

(
Z(ep);Z(eq)

)
,

to finally find our desired isomorphism Z(ϵ) ∼= Hom(Z(ep);Z(eq)). Note that the signs in the Definition 1.18,

diagram D2, of the boundary morphisms between the groups of oriented coefficients of dihomologic pseudo-cells

come from this description and the relations:

d1α ∪ β + (−1)pα ∪ d2β = 0 and d3(α ∪ γ) = 0 + (−1)pα ∪ d4γ,

emanating from the graded Leibniz rule and satisfied by all α ∈ Hp(ē p; ē p \ ep), β ∈ Hq−p−1(ϵ̄1; ϵ̄1 \ ϵ1) and

γ ∈ Hq−p−1(ϵ̄2; ϵ̄2 \ ϵ2). Where:

19H. Cartan and S. Eilenberg. Homological Algebra, Theorem 3.3 p.113.
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1. ϵ1 and ϵ2 are adjacent dihomologic pseudo-cells respectively indexed by the pairs ep+1 ≤ eq and ep ≤ eq−1;

2. d1 and d3 are respectively transpose of the orientation boundary morphisms ∂1 : Z(ep+1) → Z(ep) and

∂3 : Z(eq)→ Z(eq−1);

3. d2 : Hq−p−1(ϵ̄1; ϵ̄1 \ ϵ1)→ Hq−p(ϵ̄3; ϵ̄3 \ ϵ3) and d4 : Hq−p−1(ϵ̄2; ϵ̄2 \ ϵ2)→ Hq−p(ϵ̄3; ϵ̄3 \ ϵ3) with ϵ3 indexed

by the pair ep ≤ eq.

If [ep] ∈ Z(ep) is an orientation of ep and [ep; eq] ∈ Z(ep; eq) is a relative orientation, we denote [ep][ep; eq]

the associated orientation of eq. For any pair ep ≤ ep+1 of relative codimension 1 the inverse of the boundary

morphism ∂ : Z(ep+1)→ Z(ep) defines a canonical relative orientation. We will always denote it by the symbol

[ep; ep+1] but we should emphasise that for any other positive dimensional dihomologic pseudo-cell the similar

notation denotes an arbitrary orientation, possibly subject to conditions, as there are no canonical orientation

for them. We can compose relative orientations in their morphism representations, we adopt the convention

[ep; eq][eq; er] to denote [eq; er] ◦ [ep; eq]. In these notations, one can rewrite the anti-commutativity of the

boundary morphisms as follows: for all adjacent pair ep ≤ ep+2 of relative codimension 2 we have:∑
ep≤ep+1≤ep+2

[ep; ep+1][ep+1; ep+2] = 0.

Definition 1.19 (Cellular Chain and Cochain Complexes). Let F be a cellular cosheaf on K and k ∈ N. We

define the group of cellular k-chains of K with coefficients in F to be :

Ck(K;F ) :=
⊕

dim e=k

F (e)⊗Z Z(e).

Moreover, if [e] is an oriented k-cell of K and c a k-chain with coefficients in F we denote ⟨c, [e]⟩ the unique

element of F (e) satisfying ce = ⟨c, [e]⟩ ⊗ [e]. We also define the boundary operator ∂ : Ck(K;F )→ Ck−1(K;F )

by the formula :

∂f :=
∑

ek−1<ek

⟨f, [ek]⟩
∣∣ek
ek−1 ⊗ [ek−1],

for all f ∈ F (ek) ⊗Z Z(ek) with [ek−1] the image of [ek] by the boundary morphism, which can be written

[ek−1][ek−1; ek] = [ek] with [ek−1; ek] the canonical relative orientation. The property of the compositions of

the boundary morphisms between oriented coefficients implies directly that ∂2 = 0 and that (Ck(K;F ); ∂) is a

chain complex.

Dually, when F is a cellular sheaf, the cochain complex with coefficients in F , is defined, for k ∈ N, by the

groups:

Ck(K;F ) :=
∏

dim e=k

Hom(Z(e);F (e)).

We write for α a k-cochain with coefficients in F and [e] an oriented k-cell, α([e]) ∈ F (e) for the value of the

map α(e) at [e]. The coboundary operator d : Ck(K;F ) → Ck+1(K;F ) is given for all k-cochains α and all

oriented (k + 1)-cells [ek+1] by:

dα([ek+1]) =
∑

ek<ek+1

α([ek])
∣∣ek+1

ek
,

for [ek] the unique orientation of ek whose image by the boundary morphism is [ek+1], i.e. [ek][ek; ek+1] = [ek+1].

The last cochain complex we define here is the complex of cellular cochains with compact support. It is a

sub-complex of (Ck(K;F ))k≥0 whose groups are given for all k ∈ N, by:

Ck
c (K;F ) :=

⊕
dim e=k

Hom(Z(e);F (e)).

For k ∈ N, the image of Ck
c (K;F ) under d is contained in Ck+1

c (K;F ) only because we assumed K to be locally

finite. A morphism of cosheaves or sheaves gives rise to a morphism of chain or cochain complexes, respectively.

In a more categorical language, the association F 7→
(
Ck(K;F )

)
for F a cosheaf and G 7→

(
Ck

(c)(K;G)
)
for G

a sheaf are all covariant functors.
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Definition 1.20 (Dihomologic chain complex). Let F be a dihomologic cellular cosheaf on K. We define the

group of dihomologic cellular k-chains of K with coefficients in F to be :

Ωk(K;F ) :=
⊕

dim ϵ=k

F (ϵ)⊗Z Z(ϵ),

where ϵ runs through the set of k-dimensional dihomologic pseudo-cells of K. If [ϵ] is an oriented k-pseudo-cell of

K and c a k-chain with coefficients in F we denote ⟨c, [ϵ]⟩ the unique element of F (e) satisfying cϵ = ⟨c, [ϵ]⟩⊗ [e].

We also define the boundary operator ∂ : Ωk(K;F )→ Ωk−1(K;F ) by the formula :

∂f :=
∑

ϵk−1<ϵk

⟨f, [ϵk]⟩
∣∣ϵk
ϵk−1 ⊗ [ϵk−1],

for all f ∈ F (ϵk)⊗Z Z(ϵk) with [ϵk−1] the image of [ϵk] by the boundary morphism.

Remark 1.3. If the dihomologic pseudo-subdivision of K is a regular subdivision of K we find that the last

definition is identical to the definition of the cellular chain complex associated with a cellular cosheaf on a

CW-complex.

Definition 1.21. For F a cellular cosheaf (resp. a cellular sheaf) we define its homology (resp. cohomology,

resp. cohomology with compact support) to be the homology of its cellular chain complex (resp. cohomology of

its cellular cochain complex, resp. cohomology of cellular its cochain complex with compact support). We also

define the homology of a dihomologic cosheaf to be the homology of the associated chain complex.

Example. Given two sub-complexes K1 ≤ K2 of K and an Abelian group G the homology of [K2;K1;G] is

exactly the same as the cellular homology of K2 relatively to K1.

The following propositions illustrate the usefulness of these cellular constructions:

Proposition 1.15. If F is a sheaf of Abelian groups on |K|, constructible with respect to the skeletal filtration,

then the sheaf cohomology of F is isomorphic to the cellular cohomology of the cellular sheaf associated with F .

The proof of this fact is easily derived from the fact that the open cover of |K| by the open stars of its vertices

is a Leray cover for F and that the cellular cochain complex of its associated cellular sheaf is the complex of its

Čech cochains, see [God58]20 for instance.

Proposition 1.16. Whenever F is the cellular cosheaf arising from a local system of coefficients L on |K| there
is a canonical isomorphism from the cellular homology of F to the singular homology of |K| with coefficients in

L.

The result follows directly from the description in [Hat00]21 of the complex of singular chains with coefficients

in L and an adaptation of the classical proof relating singular homology and cellular homology.

Proposition 1.17. Let K ′ be a subdivision of K and F a cellular cosheaf on K. If F ′ denotes the subdivision

of F we have the following injective morphism of chain complexes:

Ck(K;F ) −→ Ck(K
′;F ′)

c 7−→
∑
ek∈K

( ∑
e′k⊂ek

e′k∈K′

⟨c ; [ek]⟩ ⊗ [e′k]

)

with the orientations defined as follows : if [ek] is an orientation of ek then [e′k] is the image of such orien-

tation under the isomorphism Hk(ē
k; ē k \ ek) → Hk(ē

′k; ē′k \ e′k) inverse of the map induced by the inclusion

(ē′k \ ek; ē′k) ⊂ (ē k \ e′k; ē k). This is a quasi-isomorphism of chain complexes.

A proof of this can be found in [She85]22 in the dual context of cellular sheaves. The same proposition holds

for dihomologic subdivisions of cellular cosheaves on K. A proof of the specific case of the constant sheaf on

the dihomologic subdivision is given in [For02]23.

20R. Godement. Topologie Algébrique et Théorie des Faisceaux, Théorème 5.10.1 p.228.
21A. Hatcher. Algebraic Topology, Section 3.H. Local Coefficients pp.327-337.
22A. Shepard. A Cellular Description of the Derived Category of a Stratified Space, Theorem 1.5.2 p.31.
23R. Forman, Combinatorial Novikov–Morse Theory, Theorem 1.2 p.12.
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Proposition 1.18. Let F be a cellular cosheaf on K. If F ′ denotes the dihomologic subdivision of F we have

the following injective morphism of chain complexes:

Ck(K;F ) −→ Ωk(K;F ′)

c 7−→
∑

e0≤ek

⟨c ; [ek]⟩ ⊗ [e0; ek]

with the orientations defined as follows : if [ek] is an orientation of ek then [e0; ek] is the relative orientation

defined by the relation [e0][e0; ek] = [ek] with [e0] the canonical orientation of the vertex e0 of K. This is a

quasi-isomorphism of chain complexes.

This is an adaptation of the proof given by R. Forman.

Proof. Denote by f the chain complexes morphism given in the statement of the proposition. We have natural

inclusions of the dihomologic complexes associated with the restrictions of F ′ to the skeleta of K:

Ω∗(K
(q);F ′) ⊂ Ω∗(K

(q+1);F ′),

for all q ∈ N. Note that for every k ∈ N, f maps Ck(K;F ) to Ωk(K
(k);F ′). Now consider the spectral sequence

associated with this filtration:

Er
p,q :=

Zr
p,q +Ωq−p(K

(q−1);F ′)

∂Zr−1
p+r−2,q+r−1 +Ωq−p(K(q−1);F ′)

,

with Zr
p,q = {c ∈ Ωq−p(K

(q);F ′) | ∂c ∈ Ωq−p−1(K
(q−r);F ′)}. The boundary operator ∂r

p,q : Er
p,q → Er

p−r+1,q−r

applied to an element c ∈ Er
p,q is given by computing ∂c′ ∈ Ωq−p−1(K;F ′) for any lift c′ ∈ Zr

p,q and then

projecting to Er
p−r+1,q−r. The term E0

p,q is written:

E0
p,q =

⊕
ep≤eq

F ′(ep; eq)⊗ Z(ep; eq),

with F ′(ep; eq) = F (eq) by assumption. The boundary ∂0
p,q acts on the element f ⊗ [ep; eq] ∈ F ′(ep; eq) ⊗

Z(ep; eq) = F (eq)⊗ Z(ep; eq) as follows:

∂0
p,qf ⊗ [ep; eq] =

∑
ep≤ep+1≤eq

f ⊗ [ep+1; eq] ∈
⊕

ep≤ep+1≤eq

F ′(ep+1; eq)⊗ Z(ep+1; eq),

for [ep+1; eq] the image of [ep; eq] by the boundary morphism ∂ : Z(ep; eq) → Z(ep+1; eq). Remember that this

morphism is given by (−1)p+1Hom(∂′; id) with ∂′ : Z(ep+1)→ Z(eq). Therefore, if we decide to write [ep; eq] in

the form α⊗ [eq] ∈ Hom(Z(ep);Z)⊗Z(eq) we have [ep+1; eq] = (−1)p+1(α ◦ ∂′)⊗ [eq]. As a consequence we see

that the line of index q of the E0-page of the spectral sequence splits into the direct sum of the cellular cochain

complexes of the K(eq) with coefficients in the constant cellular sheaf F (eq)⊗Z(eq) with coboundary operator

d twisted by (−1)p+1:

· · · −→ E0
p,q E0

p+1,q −→ · · ·

⊕
eq∈K

Cp(K(eq);F (eq)⊗ Z(eq))
⊕
eq∈K

Cp+1(K(eq);F (eq)⊗ Z(eq))

∂0

⊕(−1)p+1d

Since the support of K(eq) is the closure of eq, the E1-page of the spectral sequence is concentrated on the 0-th

column and satisfies:

E1
0,q =

⊕
eq∈K

H0(K(eq);F (eq)⊗ Z(eq)).

Note that E1
0,q ⊂ E0

0,q and is precisely the image of f . It defines an isomorphism between this 0-th column

and C∗(K;F ) and therefore between the homology of F and the homology of its subdivision F ′. Moreover,

we deduce that our filtration is adapted to the cokernel of f and that computing the first page of the induced

spectral sequence amounts to replace in our computations the cohomology groups of theK(eq)’s with coefficients

in the group F (eq) ⊗ Z(eq) with the reduced cohomology. Since |K(eq)| is contractible they all vanish. Thus,

the cokernel of f has trivial homology and f is a quasi-isomorphism.
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2 A Poincaré-Lefschetz Theorem for Dihomologic Cellular Cosheaves

Let K be a locally finite regular CW-complex and F a dihomologic cosheaf on K. The chain complex

(Ωk(K;F ))k≥0 is actually the total complex of a bicomplex. The k-dimensional dihomologic pseudo-cells being

represented by adjacent pairs of cells ep ≤ eq with q− p = k their set is partitioned into sets of cells of different

types. If we say that a dihomologic pseudo-cell indexed by ep ≤ eq has type (p, q), the set of k-dimensional

dihomologic pseudo-cells is the disjoint union of the set of pseudo-cells of type (p, q) for q − p = k. Similarly

the group Ωk(K;F ) splits into the direct sum:

Ωk(K;F ) =
⊕

q−p=k

Ωp,q(K;F ),

with:

Ωp,q(K;F ) =
⊕
ep≤eq

F (ep; eq)⊗ Z(ep; eq),

for all p, q ∈ N. A codimension 1 face of ep ≤ eq either starts with ep or ends with eq and therefore the

restriction of the boundary operator to Ωp,q(K;F ) has values in the sum Ωp+1,q(K;F )⊕Ωp,q−1(K;F ). It splits

into the sum of an operator ∂1 of bidegree (+1; 0) and an operator ∂2 of bidegree (0;−1). With the additional

structure we can consider the two canonical filtrations and associated spectral sequences. We will only look at

the (decreasing) horizontal filtration, that is to say the one filtered by the index p. The filtering pieces are, for

l, k ∈ N:

Ω
(l)
k (K;F ) :=

⊕
q−p=k
p≥l

Ωp,q(K;F ).

The associated spectral sequence is given for all p, q ∈ Z by :

Er
p,q :=

Zr
p,q +Ω

(p+1)
q−p (K;F )

∂Zr−1
p−r+1,q−r+2 +Ω

(p+1)
q−p (K;F )

,

with Zr
p,q = {c ∈ Ω

(p)
q−p(K;F ) | ∂c ∈ Ω

(p+r)
q−p−1(K;F )}. The boundary operators ∂r

p,q : Er
p,q → Er

p+r,q+r−1 applied

to an element c ∈ Er
l,k is given by computing ∂c′ ∈ F p+rCq−p−1(K;F ) for any lift c′ ∈ Zr

p,q and then projecting

to Er
p+r,q+r−1.

Proposition 2.1. If there is an n ∈ N such that for every cell e of K the local cosheaf Fe has its homology

concentrated in dimension n then the horizontal spectral sequence of Ω(K;F ) degenerates at second page.

Proof. We have :

E0
p,q
∼= Ωp,q(K;F ),

with ∂0
p,q corresponding to the vertical component, ∂2, of the total boundary operator, ∂, of (Ωk(K;F ))k∈N.

The following page (E1
p,q)p,q∈N is given by the homology groups of the column complexes of the bicomplex

(Ωp,q(K;F ))p,q∈N. For p, q ∈ N, let’s consider the morphism:

Φp,q : Ωp,q(K;F )→
⊕
ep∈K

Hom(Z(ep);Cq(K;Fep)),

for which the (ep)-component of the image of an element c is given by the linear map:

[ep] 7→ (−1)
p(p+1)

2 +
q(q+1)

2

∑
eq>ep

⟨c, [ep; eq]⟩ ⊗ [eq],

with [ep; eq], [eq] some choices of orientations satisfying [ep][ep; eq] = [eq] (the map does not depend on such

choices). For a fixed p ∈ N, the collection (Φp,q)q∈N is almost a chain complex isomorphism between the p-th

column of the bicomplex of F -valued dihomologic chains Ωp,∗(K;F ) and the direct sum over the p-cells ep of the

complexes Hom(Z(ep);C∗(K;Fep)). We have ∂Φp,q = (−1)q−pΦp,q−1∂2 so (Φp,q)q∈N still defines an isomorphism

in homology. Each of the Φp,q being individually an isomorphism is a matter of bookkeeping. On the left hand

side we sum the groups F (ep, eq)⊗Z(ep, eq) over all ordered pairs of cells ep < eq and on the right hand side we
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sum the groups Hom(Z(ep);F (ep, eq)⊗ Z(eq)) over the same index set but in a different order, Φp,q then sends

bijectively each one of the former summands to one of the latter by means of the composition:

F (ep, eq)⊗ Z(ep, eq) F (ep, eq)⊗Hom(Z(ep);Z(eq)) Hom(Z(ep);F (ep, eq)⊗ Z(eq)).±1

For the “commutativity” relation with the boundary operators, let c be a (p, q)-chain. On the one hand, for ep

a p-cell of K, the value of the (ep)-component of Φp,q−1(∂2c) on an oriented cell [ep] is given by the formula:

Φp,q−1(∂2c)[e
p] = (−1)

p(p+1)
2 +

q(q−1)
2

∑
eq−1>ep

( ∑
eq>eq−1

⟨c, [ep; eq]⟩
∣∣∣ep,eq
ep,eq−1

)
⊗ [eq−1],

for [ep][ep, eq−1] = [eq−1] and [ep, eq] = (−1)p[ep, eq−1][eq−1, eq]. That is to say:

Φp,q−1(∂2c)[e
p] = (−1)

p(p−1)
2 +

q(q−1)
2

∑
eq−1>ep

( ∑
eq>eq−1

⟨c, [ep; eq]⟩
∣∣∣ep,eq
ep,eq−1

)
⊗ [eq−1],

for [ep][ep, eq] = [eq−1][eq−1, eq]. Note that we changed the equation defining the orientation which resulted in

the multiplication by a factor (−1)p in the computation of Φp,q−1(∂2c)[e
p] and hence turned (−1)

p(p+1)
2 into

(−1)
p(p−1)

2 . On the other hand, the value of the (ep)-component of ∂Φp,q(c) on [ep] is the same as the boundary

of Φp,q(c)[e
p]:

∂Φp,q(c)[e
p] = (−1)

p(p+1)
2 +

q(q+1)
2

∑
eq>ep

( ∑
eq−1<eq

⟨c, [ep, eq]⟩
∣∣∣eq
eq−1
⊗ [eq−1]

)
,

for [ep][ep; eq] = [eq] and [eq−1][eq−1; eq] = [eq], i.e. [ep][ep, eq] = [eq−1][eq−1, eq]. Note that the element

⟨c, [ep, eq]⟩ of F (ep, eq) in the last formula is understood as an element of Fep(e
q) hence the extension morphsims

of Fep apply to it and this is why we wrote ⟨c, [ep, eq]⟩
∣∣eq
eq−1 . However, these extension morphisms are zero

whenever eq−1 doesn’t contain ep and identical to those of F in the opposite case. Therefore we can write :

∂Φp,q(c)[e
p] = (−1)

p(p+1)
2 +

q(q+1)
2

∑
eq>ep

( ∑
ep<eq−1<eq

⟨c, [ep, eq]⟩
∣∣∣ep,eq
ep,eq−1

⊗ [eq−1]

)

= (−1)
p(p+1)

2 +
q(q+1)

2

∑
eq−1>ep

( ∑
eq>eq−1

⟨c, [ep; eq]⟩
∣∣∣ep,eq
ep,eq−1

)
⊗ [eq−1]

= (−1)q−pΦp,q−1(∂2c)[e
p].

For each p-cell, the group Z(ep) is free so the universal coefficient theorem ensures that E1
p,q is isomorphic to

the direct sum of the Hom(Z(ep);Hq(K;Fep))’s. By assumptions Hq(K;Fep) is trivial as soon as q is not n. As

a consequence all pages following E1 are concentrated on the horizontal line {q = n} and since ∂r
p,q has bidegree

(r, r − 1) the spectral sequence degenerates at second page.

Theorem 1 (Cellular Poincaré-Lefschetz Theorem). Let K be a finite dimensional, locally finite and regular

CW-complex and F satisfy the hypotheses of Proposition 2.1. Then for every 0 ≤ k ≤ n, Hk(K;F ) and

Hn−k
c (K;Hn(F∗)) are canonically isomorphic. In particular Hk(K;F ) vanishes for k > n. If in addition K

has dimension n, then this isomorphism comes from an injective quasi-isomorphism:

Cn−∗
c (K;Hn(F∗))→ Ω∗(K;F ).

Proof. Let d = dimK and consider the horizontal filtration of the homology of F :

0 ⊂ Hk(K;F )(d) ⊂ · · · ⊂ Hk(K;F )(n−k) ⊂ · · · ⊂ Hk(K;F )(0),

whose graded pieces:

E∞
d,k+d · · · E∞

n−k,n · · · E∞
0,k,

satisfy, in light of the last proposition, E∞
p,q = E2

p,q = 0 as soon as q is not n. Therefore, Hk(K;F ) =

Hk(K;F )(n−k) = E∞
n−k,n = E2

n−k,n. Now because of the isomorphisms (Φp,q)p,q∈N given in the last proof, we
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recognise that E1
p,q
∼= Cp

c (K;Hq(F∗)). Then it remains only to show that the boundary operator ∂1
p,q of the

spectral sequence is mapped to the coboundary operator d. If c′ ∈ Ωp,q(K;F ) is a ∂2-cycle representing an

element c ∈ E1
p,q then ∂1c

′ is a ∂2-cycle representing ∂1
p,qc. We have:

⟨∂1c′, [ep+1; eq]⟩ =
∑

ep<ep+1

⟨c′, [ep; eq]⟩
∣∣∣ep,eq
ep+1;eq

,

for [ep; eq] = (−1)p+1[ep; ep+1][ep+1; eq]. So the image of ∂1c
′ under Φ satisfies:

Φp+1,q(∂1c
′)[ep+1] = (−1)

(p+2)(p+1)
2 +

q(q+1)
2

∑
eq>ep+1

( ∑
ep<ep+1

⟨c′, [ep; eq]⟩
∣∣∣ep,eq
ep+1;eq

)
⊗ [eq],

for [ep+1][ep+1; eq] = [eq] and [ep; eq] = (−1)p+1[ep; ep+1][ep+1; eq]. Which can be written as:

Φp+1,q(∂1c
′)[ep+1] = (−1)

p(p+1)
2 +

q(q+1)
2

∑
ep<ep+1

( ∑
eq>ep+1

⟨c′, [ep; eq]⟩
∣∣∣ep,eq
ep+1;eq

⊗ [eq]

)

= (−1)
p(p+1)

2 +
q(q+1)

2

∑
ep<ep+1

Ψep+1

ep

( ∑
eq>ep

⟨c′, [ep; eq]⟩ ⊗ [eq]

)
,

for [ep+1][ep+1; eq] = [eq], [ep; eq] = [ep; ep+1][ep+1; eq] and Ψep+1

ep : Cq(K;Fep) → Cq(K;Fep+1) associated with

the cosheaf morphism Fep → Fep+1 . Therefore, Φp+1,q(∂
1
p,qc) is the (p+ 1)-cochain with compact support that

associates to an oriented cell [ep+1] the sum over its codimension 1 faces of the images in Hq(K;Fep+1) of

the homology classes
[
(−1)

p(p+1)
2 +

q(q+1)
2

∑
eq>ep⟨c′, [ep; eq]⟩ ⊗ [eq]

]
∈ Hq(K;Fep) for [e

p; eq] = [ep; ep+1][ep+1; eq]

and [ep; eq] = [ep; ep+1][ep+1; eq]. Finally we check that this is precisely dΦp,q(c) for:

dΦp,q(c)[e
p+1] =

∑
ep<ep+1

Φp,q(c)[e
p],

with [ep][ep; ep+1] = [ep+1] and Φp,q(c)[e
p] =

[
(−1)

p(p+1)
2 +

q(q+1)
2

∑
eq>ep⟨c′, [ep; eq]⟩ ⊗ [eq]

]
.

For the second part of the statement, when dimK = n, we need to remember that Φ provided us with an

isomorphism between the chain complexes (E1
n−∗,n; ∂

1) and (Cn−∗
c (K;Hn(F∗)); d). Also, in the special context

of spectral sequences of bicomplex we know that E1
n−p,n is the n-th homology group of the (n− p)-th column of

Ω∗,∗(K;F ). With the dimensional assumption, this is the homology group of highest dimension and therefore

the same as the group of cycles. We have an inclusion of E1
n−p,n in Ωn−p,n(K;F ) as the kernel of the vertical part

of the boundary operator, namely ∂2. With this description it is clearly an injective chain complexes morphism

(En−∗,n; ∂
1)→ (Ω∗(K;F ); ∂) whose cokernel inherits a bicomplex structure from Ω∗,∗(K;F ). By construction

all the columns of this bicomplex are exact and so is its total complex. Our injective quasi-isomorphism is then

the composition of Φ with the inclusion of (En−∗,n; ∂
1) in the total complex (Ω∗(K;F ); ∂).

Remark 2.1. In the proof of Theorem 1 we did not actually used that c′ was a ∂2-cycle and have actually proved

that Φ is a bicomplex isomorphism. Indeed we have (
∑

q−p=k Φp,q)◦(∂1+∂2) = (d+(−1)q−p∂)◦(
∑

q−p=k+1 Φp,q).

So if we no longer assume the vanishing hypotheses on the local homology of F what we get instead is a complex

of cellular sheaves e 7→ C∗(K;Fe) whose cohomology (or hypercohomology) with compact support corresponds

to the homology of F .

A direct consequence of the last corollary is the already known Poincaré-Lefschetz theorem:

Corollary 1. If X is a homology n-manifold in the sense of Definition 1.6 then Hk(X;Z) ∼= Hn−k
c (X; ∂X; oZ)

for oZ the system of local orientations defined on X \ ∂X by x 7→ Hn(X;X − x;Z).

Proof. Let’s consider the local system oZ on X \∂X given by x 7→ Hn(X;X \{x};Z). Denote K a locally finite,

regular, finite dimensional CW-complex whose support is X. We have by hypotheses, for every cell e of K, that

Hk(K;K − e;Z) is zero as soon as k does not equal n. Then by Theorem 1 we have:

Hk(K;Z) ∼= Hn−k
c

(
X;Hn(Z∗)

)
.

The cellular sheaf Hn(Z∗) vanishes on the boundary and corresponds to the local system oZ elsewhere hence

the corollary follows.
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An interesting corollary is a version of Serre duality for flat vector bundles over a field F with oF = oZ ⊗ F
playing the role of the canonical line bundle:

Corollary 2. If X is a homology n-manifold in the sense of Definition 1.6 and E is a flat bundle of F-vector
spaces of finite rank over X then:

Hk(X;E) ∼=
(
Hn−k

c (X; ∂X; oF ⊗F E
∗)
)∗
.

Proof. Let K denotes a locally finite, regular, finite dimensional CW-complex whose support is X. By uni-

versal coefficients theorem (c.f. [CE56]24) we have, after noticing that (Ck(K;E))k≥0 is dual to the complex

(Ck(K;E∗))k≥0, that Hk(X;E) ∼= (Hk(X;E∗))∗. For e a cell of K we define an isomorphism of cosheaves

ϕe :
[
K;K − e;E∗(e)

]
→ E∗

e given by the inverses of the extension morphisms, i.e. its restriction morphisms.

E∗(e′)→ E∗(e) for all cells e′ ≥ e. This being done, we have the isomorphism:

Hk(K;K − e;E∗) ∼= Hk(K;K − e;E∗(e)) ∼= Hk(K;K − e;F)⊗F E
∗(e).

By hypotheses these groups are all 0 as soon as k does not equal n hence the dihomologic pseudo-subdivision

of the cosheaf E∗ satisfies the conditions of Proposition 2.1. Therefore, Theorem 1 applies. In addition, for

ep ≤ eq we have the commutative square:

[
K;K − ep;E∗(ep)

]
E∗

ep

[
K;K − eq;E∗(eq)

]
E∗

eq

ϕep

loc. at eq

ϕeq

with the unlabelled morphism on the left given by the tensor product of the localisation morphism
[
K;K −

ep;F
]
→
[
K;K− eq;F

]
with the extension E∗(ep)→ E∗(eq). It appears that the cellular sheaf e 7→ Hn(K;K−

e;E∗) is isomorphic to the tensor product e 7→ Hn(K;K − e;F)⊗F E
∗. By Theorem 1, we get:

Hk(X;E) ∼=
(
Hn−k

c

(
X;Hn(E

∗
∗)
))∗ ∼= (Hn−k

c (X;Hn(F∗)⊗F E
∗)
)∗

.

The sheaf Hn(F∗) vanishes on ∂X and its restriction to X \ ∂X is given by the local system oF so finally:

Hk(X;E) ∼=
(
Hn−k

c (X; ∂X; oF ⊗F E
∗)
)∗

.

3 Application to Tropical Homology : Lefschetz Hyperplane Section

Theorem

In this section we apply Theorem 1 to the cosheaves arising from tropical geometry. In a first paragraph we will

state and prove four preliminary lemmata. Then we will define the objects we consider. Finally, we will state

and prove Theorem 2.

Four Lemmata

Definition 3.1. Let V be an R-module, G ⊂ V a finite subset and p ∈ N. We define the complex of R-modules

C(V ;G; p) := (C∗, ∂) :

Ck :=
⊕
F⊂G
|F |=k

p−k∧
VF ,

with VF the quotient of V by the sub-module spaned by F . We set the map ∂k : Ck → Ck−1 to be the sum of

the maps :

24H. Cartan and S. Eilenberg, Homological Algebra, Theorem 3.3 p.113.
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p−k∧
VF −→

⊕
f∈F

p−(k−1)∧
VF\f

v 7−→
∑
f∈F

f ∧ v.

Because of the antisymmetry of the wedge product, ∂2 vanishes. Moreover, it is worth noticing that when G′

is a subset of G the complex C(V ;G′; p) is naturally a sub-complex of C(V ;G; p).

Lemma 3.1. If V is free of finite rank, G is linearly independent and spans a free summand of V then (C; ∂)

can only have non-trivial homology in dimension 0 and this H0 is equal to the p-th exterior power of VG. In

other words:

0←
p∧
VG ← C0 ← ...← C|G| ← 0,

is a free resolution of
∧p

VG. (The augmenting morphism is the reduction modulo the module spanned by G.)

Proof. By hypotheses one can find G′ ⊂ V disjoint from G such that G ∪ G′ is a basis of V . Let us write

G = {g1, ..., gn} and G′ = {g′1, ..., g′n′} then for F = {gi : i ∈ I} ⊂ G with |I| = k a basis of the (p − k)-th

exterior power of VF is given by gP\I ∧ g′Q for I ⊂ P ⊂ {1, ..., n}, Q ⊂ {1, ..., n′} such that |P | + |Q| = p.

Moreover the image of the generator gP\I ∧ g′Q under the boundary map is:

∂gP\I ∧ g′Q =
∑
i∈I

gi ∧ gP\I ∧ g′Q ∈
⊕
i∈I

p−(k−1)∧
VF\gi .

Therefore, if we fix P and Q with |P |+ |Q| = p and see P as an abstract simplex we have an injective morphism

of chain complexes from the reduced simplicial chain complex of P to C given by:

C̃k(P ;R) −→ Ck+1

I 7−→ gP\I ∧ g′Q,

By construction, C is the direct sum of the images of these complexes, hence it can only have homology

in dimension 0 and the only summands that contribute are the ones for which P = ∅ : there is exactly

one free summand of rank 1 for every basis element of
∧p

VG although a very quick computation show that

B0 = ⟨G⟩ ∧
∧p−1

V .

Lemma 3.2 (Homology Shift). Let n ∈ N be a natural number and:

0→ C(n)
an−→ C(n− 1)

an−1−→ · · · a2−→ C(1)
a1−→ C(0)→ 0, (ES)

be an exact sequence of chain complexes. If for all 1 ≤ i ≤ n − 1, C(i) is exact then the homology of C(0) is

the one of C(n) shifted by 1− n:

H(0) = H(n)[1− n].

Proof. For all 1 ≤ i ≤ n, let A(i) denote the kernel complex of ai. Since (ES) is an exact sequence the following

diagram has all of its columns exact:

0 0 0 0

0 A(n− 1) · · · A(i) · · · A(1) A(0)

0 C(n) C(n− 1) · · · C(i) · · · C(1) C(0) 0

A(n− 1) A(n− 2) · · · A(i− 1) · · · A(0) 0

0 0 0 0

an

an

an−1

an−1 ai+1

ai

ai a2

a1

a1
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By assumption, for all 1 ≤ i ≤ n− 1, H(i) = 0 so H(A(i− 1)) = H(A(i))[−1] by use of the long exact sequence

associated with 0→ A(i)→ C(i)→ A(i− 1)→ 0. Hence by a finite recursion we get that:

H(0) = H(A(0)) = H(A(n− 1))[1− n] = H(n)[1− n].

Lemma 3.3 (Double Localisation). Assume F is a cellular cosheaf on K and K ′ is a subdivision of K. If e is a

cell of K and e′ is a cell of K ′ contained in e then the local homology of F at e is identical to the local homology

of the subdivision of F at e′. More precisely, if F ′ is the subdivision of F there is a canonical quasi-isomorphism

between C∗(K ;Fe) and C∗(K
′;F ′

e′).

Proof. If we denote by (Fe)
′ the subdivision of Fe then we have a commutative square of cellular cosheaves on

K ′:

F ′ (F ′)e′

(Fe)
′ (Fe)

′
e′

where all four morphisms come from localisation and subdivision. The two cosheaves on the right hand column

are actually equal and the arrow is rigorously the identity between them. To see it we only need to check it for

all cells ẽ′ that contains e′ since both these cosheaves vanish elsewhere. If ẽ is the unique cell of K containing

ẽ′ then they satisfy:

ẽ e

ẽ′ e′

≥
∪ ∪

≥

therefore (F ′)e′(ẽ
′) = F (ẽ) = Fe(ẽ) = (Fe)

′
e′(ẽ

′) with our morphism given by the central equality. On the level

of cellular chain complexes we have the following diagram:

C∗(K
′; (F ′)e′)

C∗(K ;Fe) C∗(K
′; (Fe)

′) C∗(K
′; (Fe)

′
e′)subd.

f

h

loc.

g

with h the canonical quasi-isomorphism given in the statement of the proposition. Since f is a subdivision

morphism it is automatically a quasi-isomorphism. We only need to show that the localisation morphism g is a

quasi-isomorphism. This is a surjective morphism since localisations are quotients. We have, by definition, the

short exact sequence of cosheaves:

0→ (Fe)
′ ⊗
[
K ′ − e′;Z

]
→ (Fe)

′ → (Fe)
′
e′ → 0,

so showing that g is a quasi-isomorphism amounts to showing that the kernel cosheaf has trivial homology.

(Fe)
′ = F ′ ⊗

[
K ′;K ′ − e;Z

]
for K ′ − e is the subdivision of the sub-complex K − e. Consequently:

(Fe)
′ ⊗
[
K ′ − e′;Z

]
= F ′ ⊗

[
K ′;K ′ − e;Z

]
⊗
[
K ′ − e′;Z

]
= F ′ ⊗

[
K ′ − e′;K ′ − e;Z

]
.

By a process similar to excision we see that:[
K ′ − e′;K ′ − e;Z

]
=
[
K ′(e)− e′;K ′(e)− e;Z

]
.

Indeed, K ′(e) is the smallest sub-complex of K ′ containing e in its support and any cell not in it falls into

K ′ − e. Note that
[
K ′(e)− e′;K ′(e)− e;Z

]
can be non-zero only on cells of K ′ contained in e so:

(Fe)
′ ⊗
[
K ′ − e′;Z

]
= F ′ ⊗

[
K ′ − e′;K ′ − e;Z

]
=
[
K ′(e)− e′;K ′(e)− e;F (e)

]
.

Now because K is regular, |K ′(e)| is a closed ball B, |K ′(e) − e| is its boundary ∂B and |K ′(e) − e′| sits
somewhere between ∂B and B punctured on one point. Since the latter retracts by deformation on the former

the homology of
[
K ′(e)− e′;K ′(e)− e;F (e)

]
is trivial.
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Lemma 3.4. Let M be a lattice of finite rank with some linear forms α1, ..., αk ∈ Hom(M ;Z) \ {0}. If ω is a

generator of the last exterior power of the lattice spanned by the αi’s then for all p ∈ N, the quotient:

G :=

{
v ∈

p∧
M | ω · v = 0

}/
k∑

i=1

p∧
ker(αi) ,

with ω · v the contraction of v by ω, is a finite group.

Proof. Let p ∈ N. First we remind that ω · v = 0 if p < degω and is, otherwise, the unique (p− degω)-element

satisfying α(ω · v) = (α ∧ ω)(v) for all (p− degω)-form α. Notice that for each 1 ≤ i ≤ k the form αi divides a

non-zero multiple of ω in the exterior algebra of Hom(M ;Z). It follows that all p-elements of ker(αi) contract

to 0 against ω. Assume now that r ≥ 1 is the rank of the sub-lattice of Hom(M ;Z) spanned by the αi’s and

that α1 ∧ ... ∧ αr = mω with m ̸= 0. Then we have:{
v ∈

p∧
M | ω · v = 0

}
=

{
v ∈

p∧
M | (α1 ∧ ... ∧ αr) · v = 0

}
.

We can complete the set {α1, ..., αr} with a set {β1, ..., βs} ⊂ Hom(M ;Z) into a basis of the rational vector

space HomQ(M ;Q). For a p-element v ∈
∧p

M , seen as a p-vector in
∧p

Q(M ⊗Q), with {e1, ..., er, f1, ..., fs} the
dual basis of {α1, ..., αr, β1, ..., βs}, we have:

(α1 ∧ ... ∧ αr) · v =
∑

|J|=p−r

(α1 ∧ ... ∧ αr ∧ βJ)(v)fJ ,

and thus: {
v ∈

p∧
M | ω · v = 0

}
⊗Q =

〈
eI ∧ fJ : |I| < r and |I|+ |J | = p

〉
Q
.

Now, ker(αi)⊗Q = ker(αi ⊗ 1) = ⟨ej , fk : j ̸= i and 1 ≤ k ≤ s⟩Q, so:{
v ∈

p∧
M | ω · v = 0

}
⊗Q =

(
k∑

i=1

p∧
ker(αi)

)
⊗Q,

then G⊗Q = 0. Since G is finitely generated, it is finite.

Hodge Theory in Tropical Toric Geometry

Let P be a full dimensional integer polytope25 in a finite dimensional real vector space t∗(R) endowed with

a lattice t∗(Z). Its corresponding toric variety is a projective algebraic variety defined over the integers. The

tropical locus Y of such a toric variety we can be seen as a compactification of the tropical torus t(R) =

HomR(t
∗(R);R). Moreover, the moment map provides an isomorphism between Y and the polytope P itself.

The real or complex toric varietiy defined by an integer polytope comes equipped with an ample line bundle. The

space of global sections of this line bundle is naturally isomorphic to the vector space of Laurent polynomials

whose exponents are integer points of P . The “tropical sections” of this line bundle are likewise defined as

tropical Laurent polynomials whose exponents are integer points of P i.e. the convex piecewise affine functions

of the form:

f : t(R) −→ T = R ∪ {−∞}
v 7−→ max

α∈P∩t∗(Z)
(aα + α(v)) ,

where the aα’s are tropical numbers. The tropical hypersurfaceX of Y defined by this equation is the topological

closure of the non-differentiability locus of f in Y . As usual the Newton polytope of f is the convex hull of the

α ∈ P ∩ t∗(Z) for which the associated coefficient aα ̸= −∞. By Theorem 2.3.7 of G. Mikhalkin and J. Rau

[MR18]26, any tropical hypersurface X of Y defined by an equation f whose Newton polytope is P , is dual to

an integer convex polyhedral subdivision K of P . This means that X is homeomorphic to the sub-complex of

the dihomologic subdivision27 of K consisting of the union of the closed dihomologic cells indexed the adjacent

25the convex hull of a finite number of vertices.
26G. Mikhalkin and J. Rau, Tropical Geometry, Theorem 2.3.7 p.44.
27Here K is polyhedral so its dihomologic pseudo-subdivision is an actual regular subdivision of K.
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pairs e1 ≤ ep. The situation is illustrated in Figure 10. The theory of tropical homology defined by I. Itenberg,

L. Katzarkov, G. Mikhalkin, and I. Zharkov for both X and Y can be expressed as the homology of some

dihomologic cosheaves on K. Moreover, the data of the polyhedral subdivision K alone is enough to define

these cosheaves. We will adopt this point of view and state our result in terms of cosheaves associated to an

integer polyhedral subdivision K of an integer polytope P . As noted by E. Brugallé, L. López de Medrano and

J. Rau in [BLdMR22], the tropical cosheaves can be associated to any integer polyhedral subdivision regardless

of its convexity and most of the results about the tropical homology of tropical hypersurfaces apply to them.

Theorem 2 is no exception to that observation. We will not assume the subdivision to be convex and therefore

the theorem will not be stated in the framework of tropical hypersurfaces.

(a) The polytope P and the dual

subdivision K of the curve X (the

ticks mark integer points that are

not vertices of the subdivision).

(b) The subcomplex of the dihomo-

logic subdivision of K isomorphic to

the curve X.

(c) The curve X in the tropical locus

of the toric surface associated with

P .

Figure 10: A singular curve X of bidegree (2; 2) in the tropical locus of P1 × P1.

Notations. 1. t∗(Z) is a lattice of finite rank n ∈ N with dual lattice t(Z) ;

2. For R a commutative ring with unit, t∗(R) (resp. t(R)) is the associated free R-module t∗(Z)⊗ R (resp.

t(Z)⊗R) ;

3. P is a full dimensional polytope of t∗(R) whose vertices lie in the lattice t∗(Z) ;

4. K is a polyhedral subdivision of P , with K(0) ⊂ t∗(Z). (Note that every cell eq of K is the relative interior

of a q-dimensional polytope whose tangent space Teq is rational relatively to t∗(Z), i.e. Teq ∩ t∗(Z) is free
of rank q and in particular, the quotient of t∗(Z) by this sub-lattice is free of rank n− q.)

Definition 3.2 (Tropical Cosheaves). The first cosheaf we define is called the sedentarity. It represents the

stabilisators of the action of the tropical torus. We denote it by Sed. It is defined on the CW-complex associated

with the polytope P . If Q is a face of P we set:

Sed(Q) := {v ∈ t(Z) |α(v) = 0, ∀α ∈ TQ} ⊂ t(Z),

with TQ denoting the tangent space of Q i.e. the vectorial direction of the affine space spanned by the polytope

Q. The extension morphisms are simply given by inclusions. Sed(Q) consists of the integral vectors orthogonal

to TQ. So, whenever Q′ is a face of Q, Sed(Q) is a sub-module of Sed(Q′).

The tropical cosheaves that would be associated with Y are also defined on P , by the formula, p ∈ N:

F (0)
p :=

p∧
t(Z) /Sed .

We will abuse the notations and denote by the same symbols F
(0)
p all the subdivisions of these cosheaves, in

particular its subdivisions on K and the dihomologic subdivision of K.

We denote the tropical cosheaves that would be associated with a tropical hypersurface X by F
(1)
p , p ∈ N.

They consist of dihomologic cosheaves on K. For eq < eq
′
two cells of K and p ∈ N the group F

(1)
p (eq; eq

′
) is:

F (1)
p (eq; eq

′
) =

∑
e1≤eq

p∧
(Te1)⊥ ∩ t(Z)

/
Sed(eq

′
) . (A)
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dx

dy

dz Q2

Q1

(a) The polytope in t∗(R).

Sed(Q2)

Sed(Q1) ∂x
∂y

∂z

(b) The sedentarity groups in t(R).

Figure 11: An edge Q1 of a 2-dimensional face Q2 and their respective sedentarity.

2∧
Z3
/
Z∂y

2∧
Z3

/Z3 = 0

2∧
Z3

2∧
Z3
/
Z∂y + Z∂z = 0

Figure 12: A cube and the groups associated by F
(0)
2 to some of its faces.

As pointed out in Definition 1.14, the extension morphisms need only be defined on elementary adjacencies.

For eq1 ≤ eq2 ≤ eq3 ≤ eq4 four cells of K (maybe with repetitions) the elementary extension morphisms are

depicted in the following diagram:

F
(1)
p (eq1 ; eq4)

F
(1)
p (eq2 ; eq4) F

(1)
p (eq1 ; eq3)

F
(1)
p (eq2 ; eq3)

gf

h t

where:

1. The morphisms f and t are basic inclusions coming from the definition of the groups, c.f. (A);

2. The morphisms g and h are reductions modulo Sed(eq3). More precisely they correspond to the canonical

projection
∧p (Te1)⊥ ∩ t(Z)

/
Sed(eq4) →

∧p (Te1)⊥ ∩ t(Z)
/
Sed(eq3) on every summand.

By the nature of the morphisms involved the diagram is commutative. The Figure 13 illustrates the values

taken by the cosheaf F
(1)
1 on a triangle with trivial subdivision K.

Definition 3.3 (Tropical Homology Groups). Let R be a commutative ring. Let X denote a tropical hyper-

surface of Y dual to an integer convex polyhedral subdivision K of P . The tropical homology groups of Y are

defined, for p, q ∈ N, by:

Hp,q(Y ;R) := Hq(K;F (0)
p ⊗R).

Likewise, the tropical homology groups of X are given for p, q ∈ N, by:

Hp,q(X;R) := Hq(K;F (1)
p ⊗R).

Moreover, the inclusions F
(1)
p ⊂ F

(0)
p , for p ∈ N, induce morphisms in homology:

ip,q : Hp,q(X;R) −→ Hp,q(Y ;R).
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0

0

Z∂x
/
Z∂x = 0

Z∂x

0

0 = Z(∂x − ∂y)
/
Z(∂x − ∂y)

Z(∂x − ∂y)

Z2

Figure 13: A triangle and the groups associated by F
(1)
1 to some of its dihomologic cells.

Lefschetz Hyperplane Section Theorem in Tropical Orbifold Toric Varieties

Definition 3.4. Let P be a simple polytope, we denote by Sed(1) the cosheaf:

Sed(1) :=
⊕
Q<P

codimQ=1

[
Q ; Sed(Q)

]
.

If Q is a codimension 1 face of P there is a natural injective cosheaf morphism
[
Q ; Sed(Q)

]
→ Sed. If Q′ is a

face of P the group
[
Q ; Sed(Q)

]
(Q′) is either Sed(Q) or 0. The former only happens when Q′ is a face of Q

and in this case the morphism is given by the inclusion. Summing all these yields a morphism:

Sed(1) → Sed.

It is injective because the polytope P is simple : if Q′ < P has codimension q it is the intersection of exactly q

faces of codimension 1 and: (
TQ′

)⊥
=

⊕
Q<P

codimQ=1

TQ⊥,

so the Sed(Q)’s are in direct sum inside Sed(Q′). For the same reason the quotient ∆ of Sed by Sed(1) is a

cosheaf of finite groups. We denote by δ(P ) the least common multiple of the exponents28 of the groups ∆(Q)

for all Q ≤ P .

Remarks. For P a simple polytope:

1. The cosheaf of finite groups ∆ encodes the singularities of the toric variety associated with P . The set of

complex points of the affine open set associated with the face Q ≤ P is quotient of (C×)k × Cn−k by an

algebraic action of the group ∆(Q) (c.f. [Ful93]29).

2. For two adjacent faces Q1 < Q2 of P , the snake lemma implies that the following commutative diagram

of exact sequences:

0 Sed(1)(Q2) Sed(Q2) ∆(Q2) 0

0 Sed(1)(Q1) Sed(Q1) ∆(Q1) 0

f g h

gives rise to an exact sequence:

28The exponent of a group G, with group law denoted multiplicatively, is the smallest, if any, positive integer e for which ge = 1

for all g ∈ G.
29W. Fulton, Introduction to Toric Varieties, Section 2.2 p.34.
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0→ 0︸︷︷︸
ker(f)

→ 0︸︷︷︸
ker(g)

→ ker(h)→
⊕

Q1<Q<P
Q≯Q2

codim Q=1

Sed(Q)

︸ ︷︷ ︸
coker(f)

→ Sed(Q1)/Sed(Q2)︸ ︷︷ ︸
coker(g)

→ coker(h)→ 0 .

However, ker(h) is a finite group and coker(f) is free, so ker(h) = 0 and h is injective. As a consequence,

δ(P ) is the least common multiple of the exponents of the groups ∆(V ), V running amongst all vertices

of P .

3. For R a commutative ring, the classification of finite Abelian groups implies that the vanishing of both

∆(V ) ⊗ R and Tor(∆(V );R) is equivalent to the invertibility of the exponent of the group ∆(V ) in R.

When R is a field this is equivalent to the coprimality of this exponent with the characteristic of R.

Definition 3.5. Let Q be an integer polytope in t∗(R). Its tangent space is rational, thus contains a lattice

TQ ∩ t∗(Z) and we denote ω(Q) one of the two generators of its last exterior power. The contraction against

this element defines an endomorphism of degree (−dimQ) of the exterior algebra
∧∗

t(Z) and we denote its

kernel by ker(ω(Q) · −). Because of Lemma 3.4 the sub-module:∑
E≤Q

dimE=1

ker(ω(E) · −) ⊂ ker(ω(Q) · −),

has the same rank. We denote by θ(Q) the exponent of the finite quotient:

ker(ω(Q) · −)
/ ∑

E≤Q
dimE=1

ker(ω(E) · −) .

By definition this number is 1 for all polytopes of dimension at most 1. For K a compact integer polyhedral

complex of t∗(R) we define θ(K) to be the least common multiple of the θ(e), for e a cell of K.

Proposition 3.5. Let P be a simple integer polytope endowed with an integer polyhedral subdivision K. For all

ring R in which δ(P ) is invertible, the images of the cosheaves (F
(0)
p ⊗R)p≥0 under the dihomologic subdivision

of K satisfy the hypotheses of Proposition 2.1 i.e. for all polyhedral cells e ∈ K we have:

Hk

(
K; (F (0)

p ⊗R)e

)
̸= 0 ⇒ k = n.

Proof. Let F denote one of the cosheaves (F
(0)
p )0≤p≤n on P . The polyhedral subdivision K of P first and

then its dihomologic subdivision give rise to two consecutive subdivisions of cosheaves F 7→ F ′ then F ′ 7→ F ′′.

For e a cell of K, the localisation process for dihomologic cosheaves consisting in “fixing the first coordinate”

G 7→ Ge applied to a subdivided cosheaf is equivalent to localising directly the cosheaf that was subdivided, c.f.

diagram D1. Consequently, the cosheaf F ′′
e is the same as F ′

e. In the light of Lemma 3.3 on double localisation,

showing that F ′
e can only have non-trivial homology in degree n for all cell e ∈ K is strictly equivalent to

showing that FQ can only have non-trivial homology in degree n for all face Q < P . Because P is simple, we

have the exact sequence of cosheaves of abelian groups:

0→ Sed(1) → Sed→ ∆→ 0,

which is tensorised to the exact sequence of cosheaves of R-modules:

0→ Tor(∆;R)→ Sed(1) ⊗R→ Sed⊗R→ ∆⊗R→ 0.

By hypotheses, Sed⊗R is then isomorphic to Sed(1) ⊗R and F
(0)
p ⊗R is isomorphic to:

p∧
t(R)

/
(Sed(1) ⊗R) .

The cosheaf Sed(1) can be described as follows : choose, for every codimension 1 face Q(1) of P , a generator

gQ(1)
of Sed(Q(1)) ∼= Z, and associate to all faces Q of P the set G(Q) of the gQ(1)

’s for which Q < Q(1). The

association G : Q 7→ G(Q) is a cosheaf of sets with inclusions as extension maps. In these notations, Sed(1) is
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the cosheaf that associate to Q the sub-module of t(Z) spanned by G(Q) and with extension morphisms given

by inclusions. We can consider the cosheaf of chain complexes Q 7→ C(t(Z);G(Q); p) of Definition 3.1. It has

an augmentation morphism:

0←
p∧
t(Z)

/
Sed(1) ← C(t(Z);G; p) ,

and becomes a resolution once we tensorise every group by R. Indeed, for all Q the set G(Q) ⊗ R is linearly

independent in t(R) and Sed(1)(Q) ⊗ R = Sed(Q) ⊗ R is a free summand of t(R) since t(R)/(Sed(Q) ⊗ R) ∼=
Hom(TQZ ;R) is free, so Lemma 3.1 applies. For that reason, we set Resp := C(t(Z);G; p)⊗ R and we have a

resolution of cosheaves:

0← FY
p ⊗R← Resp .

Localising at a face Q amounts to tensorisation by a cosheaf of free modules, therefore it is an exact endofunctor

of the category of cellular cosheaves. To avoid confusion we will denote, from now on, the CW-complex defined

by the polytope P by Π and every face Q ≤ P is meant to be open. In particular, Π(Q) is the smallest sub-

complex of Π containing the open face Q, that is to say the collection of its faces. For a face Q, we have the

local resolution:

0←
(
F (0)
p ⊗R

)
Q
←
(
Resp

)
Q
,

and for 0 ≤ q:

(
Resp,q

)
Q
=

⊕
Q(q)<P

codim Q(q)=q

[
Π(Q(q)) ;

(
p−q∧

t(Z)
/
Sed(1)(Q(q))

)
⊗R

]
⊗R

[
Π ; Π−Q ;R

]

=
⊕

Q<Q(q)<P
codim Q(q)=q

[
Π(Q(q)) ; Π(Q(q))−Q ;

(
p−q∧

t(Z)
/
Sed(1)(Q(q))

)
⊗R

]
.

If Q is a proper face of Q(q) then |Π(Q(q))|, the closure of Q(q), retracts to |Π(Q(q))−Q| and the cosheaf:[
Π(Q(q)) ; Π(Q(q))−Q ;

(
p−q∧

t(Z)
/
Sed(1)(Q(q))

)
⊗R

]
,

has trivial homology. When Q(q) equals Q, we are computing the homology of a closed (n − q)-ball relatively

to its boundary. The homology is concentrated in top dimension n − q. In application of Lemma 3.2, the

homology of
(
F

(0)
p ⊗ R

)
Q

is the shift by q of (Resp,q)Q and therefore has homology concentrated in dimension

(n− q) + q = n.

Remark 3.1. In the previous proof we have defined a resolution of the cosheaf FY
p ⊗R, namely:

0← FY
p ⊗R← Resp .

Proposition 3.6. Under the same hypotheses as Proposition 3.5 and if θ(K) is invertible in R, the dihomologic

cosheaves
(
F

(1)
p ⊗R

)
0≤p≤n−1

of K satisfy the hypotheses of Proposition 2.1 i.e. for all polyhedral cells e ∈ K:

Hk

(
K; (F (1)

p ⊗R)e

)
̸= 0 ⇒ k = n.

Proof. Let p be a non-negative integer. Proposition 3.6 follows from Proposition 3.5 and the fact that F
(1)
p ⊗R

is locally a direct summand of F
(0)
p ⊗ R. More precisely, we will show that for all cells eq of K, the cosheaf(

F
(1)
p ⊗R

)
eq

is a direct summand of the cosheaf
(
F

(0)
p ⊗R

)
eq
. This statement implies that the homology of the

former is a direct summand of the latter. By Proposition 3.5, the latter can only have non-vanishing homology

in dimension n and so can the former.

Let eq be a cell of K and set A :=
(
Teq

)⊥ ∩ t(Z). Now choose B a supplementary sub-module30 of A

in t(Z) and consider A /Sed and B /Sed the respective images of the constant cosheaves [K;A] and [K;B]

30It can be done for
(
Teq

)⊥
is a rational sub-space of t(R).
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in the quotient t(Z) /Sed . Notice that if er is a cell containing eq then Sed(er) ⊂ A and the projection

B → B
/
Sed(er) is an isomorphism. Since the commutativity conditions of these projections are satisfied they

induce an isomorphism of cosheaves: [
K;K − eq;B

] ∼=−→
(
B /Sed

)
eq

.

Therefore, the cosheaf t(Z) /Sed splits around eq into the direct sum:(
t(Z) /Sed

)
eq

=
(
A /Sed

)
eq
⊕
(
B /Sed

)
eq

,

and for all p ≥ 0 we have the decomposition:(
p∧
t(Z) /Sed

)
eq

=
⊕

pA+pB=p

(
pA∧

A /Sed

)
eq

⊗

(
pB∧

B /Sed

)
eq

.

All the cosheaves involved being made of free groups this decomposition remains valid after tensorisation by R:(
p∧
t(Z) /Sed

)
eq

⊗R =
⊕

pA+pB=p

(
pA∧

A /Sed

)
eq

⊗

(
pB∧

B /Sed

)
eq

⊗R .

By assumption θ(K) is invertible in R. As θ(eq) divides θ(K), this number is invertible in R as well. It

implies that if ω is a generator of
∧q

(Teq ∩ t∗(Z)), the group F
(1)
p (eq; er) ⊗ R, for eq < er, consists of the

p-elements of
∧p t(Z)

/
Sed(er) ⊗R whose contraction against ω ⊗ 1 vanishes. Indeed, we have a commutative

diagram with exact rows and columns:

0
∑

e1≤eq

p∧
((Te1)⊥ ∩ t(Z)) {v ∈

∧p
t(Z) | ω · v = 0} G 0

0 F
(1)
p (eq; er)

{
v ∈

∧p t(Z)
/
Sed(er) | ω · v = 0

}
G′ 0

0 0 0

By definition the exponent of G divides θ(eq) and therefore the exponent of G′ divides it as well. Then it follows

that both G′⊗R and Tor(G′;R) vanishes and F
(1)
p (eq; er)⊗R =

{
v ∈

∧p t(Z)
/
Sed(er) | ω · v = 0

}
⊗R. Thus

the localisation
(
F

(1)
p

)
eq
⊗R is expressed as:

(
F (1)
p

)
eq
⊗R =

⊕
pA+pB=p

pB<q

(
pA∧

A /Sed

)
eq

⊗

(
pB∧

B /Sed

)
eq

⊗R ,

and is a direct summand of
(
F

(0)
p

)
eq
⊗R .

Before moving on to express the relations between the homologies of the cosheaves (F
(1)
p ⊗ R)p∈N and

(F
(0)
p ⊗ R)p∈N, we note that the proof of Proposition 3.5 contains all the necessary ingredients to completely

compute the homology of the cosheaves (F
(0)
p ⊗R)p∈N.

Proposition 3.7. For all ring R in which δ(P ) is invertible, and p ∈ N, the only non-trivial homology group

of the cosheaf F
(0)
p ⊗R is Hp(K;F

(0)
p ⊗R). Moreover this module is free of rank hp(P

◦), the p-th h-number of

the polar polytope P ◦ of the simple polytope P . More precisely:

rkR Hp(K;F (0)
p ⊗R) =

p∑
k=0

(−1)p−k

(
n− k

p− k

)
fn−k(P ),

where fk(P ) denotes the number of k-faces of P .
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Proof. Since F
(0)
p ⊗ R is originally defined on the CW-structure induced by the faces of P we can compute its

homology on Π the CW-complex induced on P by its faces. Note, on the one hand, that from the Definition 3.2

the group F
(0)
p (Q) = 0 for all faces Q of dimension q < p. Therefore Hq(Π;F

(0)
p ⊗R) = 0 for all q < p. On the

other hand we have the resolution of Remark 3.1:

0← F (0)
p ⊗R← Resp .

This is an acyclic31 resolution32. The Resp,q’s are sums of elementary cosheaves [Π(Q);M ] for Q a face of P

and M a free R-module. All these sub-complexes Π(Q) are contractible so these cosheaves only have homology

in dimension 0. The cosheaf resolution becomes a resolution of chain complexes:

0← C∗(Π;F (0)
p ⊗R)← C∗(Π;Resp,0)← C∗(Π;Resp,1)← · · · .

Since the complexes C∗(Π;Resp,q)q≤0 are acyclic it is well known that the homology of the complex C∗(Π;F
(0)
p ⊗R)

is isomorphic to the homology of the complex:

0← H0(Π;Resp,0)← H0(Π;Resp,1)← · · · .

The cosheaves Resp,q vanish for all q > p. Indeed, we have:

Resp,q =
⊕

Q(q)<P
codim Q(q)=q

[
Π(Q(q)) ;

(
p−q∧

t(Z)
/
Sed(1)(Q(q))

)
︸ ︷︷ ︸

=0 if q>p

⊗R

]
.

Therefore, the only possibly non-trivial homology group of F
(0)
p ⊗ R is the p-th. Using again the resolution to

compute this group we see that it coincides with a group of cycles:

Hp(Π;F (0)
p ⊗R) ∼= ker (∂ : H0(Π;Resp,p)→ H0(Π;Resp,p−1)) .

This boundary ∂ is defined as the tensor product with R of a map ∂Z : M → N between two free Abelian

groups. Since the image of such ∂Z is a free Abelian group, Hp(Π;F
(0)
p ⊗ R) ∼= ker(∂Z) ⊗ R is free of rank

r = rkZ ker(∂Z). In particular this rank does not depend on the chosen ring R. Since δ(P ) is always invertible

in Q we can compute this rank using the rational coefficients. Because F
(0)
p ⊗ Q can only have non-trivial

homology in dimension p we have:

dimQ Hp(Π;F
(0)
p ⊗Q) = (−1)p

n∑
k=0

(−1)k dimQ H0(Π;ResQp,k) =

p∑
k=0

(−1)p−k

(
n− k

p− k

)
fn−k(P ) = hp(P

◦),

denoting by fk(P ) the number of k-faces of P and by ResQp,k the cosheaves Resp,k defined for the ring Q. Note

that fk−1(P
◦) = fn−k(P ).

Theorem 2. Let R be a ring in which both δ(P ) and θ(K) are invertible, the homological morphisms:

ip : Hq(K;F (1)
p ⊗R)→ Hq(K;F (0)

p ⊗R) ,

induced by the inclusions ip : F
(1)
p → F

(0)
p are:

• isomorphisms for all p+ q < n− 1 ;

• surjective morphisms for all p+ q = n− 1.

Proof. In the light of Theorem 1, Proposition 3.5, and Proposition 3.6 we can write:

Hq(K;F (k)
p ⊗R) ∼= Hn−q

c (K;Hn((F
(k)
p ⊗R)∗)) for k ∈ {0; 1}.

Note that since K is finite (P being compact), cohomology with compact support is the same as cohomology.

Let us denote by G
(k)
p , k ∈ {0; 1}, the sheaf Hn((F

(k)
p ⊗R)∗). The cosheaf inclusion ip : F

(1)
p → F

(0)
p induces a

31A cosheaf is acyclic if it has trivial homology in dimension at least 1.
32This is even a projective resolution, c.f. [She85] in the dual setting of cellular sheaves.
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morphism of sheaves jp : G
(1)
p → G

(0)
p . Since K has dimension n, the long exact sequence in homology associated

with:

0→ F (1)
p ⊗R

ip→ F (0)
p ⊗R→ coker(ip)→ 0,

implies that jp is also injective. We have the following commutative square relating the homological and

cohomological counterparts of ip and jp:

Hq

(
K;F

(1)
p ⊗R

)
Hq

(
K;F

(0)
p ⊗R

)

Hn−q
(
K;G

(1)
p

)
Hn−q

(
K;G

(0)
p

)
ip

jp

∼= ∼=

The vertical isomorphisms are induced by the quasi-isomorphisms given by the second part of Theorem 1. The

commutativity is already satisfied on the level of chain and cochain complexes:

Ωq

(
K;F

(1)
p ⊗R

)
Ωq

(
K;F

(0)
p ⊗R

)

Ωn−q,n

(
K;F

(1)
p ⊗R

)
∩ ker(∂2) Ωn−q,n

(
K;F

(0)
p ⊗R

)
∩ ker(∂2)

E1
n−q,n E1

n−q,n

Cn−q
(
K;G

(1)
p

)
Cn−q

(
K;G

(0)
p

)

ip

q.i.

rest.

ip

q.i.

Φ

jp

Φ

The two vertical isomorphisms in the previous diagram are the homological and cohomological counterparts

of compositions of the isomorphism Φ and the quasi-isomorphic inclusions of Proposition 2.1. For F either

F
(1)
p ⊗R or F

(0)
p ⊗R and G respectively designating G

(0)
p or G

(1)
p , we have:

Ωn−q,n(K;F ) =
⊕

en−q≤en

F (en−q; en)⊗ Z(en−q; en),

and : Ωn−q,n−1(K;F ) =
⊕

en−q≤en−1

F (en−q; en)⊗ Z(en−q; en−1).

In this description, both these groups have a splitting indexed by the (n− q)-cells of K. Both the morphisms ip
and ∂2 respect these splittings which explains the commutativity of the upper square of the last diagram. Also

in that setting, the value Hom(Z(en−q;G(en−q)), on some cell en−q, is, modulo the action of the isomorphism

Φ, the kernel of ∂2 restricted to the (en−q)-component of Ωn−q,n(K;F ). By construction, jp is the restriction

of ip to the (en−q)-component of the kernel of ∂2, so the bottom square also commutes.

Let us now prove that whenever r > p the map jp(e
r) : G

(1)
p (er)→ G

(0)
p (er) is an isomorphism for all r-cells

er. This implies that the cokernel of jp is trivial in dimension greater than p. By means of the long exact sequence

induced in cohomology by the injective morphism of sheaves jp, we find that jp : H
r
(
K;G

(1)
p

)
→ Hr

(
K;G

(0)
p

)
is

surjective for r = p+1 and invertible for r > p+1. Theorem 2 follows after performing the change of variables

r = n− q.

Let er be a cell of K. We have the following commutative diagram with exact rows:

0 G
(1)
p (er)

⊕
en≥er

F (1)
p (er; en)⊗R⊗ Z(en)

⊕
en−1≥er

F (1)
p (er; en−1)⊗R⊗ Z(en−1)

0 G
(0)
p (er)

⊕
en≥er

F (0)
p (er; en)⊗R⊗ Z(en)

⊕
en−1≥er

F (0)
p (er; en−1)⊗R⊗ Z(en−1)

jp(e
r)

∂

⊕
ip(e

r;en)
⊕

ip(e
r;en−1)

∂
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Furthermore, for all cells eq ≥ er we have the exact sequence:

0 F
(1)
p (er; eq)⊗R

p∧
t(Z)

/
Sed(eq) ⊗R︸ ︷︷ ︸

F
(0)
p (er;eq)⊗R

p−r∧
t(Z)

/
Sed(eq) ⊗R ,

ip(e
r;eq) ω·

with the last morphism given by the contraction against ω a generator of
∧r

(Ter ∩ t∗(Z)). By definition the

contraction of the r-form ω against a p-vector is 0 whenever r > p. Therefore, in this case ip(e
r; eq) is the

identity for all pairs er < eq. Consequently,
⊕

ip(e
r; en−1) and

⊕
ip(e

r; en) are also the identity and so is

jp(e
r).

From the last theorem and Definition 3.3 we deduce the following corollary:

Corollary 3 (Lefschetz Hyperplane Section Theorem). Let Y be the orbifold tropical variety associated with

the simple polytope P and X be a tropical hypersurface of Y dual to a convex integer polyhedral subdivision K

of P . For every ring R in which both δ(P ) and θ(K) are invertible, the homological morphisms:

ip,q : Hp,q(X;R)→ Hp,q(Y ;R) ,

induced by the inclusions ip : F
(1)
p → F

(0)
p , p ∈ N, are:

• isomorphisms for all p+ q < n− 1 ;

• surjective morphisms for all p+ q = n− 1.

The hypothesis on the coefficients cannot be dropped in Theorem 2 or Corollary 3 as the following two

examples show where Theorem 2 fails for R = Z because either δ(P ) ̸= 1 or θ(K) ̸= 1.

Examples. 1. Let the triangle T be the convex hull of 0, dx, and 2dy in HomR(R2;R) endowed with

the canonical lattice Zdx + Zdy, c.f. Figure 14a. On this polytope we consider its unique unimodular

triangulation K depicted in Figure 14a. We have δ(P ) = 2 and θ(K) = 1 and the groups Hq(K;F
(1)
p )

and Hq(K;F
(1)
p ) are given, along with some of the homological morphisms induced by inclusion, in the

Figure 14c. In this example, the morphism i1,0 : H1(K;F
(1)
0 )→ H1(K;F

(0)
0 ) is not surjective.

2. Consider the cube with edges of length 2 in HomR(R3;R), endowed with its canonical lattice Zdx+Zdy+
Zdz, and subdivided by K as in Figure 15a. Its associated tropical surfaces are singular and we have

δ(P ) = 1 and θ(K) = 2. Here the map i1,1 is not surjective. Its image is Z(e1 + e2)+Z(e1− e2)+Ze3 for

e1, e2, e3 the standard basis of H1(K;F
(0)
1 ) given by the three independent copies of P1 in P1 × P1 × P1,

the toric variety associated with the cube.

We would like to conclude few remarks on the numbers δ(P ) and θ(K) and the definition of the cosheaves

(F
(1)
p )p∈N. From its definition the number δ(P ) equals 1 if and only if the toric variety associated with P is

smooth. Therefore, assuming δ(P ) = 1 puts us closer to the tropical Lefschetz hyperplane section theorem of

C. Arnal, A. Renaudineau and K. Shaw [ARS21]33. However, assuming δ(P ) = θ(K) = 1 does not implies

that X is smooth. The hypersurface X is said to be smooth when K is an unimodular triangulation and in

this case θ(K) = 1. Therefore, assuming both δ(P ) and θ(K) to be 1 already includes in the statement some

singular hypersurfaces. For a general polytope Q, the number θ(Q) seems difficult to compute. However, it

seems computable for simplices. For segments it is 1. For a triangle T , a direct computation yields:

θ(T ) =
2 · volZ(T ) ·GCD{volZ(E) : E edge of T}∏

E≤T

volZ(E)
,

where volZ(Q) for an integer polytope Q is its integer volume, i.e. its Lebesgue measure in the affine sub-space

it spans normalised so that a parallelogram on a basis of the induced lattice has measure 1.

When θ(K) equals 1, Lemma 3.4 and Definition 3.5 describe the cosheaf
⊕

p∈N F
(1)
p as the kernel of a

contraction. When θ(K) is greater than 1 the latter is the saturation of the former. Theorem 2 suggests that if

we alternatively defined the the cosheaf
⊕

p∈N F
(1)
p as the kernel of a contraction then every tropical hypersurface

33C. Arnal, A. Renaudineau and K. Shaw. Lefschetz Section Theorems for Tropical Hypersurfaces, Theorem 1.2 p.1349.
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(a) The triangle T associated with the weighted

projective space P(1, 1, 2) and its subdivision K

into two unimodular triangles.

(b) A tropical curve whose dual subdivision is

K.

0 Z

0 0 0 0

0 Z 0 0 Z 0 p+ q = 2

0 0 Z /2 0 p+ q = 1

Z Z p+ q = 0

i1,0

i0,0=id

(c) The Hodge diamond of the curve on the left and the Hodge diamond of P(1, 1, 2) on the right. The parameter p

increases in the north-east direction (↗) and q in the north-west direction (↖).

Figure 14: A curve in the weighted projective plane P(1, 1, 2) whose integral tropical homology don’t satisfies

the tropical version of the Lefschetz hyperplane section theorem.

dual to a polyhedral subdivision (combinatorially ample in the terminology of [ARS21]) in a projective non-

singular tropical toric variety would satisfy the tropical Lefschetz hyperplane section theorem with integral

coefficients.

Finally, we want to acknowledge that even if the Lefschetz hyperplane section theorem with rational coeffi-

cients is a consequence of the Hard Lefschetz theorem with rational coefficients is it usually not the case when

one considers coefficient rings of positive characteristic. For instance a product of at least three copies of P1

does not have any cohomology class over F2, the field with two elements, satisfying the Hard Lefschetz property.

However the Lefschetz hyperplane theorem with F2 coefficient remains valid for any non-singular hypersurface

of this product.
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(a) A convex subdivision K of the cube. (b) A singular tropical surface of P1 × P1 × P1

dual to the subdivision K.

0 Z

0 0 0 0

0 Z2 0 0 Z3 0

0 0 0 0 0 0 0 0

0 Z3 0 0 Z3 0 p+ q = 2

0 0 0 0 p+ q = 1

Z Z p+ q = 0

i1,1

i0,0=id

(c) The Hodge diamond of the surface on the left and the Hodge diamond of P1 × P1 × P1 on the right. The parameter

p increases in the north-east direction (↗) and q in the north-west direction (↖).

Figure 15: A singular surface in P1 × P1 × P1 whose integral tropical homology does not satisfy the tropical

version of the Lefschetz hyperplane section theorem.
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