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Abstract: In this work, sub-micron-thick AIN/GaN transistors (HEMTs) grown on a silicon substrate
for high-frequency power applications are reported. Using molecular beam epitaxy, an innovative
ultrathin step-graded buffer with a total stack thickness of 450 nm enables one to combine an excellent
electron confinement, as reflected by the low drain-induced barrier lowering, a low leakage current
below 10 pA/mm and low trapping effects up to a drain bias Vpg = 30 V while using sub-150 nm
gate lengths. As a result, state-of-the-art GaN-on-silicon power performances at 40 GHz have been
achieved, showing no degradation after multiple large signal measurements in deep class AB up to
Vps =30 V. Pulsed-mode large-signal characteristics reveal a combination of power-added efficiency
(PAE) higher than 35% with a saturated output power density (Poyr) of 2.5 W/mm at Vpg =20 V
with a gate-drain distance of 500 nm. To the best of our knowledge, this is the first demonstration of
high RF performance achieved with sub-micron-thick GaN HEMTs grown on a silicon substrate.

Keywords: load pull; GaN-on-Si; MBE; PAE; Poyt; HEMT; mm wave

1. Introduction

GaN-based High-Electron-Mobility Transistors (HEMTs) have been commercially
available for about a decade and are being used for power applications into the millimeter-
wave range, thanks to their attractive material properties, including high thermal and
chemical stability, high electron saturation velocity (2.5 x 107 cm/s), and high breakdown
field (3.3 MV/cm) [1-3]. To minimize growth defect/dislocation density due to the large
lattice mismatch between GaN and the substrate as well as bow/curvature due to the
thermal expansion coefficient mismatch between epilayers and substrates (SiC and Si),
thick and complex buffer layers (several um) are typically used [4-9]. However, thick
buffer layers, including multiple interfaces, generally degrade the thermal dissipation and
increase the growth cost. The latest results showed that sub-micron-thick AlGaN/GaN
HEMTs grown via Metal Organic Chemical Vapor Deposition (MOCVD) on Silicon Carbide
(S5iC) can deliver competitive RF performances [10,11]. Although more challenging to
achieve due to both the large thermal expansion coefficient mismatch and the large lattice
mismatch between GaN and Silicon (5i), potentially leading to cracks/defects, the use of a
Si substrate would significantly decrease the cost and significantly increase the availability
of devices. Moreover, on top of using thinner buffer layers, short channel effects must also
be mitigated while shrinking the device dimensions in order to achieve high-output power
density (Poyt) and power-added efficiency (PAE) above the Ka-band [12]. The ultrathin
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AIN/GaN material system has become an alternative candidate for high-power millimeter-
wave applications, owing to the use of sub 10 nm barrier thickness while benefiting from
a high current density [13-17]. However, one of the main challenges in this goal is to
achieve a high-quality nucleation layer followed by thin buffer layers on a silicon substrate
while avoiding high electron trapping and delivering high blocking voltage under an
extreme electric field. In this study, the possibility to combine low trapping effects and high
blocking voltage in sub-micron-thick AIN/GaN-on-silicon HEMTs, resulting in high-power
performances at 40 GHz, is demonstrated.

2. Experimental Details

The epitaxial AIN/GaN heterostructure was grown via ammonia—molecular beam
epitaxy (NH3-MBE) on 4-inch high-resistivity Si (111) substrates (p > 5 KQ-cm) using a
RIBER MBE49 growth reactor. The cross-section and FIB view of the HEMT structures
with 140 nm T-gates are shown in Figure 1. It consists of a high-quality lower than
100 nm AIN nucleation layer (NL), followed by a step-graded Al,Ga;_N buffer layers
(Aly.05Gag9aN/ Al 30Gag 70N/ Alyg0Gag4oN), with a total thickness of 450 nm, a 150 nm
thick undoped GaN channel layer, and a 7 nm thick AIN barrier layer. Finally, an in situ
SiN layer was used to cap the structure. It can be noticed that the total stack thickness is
as low as 650 nm (Figure 1b). The step-graded AlyGa;_«N buffer plays the role of back
barrier, increasing the overall buffer bandgap to enhance both the breakdown voltage and
the electron confinement under high electric field. The source and drain ohmic contacts
were first fabricated. The contacts were directly deposited on top of the AIN barrier. A
Ti/ Al/Ni/Au metal stack was annealed at 850 °C, yielding contact resistances of 0.4 ()-mm.
Nitrogen implantation was used to isolate the devices. Then, Ni/Au T-gates of 140 nm,
250 nm, and 500 nm gate lengths (Lg) were defined by e-beam lithography. Finally, 200 nm
PECVD Si3Ny passivation layer was deposited prior to Ti/Au pad deposition. Hall effect
measurements at room temperature showed a charge density of 1.7 x 10'* cm~2 with an
electron mobility of 745 cm?/V-s. The electron mobility can be significantly improved by
further tuning the growth parameters [18].

SiN Cap =
7 nm AIN barrier g
150nm GaN :=:
Al 0sGag 9,N -
0.0sG29 92 - g Nl
Al 50Ga, A
0.30 0.70N 7\ AlO_OSGaO.QSN
Al 60Gag 4N o
AIN nucleation E ﬁllzsoGao.mI;
a
Si(111) Substrate o
Si(111) Substrate
(a) (b)

Figure 1. (a) Schematic cross-section and (b) FIB view of the ultrathin AIN/GaN HEMTs grown on
Si(111) substrate by MBE and using a step-graded AlyGaj_,N buffer layers.

3. DC and RF Characteristics

Thus, 2 x 50 pm transistors with Lg = 140 nm and a gate-to-drain distance (Lgp)
of 500 nm typical output and transfer characteristics are shown in Figure 2. The gate
source voltage was swept from —6 V to +2 V with a 1 V step. A maximum drain current
density (Ip max) of 1.2 A/mm (Figure 2a) and a transconductance (Gn,) of 340 mS/mm were
measured (Figure 2b), despite the rather limited electron mobility and access resistances
that can still be optimized. Transfer characteristics with a compliance fixed at 150 mA /mm
and swept from a drain bias of 2 to 30 V using a 1 V step are displayed in Figure 2c. A
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drain leakage current lower than 10 pA/mm up to Vpg = 30 V (shown in Figure 2c) is

uniformly observed. A limited threshold voltage shift is observed as a function of Vpg

under high electric field, which reflects the proper 2DEG electron confinement confirmed
by a low drain-induced barrier lowering (DIBL) of 12 mV /V. The transistors’ three-terminal
off-state breakdown voltage was assessed at Vgs = —4 V. A hard breakdown voltage
between 60 V and 70 V was observed. This translates to a lateral breakdown strength up to
140 V/um, further proving the quality of the buffer, especially considering the sub-micron

total epi-stack thickness.

14 350
VGs from -6V up to +2V 2x50 pm °
1.2 Step 1V — 300 Lgp =500 nm ?
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i 2501 |
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£ o0g|tG=140 £ 2001 )
2 2 |
o 061 < 1501 4
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0.4 100 7!
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Figure 2. (a) Output characteristics, (b) extrinsic transconductance, (c) transfer characteristics up
to Vpg = 30 V, and (d) open channel pulsed Ip-Vpg output characteristics of 2 x 50 pm ultrathin

AIN/GaN-on-Si HEMTs with Lgp = 500 nm and Lg = 140 nm.

Figure 2d depicts pulsed Ip—Vpg characteristics, revealing the electron trapping ef-
fects. For various quiescent drain voltages, the open-channel DC-pulsed measurements
are shown at Vgg = +2 V and at room temperature. A pulse width of 1 us and a duty cycle
of 1% were employed. Thus, 2 x 50 um transistors with Lgp of 500 nm and Lg of 140 nm
show low-electron trapping effects with about 10% current collapse at Vpg = 20 V, despite
the low epilayer total thickness. This is attributed to the high nucleation layer quality and
subsequent step-graded Al-rich AlGaN layers as well as the absence of doping compen-
sation, such as iron or carbon, which are known to act as acceptors and, thus, generate
trapping. Low unintentional carbon and oxygen concentrations within the structure were

measured using secondary-ion mass spectrometry (SIMS). The carbon concentration is
about 1-5 x 10'® atoms/cm3, both in the step-graded Al,Ga;_,N bulffer layers and the
GaN channel, while the oxygen concentration is below 1 x 10!7 atoms/cm? in the buffer
layers. The rather low unintentional carbon doping is considered to be satisfactory to avoid

buffer-trapping effects [19,20].
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The S-parameters were measured for different gate lengths from 250 MHz to 67 GHz
with a Rhode and Schwarz ZVA67GHz network analyzer, as shown in Figure 3. The current
gain extrinsic cut-off frequency (Fr) slightly decreases as a function of Vpg and shows a
good scaling for short Lg (shown in Figure 3a), owing to the reduced short channel effects
enabled by the ultrathin barrier. The maximum oscillation frequency (Fmax) increases as
a function of Vpg (Figure 3b). Fr/Fmax of 51/169 GHz are achieved at Vpg = 20 V with
Lgp =500 nm and Lg = 140 nm. The Fpnax/Fr ratio above 3 for all gate lengths results
from the highly favorable aspect ratio: gate length/gate-to-channel distance and the T-gate
height higher than 100 nm, ensuring a reduced parasitic gate resistance [21,22].

70 i
o °®
60 o\. - ./
o \. 1254 WWA?777777777771
& 404 -
: i A—a 8™ *
: o 50
~®-Lg=140nm * —e-Lg=140mm
10| A~ LG =250 nm| 2%50 pm 25{ A Lg=250nm |' © :500 -
~#* Lg=500nm LGD=500nm % Lg=500nm ©
0 : : | O | T T
10 15 " : : 20
Vps(V) "
(a) .

Figure 3. (a) Current gain extrinsic cut-off frequency and (b) maximum oscillation frequency of
2 x 50 um ultrathin AIN/GaN HEMTs with Lgp = 500 nm for various gate lengths.

4. Large Signal Characteristics (10 GHz and 40 GHz)

Large signal characterizations were carried out at 10 GHz and 40 GHz on a nonlinear
vector network analyzer system (Keysight Network Analyser: PNA-X, N5245A-NVNA)
capable of on-wafer large signal device characterization up to the Q-band in continuous-
wave (CW) and pulsed mode. Further details about the power bench can be found in
Ref. [23]. Figure 4a,b show typical CW and pulsed mode power performances at 10 GHz in
deep class AB of 2 x 50 um transistors with Lgp = 500 nm and Lg = 140 nm at Vpg =10 V
and 30 V, respectively. A 1.1 W/mm saturated output power density (Poyr) with a power-
added efficiency (PAE) of 53.6% and 47.2% at Vpg = 10 V is measured in pulsed and CW
mode, respectively. As expected, at Vpg = 30 V, the Poyt increases substantially well
above 3 W/mm with a PAE > 42%. Figure 5a,b show CW and pulsed power performances
at 40 GHz of similar 2 x 50 um transistors with Lg = 140 nm at Vpg = 10 V and 30 V,
respectively. A saturated Poyr close to 1 W/mm associated to a PAE of 40.0% and 31.4%
at Vpg = 10 V is measured in pulsed and CW mode, respectively. At Vps =30V, a Poyt
of 3.5 W/mm and 2.5 W/mm with a PAE of 28.9% and 19.2% are observed in pulsed and
CW mode, respectively. Moreover, it can be pointed out that following several tenths of
CW Load-Pull sweeps under high-gain compression (up to 10 dB), we did not observe any
major degradation of the devices up to Vpg = 30 V (see Figure 5c). Degradation reflected by
an increase in the off-state leakage current is observed at a bias Vpg as high as 35 V (see
Figure 5c), while typical safe operating drain bias for mm wave GaN-on-silicon HEMTs is
well below 20 V. This indicates an excellent robustness of this heterostructure, handling
an extreme electric field and, thus, enabling high-voltage operation without degradation
while using a sub-150 nm gate length. The promising device reliability results from the
excellent electron confinement and low trapping effects despite the absence of any thermal
management. Indeed, unlike semi-insulating SiC substrates that are favorable for high-
power operation, silicon has a much lower dissipation, which results in significantly higher
junction temperature in GaN-on-silicon HEMTs.
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Figure 4. CW and pulsed large signal performances at 10 GHz of 2 x 50 um ultrathin AIN/GaN
HEMTs with Lgp = 500 nm and Lg = 140 nm at (a) Vpg = 10 V and (b) Vpgs= 30 V.
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Figure 5. Typical CW and pulsed large signal performances at 40 GHz of 2 x 50 um ultrathin
AIN/GaN HEMTs with Lgp = 500 nm and Lg = 140 nm at (a) Vpg = 10 V and (b) Vpg= 30 V.
(c) Transfer characteristics after more than 40 CW Load-Pull sweeps in deep class AB under high

compression up to Vpg =35 V.

Figure 6 depicts typical pulsed PAE and Poyr of 2 x 50 um AIN/GaN on silicon
transistors with Lgp = 500 nm and Lg = 140 nm as a function of Vpg at 40 GHz. The PAE
decreases with the Vpg increase but remains about 30% under 3.5 W/mm at Vpg =30V,
which sets a new performance benchmark at this frequency band for GaN-on-Si HEMTs
(Figure 6b). As shown in Figure 6c, it can be pointed out that this represents the first high-
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performance mm wave transistors using a sub-micron-thick GaN-on-silicon heterostructure.
The drop in the PAE/Poyt between pulsed and CW measurements is mainly attributed to
the low thermal dissipation of the Si substrate, as seen from the increasing CW /pulsed Pour
gap that is more pronounced under higher output power. Therefore, further optimization
of the structure to enhance the electron mobility and, thus, the power gain, combined
with well-known techniques, such as substrate thinning/or vias, with subsequent related
heat sink based on copper will certainly boost these reported GaN-on-Si mm wave device
performances [24].

GaN-on-Si HEMT benchmark of power performances
at 40GHz MBE vs MOCVD
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Figure 6. (a) Pulsed PAE and Poyr as a function of Vpg at 40 GHz with Lgp = 500 nm and
Lg =140 nm for 2 x 50 pm ultrathin AIN/GaN HEMTs. Benchmark of (b) power performances and
(c) PAE as a function of total stack thickness at 40 GHz for GaN-on-Si HEMTs [25-29].

5. Conclusions

We developed a sub-micron-thick AIN/GaN heterostructure grown via NH3-MBE
on a silicon substrate, enabling the combination of low-electron trapping effects, extreme
robustness under a high electric field, and high mm wave power gain. This, in turn,
allows for unprecedented class AB bias operation (up to Vpg = 30 V) for 140 nm gate-length
GaN-on-Si HEMTs. Consequently, the proposed AIN/GaN-on-silicon HEMT structure
delivers high-output power density together with state-of-the-art PAE of 40%/29% at
Vps =10 V/30 V at 40 GHz, respectively. This achievement is attributed to the optimization
of material, epi-design, and processing quality, enabling a high-electron confinement
together with reduced short channel effects under a high electric field. The results show
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the potential of MBE to grow ultrathin cost-effective AIN/GaN-on-Si HEMTs for mm
wave applications.
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