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Abstract—The statistical performance of subspace-based algo-
rithms depends on the deterministic and stochastic statistical
model of the noisy linear mixture of the data, the estimate of
the projector, and the algorithm that estimates the parameters
from the projector. This paper presents different circular and
non-circular complex elliptically symmetric (CES) models of the
data and different associated non-robust and robust covariance
estimators whose asymptotic distributions are derived. This allows
us to unify and complement the asymptotic distribution of
subspace projectors adapted to these models and to prove several
invariance properties that have impacts on the parameters to be
estimated in CES data models.

Index Terms—Asymptotic distribution of subspace projector,
complex elliptically symmetric distribution

I. INTRODUCTION

Subspace-based algorithms that exploit the orthogonality
between a sample subspace and a parameter-dependent sub-
space have proved very useful in many applications in signal
processing. These algorithms have been intensely studied in
the literature in the circular complex Gaussian framework (see
e.g., [1]–[8] and references therein). But this framework is often
insufficient for non-Gaussian heavy-tailed distributed data that
are well modeled by circular CES (C-CES) or non-circular CES
(NC-CES) distributions.

The aim of this paper is to unify and complement different
deterministic and stochastic CES models of the data and
asymptotic distributions of the associated projectors derived
from different estimate of the covariance matrix of the para-
metric noisy linear mixture data presented in the literature. The
asymptotic distribution (w.r.t. the number of measurements)
of the sample covariance matrix (SCM), maximum likelihood
(ML), robust M , Tyler’s M and sample sign covariance matrix
(SSCM) estimate of the covariance are considered. This allows
us to derive the asymptotic distribution of the associated
projectors and to prove several invariance properties.

The following notations are used in this paper. ⊗ is the
Kronecker product of matrices, vec(·) is the vectorization op-
erator that turns a matrix into a vector by stacking the columns
of the matrix one below another. K is the vec-permutation
matrix (i.e., vec(CT ) = Kvec(C)) and J is the block exchange
matrix

(
0 I
I 0

)
of appropriate dimension. RESm(µ,R, g),

C-CESm(µ,R, g), NC-CESm(µ,R,C, g) and CNm(µ,R,C)

denote the real (RES), circular and non-circular complex valued
elliptically symmetric, and Gaussian distributions of dimension
m with finite 2nd order moments, respectively where µ, R and
C are the mean, the covariance and complementary covariance
matrices, respectively, and g the density generator.

II. STOCHASTIC AND DETERMINISTIC CES DATA MODEL

A. Noisy linear mixture model

Consider the following general noisy linear mixture model

xi = Asi + ni ∈ Cm, i = 1, ..., n, (1)

where (xi)
n
i=1 are independent observations, si and ni repre-

sent a signal of interest and an additive measurement noise,
respectively, which are assumed to be zero-mean mutually
uncorrelated. ni is assumed to be complex circular spatially
uncorrelated with E(nin

H
i ) = σ2

nI and E(nin
T
i ) = 0.

Deterministic and stochastic parametric data models have
been commonly used to model the distribution of (si,ni),
where ni is complex circular Gaussian distributed [2]. These
two statistical data models are extended here within the frame-
work of CES distributions.

B. Deterministic CES data model
In the conditional or deterministic model, (si)i=1,..,n is

conditioned from an independent zero-mean Gaussian process.
As explained in [2], the sequence (si)i=1,..,n is frozen here
in all the realizations of the random data (xi)i=1,..,n. For
complex-valued si with arbitrary circularity, we assume that
limn→∞

1
n

∑n
i=1 sis

H
i = Rs,∞ exists and is also positive

definite. The law of large numbers then implies that

Rx,∞
def
= lim

n→∞

1

n

n∑
i=1

xix
H
i = ARs,∞AH + σ2

nI. (2)

For strictly non-circular complex (also called rectilinear)
valued si, i.e. whose entries satisfy the condition

si,k = ri,ke
iφk , k = 1, .., p where ri,k are real-valued, (3)

in which si = ∆ri where ∆
def
= Diag(eiφ1 , ..., eiφp) and

ri
def
=(ri,1, ..., ri,p)

T with limn→∞
1
n

∑n
i=1 rir

T
i =Rr,∞ exists

and is also positive definite. The phases φk associated with
different propagation delays are assumed fixed. To take into



account this property (3) of the signals si,k, we consider the
extended observation x̃i

def
= [xTi ,x

H
i ]T which leads as in (2) to

Rx̃,∞
def
= lim

n→∞

1

n

n∑
i=1

x̃ix̃
H
i = ÃrRr,∞ÃH

r + σ2
nI, (4)

where Ãr
def
=

[
A∆

A∗∆∗

]
. In this deterministic model

(si)i=1,..,n or (ri)i=1,..,n and (φ1, ..., φp) are unknown de-
terministic parameters. However, the noise ni is assumed
C-CES distributed. Consequently, the distribution of the
observed data xi is either C-CESm(Asi, σ

2
nI, gn) or C-

CESm(A∆ri, σ
2
nI, gn) distributed, for complex-valued si with

arbitrary circularity or rectilinear, respectively.

C. Stochastic CES data model
In the unconditional or stochastic model, a first extension

consists in modeling the independent signals si and ni by CES
distributions to take into account possible heavy-tailed (with
respect to the Gaussian one) signals. The noise ni is always
C-CESm(0, σ2

nI, gn) distributed. As for si, when it is circular,
it is C-CESp(0,Rs, gs) distributed with

Rx
def
= E(xix

H
i ) = ARsA

H + σ2
nI, (5)

where Rs
def
= E(sis

H
i ) is positive definite. In the complex

rectilinear case, the signals si,k, k = 1, .., p, satisfy constraint
(3). In this case, ri is RESp(0,Rr, gs) distributed, which is
equivalent to si being NC-CESp(0,Rs,Cs, gs), where Rs =

∆Rr∆
∗ and Cs = ∆Rr∆ with Rr

def
= E(rir

T
i ) is positive

definite, and the covariance of x̃i is given by

Rx̃
def
= E(x̃ix̃

H
i ) = ÃrRrÃ

H
r + σ2

nI. (6)

For arbitrary non-circular si, si is also NC-
CESp(0,Rs,Cs, gs) distributed, where Rx̃ is given by

Rx̃ = ÃcRs̃Ã
H
c + σ2

nI, (7)

with Rs̃
def
= E(s̃is̃

H
i ) =

(
Rs Cs

C∗s R∗s

)
, where s̃i

def
= [sTi , s

H
i ]T

and Ãc
def
=
(

A 0
0 A∗

)
. It is worth noting here that in this

stochastic data model xi is not CES distributed (except for
Gaussian distributions) because this family of distributions is
not closed under summations.

To take advantage of robust covariance matrix estimators
available in the context of CES distributions, the CES dis-
tribution has been preferred over the Gaussian distribution to
model the data xi in many DOA finding and beamforming
processing (see e.g., [9]–[12]). In this case, the distributions of
si and ni are generally not specified, but only their second-
order statistics are imposed by fixing the structured covariance
in (5) or extended covariance matrices in (6) and (7). In
addition, the complex compound Gaussian distribution which
is a subclass of the CES distributions which was used to model
the clutter in Radar [13] was also used in DOA estimation [14]
in the form of the model xi = Asi + ni

def
=
√
τi(As′i + n′i),

where τi > 0 (with E(τi) = 1) is independent of (s′i,n
′
i)

which are complex Gaussian distributed. More specifically,

in the case of circular complex and non-circular complex
signals si, the observations xi are C-CESm(0,Rx, gx) and NC-
CESm(0,Rx,Cx, gx) distributed, respectively.

D. Parameterized mixing matrix

Since the complex-valued signals si, can be either circular,
rectilinear, or non-circular and non-rectilinear signals, together
with the dependence of (1) on m× p mixing matrix A and on
the parameter of interest θ, leads us to distinguish the following
two parameterized cases:

(a) For circular, and non-circular and non-rectilinear
complex-valued signals si, θ is characterized by the subspace
generated by the columns of the full column rank matrix A

with p < m. We will use the parameterizations B(θ)
def
= A

in the circular case and B(θ)
def
= Ãc, in the non-circular and

non-rectilinear case.
(b) For rectilinear complex-valued signals si, θ is charac-

terized by the subspace generated by the columns of the full
column rank 2m×p extended mixing matrix B(θ)

def
= Ãr with

p < 2m.
”This low-rank signal in full-rank noise data model (1)

encompasses many far or near-field, narrow or wide-band DOA
models with scalar or vector-sensors for an arbitrary number
of parameters per source si,k (with si

def
= (si,1, ..si,k, .., si,p)

T )
and many other models as the bandlimited SISO, SIMO [3] and
MIMO [5] channel models. For example, parametrization Ãr

can be applied for DOA estimation modeling with rectilinear or
strictly second-order sources and for SIMO channels estimation
modeling with BPSK or MSK symbols [15] where θ represents
both the localization parameters (azimuth, elevation, range) and
the phase of the sources, and the real and imaginary parts of
channel impulse response coefficients, respectively. Whereas,
parametrization Ãc is used for DOA modeling with generally
non-circular and non-rectilinear complex sources.”

III. SUBSPACE-BASED ESTIMATION APPROACHES

Since the parameter of interest θ is characterized by the
subspace generated by the columns of the full column rank
matrices A, Ãc or Ãr, a simple way to get rid of the nuisance
parameters, is to consider subspace-based algorithms as the
following mapping:

(x1, ..,xi, ...,xn) 7−→ R̂ 7−→ Π̂
alg7−→ θ̂ = alg(Π̂) (8)

where R̂ can be either any estimator R̂x of Rx
def
= E(xix

H
i )

or any estimator R̂x̃ of Rx̃
def
= E(x̃ix̃

H
i ), and Π̂ denotes the

orthogonal projection matrix Π̂x [resp., Π̂x̃] associated with
the so-called noise subspace of R̂x derived from its SVD [resp.,
R̂x̃]. The functional dependence θ̂ = alg(Π̂) constitutes an
extension of the mapping

Π(θ)
def
= I−B(θ)[BH(θ)B(θ)]−1BH(θ)

alg7−→ θ, (9)

in the neighborhood of Π(θ) with B(θ) can either be A, Ãr

or Ãc. Each extension alg(.) specifies a particular subspace-
based algorithm. Conventional MUSIC algorithm [1] based



on Π̂x and non-circular MUSIC algorithms [16] based on
Π̂x̃ for parametrization (6) can be seen as examples in DOA
estimation. According to mapping (8), the statistical properties
of the estimator θ̂ depends on both the choice of the covariance
estimator R̂ and that of the subspace-based algorithm ”alg”.

IV. ASYMPTOTIC DISTRIBUTIONS OF COVARIANCE
ESTIMATORS

Deriving the asymptotic distribution of the estimated pro-
jectors Π̂ requires determining the asymptotic distribution
of different covariance estimators R̂ adapted to the different
data models presented in Section II, which have not all been
previously addressed in the authors’ work.

A. Deterministic data model
We only consider in this model the SCM estimators R̂ =

1
n

∑n
i=1 xix

H
i for complex-valued of arbitrary circularity sig-

nals si and extended SCM estimators R̂ = 1
n

∑n
i=1 x̃ix̃

H
i for

complex rectilinear-valued signals si.
Under finite fourth-order moments of ni, using the Li-

apounov central limit theorem (CLT) for independent non
identically distributed r.v. x∗i ⊗ xi (see e.g., [17, Th. 2.7.1])
and the Slutsky theorem (see e.g., [17, Th. 5.1.6]), we get the
following convergences in distribution for complex-valued of
arbitrary circularity signals si [18], [19]:

√
n(vec(R̂)−vec(R))→d CNm2(0,Rrx ,RrxK), (10)

with R
def
= Rx,∞ defined in (2) and

Rrx = A∗Rs,∞AT ⊗ σ2
nI + σ2

nI⊗ARs,∞AH

+ σ4
n[(1 + κn)I + κnvec(I)vec

T (I)], (11)

where κn is the kurtosis parameter of ni. Similarly, we obtain
for complex rectilinear-valued si that:

√
n(vec(R̂)−vec(R))→d CN4m2(0,Rrx̃ ,Rrx̃K) (12)

with R
def
= Rx̃,∞ defined in (4) and

Rrx̃ = [I + K(J⊗ J)][(Ã∗rRr,∞ÃT
r ⊗ σ2

nI) + (σ2
nI⊗

ÃrRr,∞ÃH
r )+σ4

n(1 + κn)I]+σ
4
nκnvec(I)vec

T (I). (13)

B. Stochastic data model
We consider here two cases:
1) SCM estimators for both si and ni CES distributed with

finite fourth-order moments: By applying the classic CLT to
the r.v. x∗i ⊗ xi and x̃∗i ⊗ x̃i, we get, for circular and non-
circular si, respectively, the following asymptotic distribution
of R̂ which did not appear in the literature (see [20]).

√
n(vec(R̂)−vec(R)) →d CNm2(0,Rrx ,RrxK) (14)
√
n(vec(R̂)−vec(R)) →d CN4m2(0,Rrx̃ ,Rrx̃K) (15)

with R
def
= Rx defined in (5) for circular si and R

def
= Rx̃

defined in (6) and (7) for non-circular si, respectively, and

Rrx = (R∗x ⊗Rx) + κs[(A
∗R∗sA

T )⊗ (ARsA
H)

+vec(ARsA
H)vecH(ARsA

H)]+σ4
nκn[I+vec(I)vecT (I)], (16)

Rrx̃ = [I + K(J⊗ J)][(R∗x̃ ⊗Rx̃) + κs(Ã
∗
cR
∗
s̃Ã

T
c )

⊗ (ÃcRs̃Ã
H
c ) + κsvec(ÃcRs̃Ã

H
c )vecH(ÃcRs̃Ã

H
c )

+ σ4
nκnI] + σ4

nκnvec(I)vec
T (I), (17)

where κs is the kurtosis parameter of si. Note that (15) and
(17) remain valid for complex rectilinear signals si if κs is
replaced by κr. Furthermore, in this case ÃcRs̃Ã

H
c reduces to

ÃrRrÃ
H
r .

2) Covariance estimators for xi CES distributed: For these
distributions, many covariance estimators have been proposed
in the literature. We consider here (a) the SCM estimator, (b)
the ML estimator which is often considered as the reference
estimator but can be drastically affected by the presence of
outliers or when the data distribution deviates slightly from
the CES distribution of the model, (c) a class of M estima-
tors, introduced by Maronna [21] for RES distributions, then
extended to C-CES and NC-CES distributed data in [9] and
[19], respectively, and later studied and used in various signal
processing application (see [12] and references therein), (d)
Tyler’s [22] and (e) the SSCM estimators [23]–[29] that are
both distribution-free.

The asymptotic distributions of all these estimators are
also given by (14) and (15) for circular and non-circular xi,
respectively, where R is defined under (a) and (b) by R

def
= Rx

defined in (5) and R
def
= Rx̃ defined in (6) and (7), under (c)

by R
def
= c−1Rx in the circular case and R

def
= c−1Rx̃ in the

non-circular case with c is given by [12, rel. (46)], under (d) by
R

def
= m

Tr(Rx)
Rx in the circular case and R

def
= m

Tr(Rx)
Rx̃ in

the non-circular case, and under (e) by R
def
=
∑m
k=1 χkvkv

H
k

and R
def
=
∑2m
k=1 χ̃kṽkṽ

H
k , respectively, where

∑m
k=1 λkvkv

H
k

and
∑2m
k=1 λ̃kṽkṽ

H
k denote respectively the EVD of Rx and

Rx̃, and where closed-form expressions of the eigenvalues χk
and χ̃k are given by [30, rel. (11), (12)].

The matrices Rrx in (14) and Rrx̃ in (15) are all given for
the SCM, ML, M and Tyler’s estimators by

Rrx=σ1(R
∗
x ⊗Rx) + σ2vec(Rx)vec

H(Rx), (18)

Rrx̃=σ1[I+K(J⊗J)](R∗x̃⊗Rx̃)+σ2vec(Rx̃)vec
H(Rx̃), (19)

where under (a) σ1 = 1 + κx and σ2 = κx (where κx is the
kurtosis parameter of xi), under (b):

σ1 =
m(m+ 1)

E[Q2
xφ2

x(Qx)]
and σ2 = − 2σ1(1− σ1)

1 + 2m(1− σ1)
. (20)

where Qx is the 2nd-order modular variate of xi, under (c) σ1
and σ2 are given by [12, rel (48)(49)] and under (d)

σ1=−
m2

[Tr(Rx)]2
(1 +

1

m
) and σ2=−

m2

[Tr(Rx)]2
(1 +

1

m
), (21)

Finally, under (e), Rrx and Rrx̃ are no longer given by (18)
and (19), respectively, but share the same eigenvectors as those
of (18) and (19), respectively, but with different eigenvalues
given by [30, rel. (17-20)].

V. ASYMPTOTIC DISTRIBUTIONS OF PROJECTOR
ESTIMATORS

From the asymptotic distributions (10), (12) and (14) of the
different estimators R̂ adapted to the different models presented



in Section II, we note that R̂ converge in probability to the
matrices R. All these matrices are structured as

R = S + σ2I, (22)

where Span(S) = Span(B(θ)), where B(θ) denotes the mix-
ing matrices A, Ãr and Ãc for circular, rectilinear, and non-
rectilinear and non-circular complex-valued si, respectively.
Then, using the standard perturbation result associated with
the mapping (8)

R̂ = R + δ(R) 7→ Π̂ = Π(θ) + δ(Π), (23)

for orthogonal projectors [31] (see also the operator approach
in [32]) applied to Π(θ) associated with the noise subspace of
R,

δ(Π) = −Π(θ)δ(R)S# − S#δ(R)Π(θ) + o(δ(R), (24)

the asymptotic behaviors of Π̂ and R̂ are directly related.
The standard theorem of continuity (see e.g., [33, p. 122]) on
regular functions of asymptotically Gaussian statistics applies
and we get√

n(vec(Π̂)−vec(Π(θ)))→d CNm2(0,Rπx ,RπxK) (25)
√
n(vec(Π̂)−vec(Π(θ)))→d CN4m2(0,Rπx̃ ,Rπx̃K), (26)

for circular and non-circular complex-valued si, respectively,
where Π(θ) is given by (9) with its associated B(θ) and where

Rπx = [(STx
# ⊗Πx) + (ΠT

x ⊗ S#
x )]Rrx

[(STx
# ⊗Πx) + (ΠT

x ⊗ S#
x )], (27)

Rπx̃ = [(STx̃
# ⊗Πx̃) + (ΠT

x̃ ⊗ S#
x̃ )]Rrx̃

[(STx̃
# ⊗Πx̃) + (ΠT

x̃ ⊗ S#
x̃ )], (28)

where Rrx and Rrx̃ are given by (11), (16), (18), and by (13),
(17), (19), respectively, and where each of the two matrices
(Sx, Πx) and (Sx̃, Πx̃) are the matrices S (of (22)) and Π(θ)
associated with the cases circular and non-circular (rectilinear
and non-rectilinear) complex-valued si, respectively.

Then plugging the expressions (11), (16), (18) of Rrx and
(13), (17), (19) of Rrx̃ into (27) and (28), and using ΠxSx = 0
and Πx̃Sx̃ = 0, the following result which extends [34, Th.
IV.1] and [30, Th. 3]:

Result 1: The covariance matrices Rπx and Rπx̃ of the
asymptotic distribution (25) and (26) of the different projector
estimators Π̂ have an unified structure given by

Rπx=(UT ⊗Π(θ)) + (ΠT (θ)⊗U), (29)

Rπx̃=[I + K(J⊗ J)][(UT ⊗Π(θ))+(ΠT (θ)⊗U)], (30)

where Π(θ) are the projection matrices
∑m
k=p+1 vkv

H
k ,∑2m

k=p+1 ṽkṽ
H
k and

∑2m
k=2p+1 ṽkṽ

H
k on the noise subspace

(i.e., on the orthogonal complement of the range of A, Ãr and
Ãc), associated with circular, rectilinear, and non-rectilinear
and non-circular complex-valued si, respectively. On the other
hand, the matrices U depend on the covariance estimators R̂
studied in Section IV adapted to the different data models
presented in Section II.

For the deterministic model and the stochastic model where
both si and ni are CES distributed, U takes the common form

U=σ2
nS#RS#+κnσ

4
n(S

#)2 =

p∑
k=1

σ2
n(λk+κnσ

2
n)

(λk − σ2
n)2

vkv
H
k , (31)

with R
def
= Rx,∞ = Rx =

∑m
k=1 λkvkv

H
k and S

def
=

ARs,∞AH = ARsA
H for si of arbitrary circularity. Sim-

ilarly for rectilinear si, (31) also applies where Rx,∞, Rx,
ARs,∞AH , ARsA

H , λk and vk are replaced by Rx̃,∞, Rx̃,
ÃrRr,∞ÃH

r , ÃrRrÃ
H
r , λ̃k and ṽk respectively. Furthermore,

for non-circular and non-rectilinear stochastic si (31) still
applies where R

def
= Rx̃, S

def
= ÃcRs̃Ã

H
c and p, λk and vk

are replaced, respectively, by 2p, λ̃k and ṽk.
For the stochastic model where xi is CES distributed, we

get for SCM, ML, M and Tyler’s estimator:

U = σ1σ
2
nS#

x RxS
#
x = ϑ

(
p∑
k=1

λkσ
2
n

(λk − σ2
n)2

vkv
H
k

)
(32)

for circular si. For rectilinear, and non-circular and non-
rectilinear si, (32) still applies where Sx, Rx, λk and vk are
replaced by Sx̃, Rx̃, λ̃k and ṽk, respectively, and with p is
replaced by 2p for non-circular and non-rectilinear si. In (32),
ϑ is given by:

ϑ = 1 + κx for the SCM estimator, (33)
ϑ = σ1 for the ML estimator given by (20), (34)
ϑ = c2σ1 for the M -estimator, (35)
ϑ = 1 +m−1 for the Tyler’s M -estimator, (36)

where for the M -estimator, c and σ1 are given by [12, rel.
(46)] and [12, rel. (48)], respectively. For the SSCM estimator,
U is given by

U=

p∑
k=1

γk
(χk − χ)2

vkv
H
k or U=

p∑
k=1

γ̃k
(χ̃k − χ̃)2

ṽkṽ
H
k , (37)

for circular where χ
def
= χp+1 = χp+2 = ... = χm and

γk
def
= γk,p+1 = γk,p+2 = ... = γk,m, or rectilinear where

χ̃
def
= χ̃p+1 = χ̃p+2 = ... = χ̃2m and γ̃k

def
= γ̃k,p+1 = γ̃k,p+2 =

... = γ̃k,2m are given by [30, rel. (17-20)]. Some remarks are
in order from Result 1:

• The projector estimators have the same asymptotic dis-
tribution under both deterministic and stochastic CES
distributed models for si, with arbitrary circularity or
rectilinear si. This extends the results proved for many
subspace-based DOA estimators [2] in the complex circu-
lar Gaussian noise framework.

• The asymptotic distributions of the projector estimators
are invariant to the distribution of si, whether si is cir-
cular or non-circular (rectilinear or non-rectilinear). This
property extends the results proved for subspace-based
estimators [35] in the complex circular Gaussian noise
framework.

• For circular or non-circular CES distributed data xi, the
coefficient ϑ (33)-(36) plays a major role as an index of
efficiency for the estimation of the projector and conse-
quently for the estimation of the parameter θ which is
deduced therefrom by all subspace-based algorithms ’alg’
(9).
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