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A B S T R A C T   

In the context of Global Change Research, detection, monitoring and characterization of land use/land cover 
(LULC) changes are of prime importance. The increasing availability of dense satellite image time series (SITS) 
has led to a shift in the change detection paradigm, with algorithms able to exploit the full temporal information 
laid down in SITS. So far, most of these algorithms have focused on the detection of abrupt and gradual changes, 
and thus developed breakpoint detection based on significant deviations from the mean. However, LULC changes 
may manifest themselves in other patterns, particularly changes in seasonality (amplitude, number and length of 
the growing seasons) that are harder to detect. In this paper, we propose a simple method to automatically select 
the breakpoint linked to the biggest seasonal change in long and dense SITS with multiple breakpoints. This 
approach - BFASTm-L2 - relies on linking a high-speed algorithm (BFAST monitor) with a time series similarity 
metric (Euclidian distance L2) sensitive to seasonal changes. The capacity of BFASTm-L2 to identify the date of 
change in different situations was tested on two data sets, and compared to the performances of three other 
algorithms (BFAST monitor, BFAST lite, and Edyn). The data sets are 1. a published benchmark data set 
composed of 25 200 simulated SITS with different change types and change magnitudes, and 2. the 2000–2020 
MODIS NDVI SITS over a 200x200 pixels area in Senegal including different study sites which have undergone 
recent LULC changes due to agricultural large-scale land acquisitions (LSLAs) (as reported in the ground field 
database used in this study). The results show that BFASTm-L2 is efficient in accurately detecting in time most of 
the changes, and, in contrast with BFAST Lite and BFASTmonitor, to spatially highlight LSLAs-induced changes 
without the need of any prior knowledge. The automatic proposed approach, faster than BFAST Lite and Edyn, 
and with very few tuneable parameters, may thus be easily implemented in unsupervised pipelines to map and 
analyse generic LULC changes at regional scale.   

1. Introduction 

In the context of Global Change Research, detection, monitoring, and 
characterization of land use/land cover (LULC) changes are of prime 
importance. Global satellite-based Earth observation, with its repetitive 
coverage at short intervals and consistent image quality, has led to major 
advances in the field by providing insights into the land dynamics of 
large and remote areas. Recent studies have benefited from the 
increasing availability of free remote sensing data and the 

overwhelming increase in computing power to identify changes that 
occur over time. In particular, the availability of dense Satellite Image 
Time Series (SITS) has led to a shift in the change detection paradigm, 
with ever-increasing approaches and algorithms exploiting the full 
temporal information contained in SITS. Changes detected are usually 
categorized as “abrupt”, “gradual” and “seasonal”. While “abrupt” refers 
to short-term, large magnitude date-to-date changes (e.g., deforestation, 
fire, or urbanization), “gradual” (also referred as trends) refers to long- 
term (i.e. inter-annual), small magnitude date-to-date changes (e.g. land 
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degradation, forest recovery) (Zhu, 2017). “Seasonal” changes are those 
affecting time series seasonality (i.e., vegetation phenology), and refer 
more explicitly to changes in the number of growing cycles (i.e., number 
of “peaks” of vegetation activity), in the season amplitude and in the 
length of season (i.e., growing season baseline length). 

So far, change detection algorithms have mostly been used to detect 
significant deviations from the mean in forest ecosystems (Ochtyra et al., 
2020). This is explained by the fact that discrimination between 
phenological changes driven by climatic variability and disturbances is 
easier in stable seasonal environments such as evergreen temperate or 
tropical forests than, for example, in drier ecosystems (Browning et al., 
2017; Gao et al., 2021; Zhu and Woodcock, 2014). Less focus has been 
given to other land surface dynamics such as changes in land use (Ver-
burg et al., 2009). Land use, which refers to the purposes for which 
human exploit the land cover, is hardly inferred directly from remote 
sensing images and very often needs ground-knowledge to be accurately 
assessed. For this task, temporal series of Vegetation Indices (such as the 
Normalised Difference Vegetation Index or NDVI) are often used. While 
remote assessment of a single land use may be difficult to achieve, land 
use changes may however be assessed by detecting persistent seasonal 
changes (e.g. changes in the amplitude, length of season and/or number 
of seasons) within VI’s time series, as homogeneous land practices are 
expected to present typical intra-annual patterns (Setiawan and Yosh-
ino, 2014). 

This is how, Hentze et al. (2017), focusing on the detection of specific 
seasonal changes (from unimodal to bimodal distributions and vice- 
versa) in the NDVI, jointly with a seasonal-trend analysis, were able to 
identify agricultural land tenure transitions (from large-scale to small- 
scale and vice-versa) in Zimbabwe using BFAST (Breaks For Additive 
Season and Trend; (Verbesselt et al., 2010a)). However, their method 
has the drawback of not being up-scalable because of the algorithm used 
(BFAST is computationally expensive), and because their need of 
external data (crop mask). 

Speed, automaticity and accuracy of the detection of seasonal 
changes are thus crucial for the development of generic approaches to 
land use change detection. This is particularly relevant when using long 
and dense temporal series, in which a mix of different types of changes 
with different intensities may occur. As a consequence, approaches that 
perform temporal segmentation (such as DBEST (Jamali et al. (2015)) or 
LandTrendr (Kennedy et al. (2010))) which aim to find major abrupt and 
gradual changes without considering the seasonality are out of the scope 
of this study. The same applies to the deep learning methods, despite the 
growing interest in the remote sensing community due to their ability to 
automatically extract spectral-spatial features from satellite imagery 
(Tuia et al., 2021; Yuan et al., 2020; Zhu et al., 2017). Because 1- the 
unsupervised/ semi-supervised deep learning approaches for LULC 
change detection are still at early stage of development (Leenstra et al.; 
Meshkini et al., 2021), in addition to the 2- poor interpretability of the 
models, and the 3- low generalization performance linked to the highly 
contextual-dependent methods, the labeled-data scarcity (hampering 
the method’s scalability at regional scale), and the huge spectral-spatial 
variability of the targeted object (land use changes), these approaches 
are not considered in this study. They however should be the object of 
further research. 

To continue with the change detection characteristics sought in this 
study, to be applicable on large scale, change detection approaches need 
to be ease to use (i.e number of parameters), and preferably integrated 
on cloud-computing platforms. Amongst the well-established statistical- 
based algorithms implemented on big data platforms, BFASTmonitor 
(Verbesselt et al., 2012) stands out from the rest because of its simple 
configuration, speed and massively-parallel GPU implementation (Gie-
seke et al., 2020), and its relative good performance in detecting sea-
sonal changes (Awty-Carroll, 2019). Its major drawback lays in its high 
commission error (false positives). Minimization of false positives in 
long and dense time series is often performed using a threshold on the 
breakpoint magnitude (Gao et al., 2021), or by using some statistical 

tests such as the Chow test (Bullock et al., 2020). When more than one 
true breakpoint is found, selection of a unique breakpoint for mapping 
purpose may be difficult, unless when looking for specific changes (in 
magnitude, sign or pattern) in a specific period of time. 

Selection of a unique breakpoint may be more difficult when using 
algorithms that do not perform a season-trend decomposition (e.g. 
BFAST monitor, EWMACD). These latter, usually faster (and thus suit-
able for large-scale applications), are often able to detect any type of 
change, including the seasonal ones, within the same non-decomposed 
time series. However, because the computed breakpoint’s magnitudes 
are linked to deviations from the model, selection of a unique breakpoint 
based on its magnitude may disfavour the selection of seasonal changes, 
particularly those modifying the time series “shape” (i.e. number of 
growing cycles per year, length of season) without heavily impacting its 
amplitude. 

In this study, we propose a simple, fast, generic and unsupervised 
approach (hereafter referred to as BFASTm-L2) to select, in long and 
dense NDVI time series with multiple breakpoints, the optimal break-
point linked to the most important land use change (i.e., linked to the 
most important seasonal or “pattern” change within the time series (in 
amplitude, length of season, NOS, or a mix of them)). 

Two sets of research questions aimed to be answered in this paper: 1- 
The first one is broad and concerns the temporal accuracy (does the 
breakpoint correspond to the year of change?) and the sensitivity (how 
likely are different type of changes detected?) to different types and in-
tensities of change of BFASTm-L2 and three change detection algorithms 
tested for comparison purposes: BFASTmonitor, BFAST Lite, Edyn. 2- 
The second set of questions concerns an application case, which is the 
detection (are the different change detection algorithms able to detect in 
long and dense time series, with likely multiple changes of different 
types and intensities, the land use changes related to LSLAs?) and 
mapping (which types of changes are most likely to be highlighted in 
maps using the breakpoint magnitude as mapping variable? Can LSLAs 
be pinpointed in such maps?) of Large-Scale Land Acquisitions (LSLAs) 
in Senegal. 

More details on the material and methods used are given in the next 
section. 

2. Material and methods 

2.1. Global approach 

In this study BFASTm-L2 is proposed as a method to select, in long 
and dense NDVI time series with multiple breakpoints, the optimal 
breakpoint linked to the most important land use change, that is the one 
related to the most important “pattern” change within time series. 
Because the breakpoint selection is based on the breakpoint magnitude, 
we tested a magnitude metric based on the Euclidean distance (L2), a 
time series similarity metric proposed by Lhermitte et al. (2011), which 
is prone to be more sensitive to seasonal changes than to abrupt and 
gradual changes. BFASTm-L2 relies thus on the sequential running of 
BFASTmonitor for the fast detection of breakpoints, jointly with the 
Euclidean distance (L2) for the breakpoint selection. 

Because long and dense time series most of the time include multiple 
changes of different types (often combined) and intensities, a bench-
mark dataset of simulated seasonal time series including a unique 
change was used to answer the first research set of questions, aiming to 
assess the temporal accuracy and sensitivity of the tested change 
detection algorithms to different types and intensities of change. More 
specifically, a sub-sample of the benchmark dataset provided by Awty- 
Carroll et al. (2019) composed of 25 000 simulated SITS was used, 
including different single change types and multiple noise/change in-
tensity levels (see Table 1). To answer the second set of questions, 
related to the performance of the change detection algorithms in 
detecting and mapping LSLAs in Senegal, the MODIS 16-day NDVI time 
series (MOD13Q1 v.6) acquired over the 2000–2021 period in different 
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study areas with known LSLAs were used. Results were validated with 
ground observations. The flowchart of the data and methods is illus-
trated here below in Fig. 1. 

2.2. Data 

2.2.1. Benchmark dataset and preprocessing 
This study made use of the simulated NDVI time series (10-year 

2006–2015 at 16-day temporal resolution) data set created by Awty- 
Carroll (2019) and available at https://osf.io/taf9y/. The 16-day tem-
poral frequency makes this dataset suitable for the purposes of this study 
which uses the MODIS satellite imagery. In this study, only the gap-free 
simulations were used consisting of 25 200 seasonal time series gener-
ated to represent a large range of ecosystem dynamics based on the 
previous work of Verbesselt et al. (2010b). This dataset includes a large 
range of unique trend, abrupt (positive and negative), seasonal (ampli-
tude, length of season (LOS) and number of seasons (NOS)) changes, 
with eight levels of noise (random value from a normal distribution with 
a mean of 0 and a standard deviation ∈ [0: 0.01: 0.07]), and 50 repli-
cates (Table 1). The LOS changes are changes that move back the start of 
the season from 13 to 49 days. All changes were placed in January 2011. 

Because of the presence of noise hindering the detection of change, in 
this study the simulated time series were, as for the real MODIS time 
series smoothed using the Savitzky-Golay smoothing filter. A moving 
window length of 9 observations and a polynomial order of 3 were used. 

2.2.2. Study case dataset 

2.2.2.1. Study area and ground dataset. Senegal is in the west part of the 
Sudano-Sahelian zone and is characterized by an overall low average 
annual rainfall, but with high inter- and intra-annual variability that 
constrains the vegetation growth. The precipitation shows an increasing 
gradient along the North-South direction. A distinct seasonality is pre-
sent, with a long dry season and a short rainy season spanning from late 
June to early October (Abel et al., 2019). 

As many African countries concerned by Large Scale Land Acquisi-
tions (LSLAs) (https://landmatrix.org), Senegal had in 2016 around 3% 
of its total arable land (270 908 ha) declared under contract by foreign 
investors from 12 countries (Harding et al., 2016). However, as>50% of 
those deals have an area under contract smaller than 5 000 ha, the 
country is less affected by the so called “megadeals” (>50 000 ha, only 2 
out of 19 in 2016). Because of those climatic and LSLA characteristics, 
Senegal represents an interesting and difficult study case for the detec-
tion of land use system changes such as those induced by LSLAs. 

The Senegalese Institute of Agricultural Research (ISRA) conducted 
in 2019 an extensive field campaign on LSLA. >700 records and corre-
sponding attributes were initially recorded in a database (M. Dieye, 
personal communication, 2022). Attributes consist in all kinds of in-
formation related to the identified deals, such as: name, deal type, co-
ordinates, negotiation status, implementation status, year of transaction, 
size, previous land use, previous land tenure etc. From this database, and 
using observations from Google Earth/Sentinel Hub images, a selection 
was done to keep only active agricultural deals with growing crops 
(some deals are abandoned, others are still in negotiation), and with an 
implementation date after 2003 (year as from which changes may be 
detected from MODIS SITS, considering the training period length 
needed by the detection algorithms). 

From this ground-field database subsample, four individual (points) 
LSLA study cases with different land processes under different ecor-
egions (see Fig. 2) were selected for algorithm testing purposes. Point 1 
is an example of a conversion from small agriculture to LSLA, points 2 to 
4 are examples of conversions from natural vegetation to LSLA. 

More specifically, study case 1 (16.1118◦N, 15.9954◦W) and 2 
(16.1159◦N, 16.0230◦W) are in the Senegal river valley (rainfall: 
150–600 mm; (Tappan et al., 2004)) and are within pivot irrigation 
areas belonging to a concession growing vegetables. Changes occurred 
from the end of 2011 for point 1, and the start of 2016 for point 2. Point 
3 (14.6444◦N, 17.0271◦W), in the “Agricultural Expansion Region” as 
defined in Tappan et al. (2004) (rainfall: 600–700 mm), is within one of 
the production blocks belonging to a concession specialized in vegetable 
production, and changes are observed as from 2008. Finally, the 
southern point 4 (13.0104◦N, 14.1766◦W), in the Anambé basin 
(Casamance; rainfall: 800–1400 mm), is in the area of a concession 
specialized in irrigated rice. Field preparation is observed as from the 
start of 2007. 

In addition to the LSLA study cases, an area of 200x200 MODIS pixels 
close to Dakar (red box in Fig. 2), including six production blocks of 
different concessions (see red polygons in Fig. 7), was selected for 
mapping purposes (see section 2.4 for more details). The area is spatially 
contrasted, with urban/rural areas and natural vegetation (see Fig. 7). 

2.2.2.2. MODIS NDVI data and pre-processing. With its global coverage, 
moderate spatial resolution (250 m) and high temporal resolution (1 to 
2 days), the Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensor allows for the detection of subtle changes in land cover. A set of 
MODIS NDVI 16-day composites at 250 m resolution (MOD13Q1, 
collection 6) acquired over Senegal for the period 2000–2021 was pre- 
processed in Google Earth Engine. The 16-day composite NDVI prod-
uct was chosen to reduce NDVI variability due to meteorological dis-
tortions like clouds. Series were gap-filled with linear interpolations and 
smoothed using an optimized weighted Savitzky-Golay filter (Chen 
et al., 2004) in order to reduce the noise. Weights were computed 
following the approach developed in Piou et al. (2013), and are function 
of the pixel’s reliability (i.e. quality flag, view zenith angle), and posi-
tion in the moving window (exponentially decreasing weights with the 
distance to the window’s centre). After some testing, a moving window 
length of 13 observations, and a polynomial order of 3 (in order to keep 
the ratio w/p close to 3–4) were used. 

2.3. Methods 

2.3.1. Statistical-based change detection algorithms 
Up to now, the LULC change community has benefited from an ever- 

increasing emergence of change detection algorithms exploiting the full 
temporal information contained in SITS (Molinier et al., 2021). Some of 
them are now well-established and implemented on big data platforms 
enabling fast processing of large volume data. 

Change detection algorithms mainly differ in their approach to 
process time series and detect changes in them. In their approach to 

Table 1 
Types of change, levels of intensities and number of samples present in the 
simulated data set (Awty-Carroll et al., 2019). For the break/trend set, each 
abrupt change in NDVI is followed by either no trend or one of the six levels of 
trend present in the trend only set.  

Type of changes Levels (units) Number of 
simulations 

- No change  - 400 

Trend Trend only ±[0.001, 0.0015, 
0.002] 
(NDVI / year) 

2 400 

Break (abrupt) / 
trend 

±[0.1, 0.2, 0.3] 
(NDVI) 

16 800  

Seasonal   
Amplitude ±[0.1, 0.2, 0.3] 

(NDVI) 
2 400 

LOS (length of 
season) 

− [13, 22, 30, 37, 43, 
49] 
(days) 

2 400 

NOS (number of 
season)  

1 to 2, 2 to 1 800  

Total – 25 200  
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process time-series, two main groups of algorithms exist: While offline 
algorithms operate retrospectively on the complete time series, online 
(or real-time) algorithms aim to detect changes as soon as they occur 
(Bullock et al., 2020). Because offline methods make use of the entire 
time series, there are often more robust than online methods. In turn, 
online methods are often faster than offline methods as they only use 
some of the data preceding the real-time observation (i.e., training 
period). They are however prone to false positives and require a stable 
training period (limiting its use in places frequently disturbed (e.g. 
agriculture (Zhu et al., 2020)). As the length of the training period may 
have an impact on the quality of the fit - risk of overfitting when training 
periods are too short vs risk to include breakpoints in the training period 
when those are too long (Brooks et al., 2017))-, algorithms that are able 
to automatically select the optimal training period length (such as Edyn 
(Brooks et al., 2017), BFAST monitor (Verbesselt et al., 2012) or CCDC 
(Zhu and Woodcock, 2014)) are preferred. 

In their approach to detect changes, while some algorithms provide 

the option of selecting an optimal model with one unique breakpoint (e. 
g. BFAST Lite (Masiliūnas et al., 2021)), almost all of them detect mul-
tiple breakpoints. Changes may be detected in the trend and seasonal 
component separately (e.g. BFAST (Verbesselt et al., 2010a), BEAST 
(Zhao et al., 2019)) or in the undecomposed time series (e.g. BFAST Lite, 
BFAST monitor, EWMACD (Brooks et al., 2014)), using temporal seg-
mentation approaches based on residual-errors and angle criterion (e.g. 
DBEST (Jamali et al. (2015)), LandTrendr (Kennedy et al. (2010))), or 
model-deviation seeking approaches (e.g. BFAST monitor, CCDC (Zhu 
and Woodcock (2014)), EWMACD). Decomposition may be interesting 
for end-users with an a priori knowledge of the type of change foreseen. 
As an example, Mardian et al. (2021) assuming that pasture/rangeland 
conversions to cropland mostly impact VIs’ seasonal component, applied 
a modified version of BFAST that constrained the model to detect only 
seasonal changes and obtained higher change detection accuracy 
compared to BFAST and BEAST. However, it is worth noting that algo-
rithms that perform decomposition are usually slower than those that do 

Fig. 1. Flowchart of the data and methods.  
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not. In addition, errors in the decomposition (because of using an 
inappropriate model) may be translated in errors in the accuracy of the 
changes detected in both SITS components (Mardian et al., 2021; Zhao 
et al., 2019). To avoid selection of a single-model algorithm, focus is 
recently given to ensemble learning algorithms such as BEAST (Zhao 
et al., 2019), that are however computational cost expensive. As one can 
see, selection of a single-model algorithm highly depends on the appli-
cation scale, targeted type of change, environment, SITS source and 
frequency. 

The approach proposed in this study for the selection of a single 
breakpoint linked to the biggest seasonal change in long and dense time 
series, is based on existing algorithms. For the selection of the change 
detection algorithm, focus was first given on speed, followed by the 
algorithm’s sensitivity to seasonal changes and its ease of use (number of 
tuneable parameters). On these criteria, BFASTmonitor was chosen as 
the base algorithm for the change detection approach. For comparison 
purposes, in addition to BFASTmonitor, two other algorithms were 
selected: BFAST Lite, because of its robustness and speed (Masiliūnas 
et al., 2021), and Edyn, because of its speed and ability to capture sea-
sonal changes (Awty-Carroll et al., 2019). 

More details on the different change detection algorithms used and 

developed in this study are given in the next subsections and summa-
rized in the table below (Table 2). 

2.3.1.1. BFASTmonitor (BFASTm). The BFASTmonitor (Breaks For Ad-
ditive Season and Trend Monitor; (Verbesselt et al., 2012)) is an online 
(near real-time) unsupervised change detection algorithm that flags 
abnormal observations within a monitoring period, based on a stable 
history period. More specifically, once the start of the monitoring period 
has been defined, a stable history period is automatically selected using 
the reversed-ordered-cumulative sum (CUSUM) of residuals (default 
approach). Then, a regression model (here a linear harmonic regression 
model) is fitted based on the history period. Finally, the moving sums 
(MOSUM) of residuals are used (bandwidth defined by the h parameter) 
in the monitoring period to determine whether the model remains stable 
for new observations. A break is detected when the absolute value of the 
moving sums exceeds a probability threshold. The magnitude of change 
recorded represents the median of the difference between the data and 
the model prediction in the monitoring period. Because BFASTmonitor 
only needs a single observation to exceed the threshold, the algorithm is 
prone to false positives (Awty-Carroll, 2019; Ghaderpour and Vujadi-
novic, 2020) and magnitude thresholds are often applied to minimize 

Fig. 2. Study area (red box) and study cases (red dots) in Senegal located within agro-industrial concessions (red polygons) (source: ISRA-BAME field data base). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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them (Gao et al., 2021; Hamunyela, 2017). However, its massively- 
parallel GPU implementation (Gieseke et al., 2020), that makes it 14.5 
times faster than the newly launched BFAST Lite (Masiliūnas et al., 
2021), its implementation on Google Earth Engine (Hamunyela et al., 
2020) and its good performance in detecting seasonal changes (Awty- 
Carroll, 2019), make of BFASTmonitor a potential change detection al-
gorithm for the purposes of this study. This study made use of the Python 
package bfast0.7, available at https://pypi.org/project/bfast/, that 
provides a parallel implementation of the BFASTmonitor algorithm. The 
parameters used were: h = 0.25 (the MOSUM bandwidth), k = 3 (default 
and minimal number of harmonic terms possible), and threshold level =
0.05. To detect multiple breakpoints, the algorithm was iteratively run 
on the MODIS NDVI 2000–2021 image stack, each 3 months, using a 3- 
year training period (after testing of two training period lengths hl = 2 
vs. hl = 3 years) and a monitoring period of one year given that the 
BFAST monitor change magnitude is relative to the monitoring period 
length. No “penalty” period after each detected breakpoint (as opposed 
to Awty-Carroll (2019)) was applied to avoid missing significant 
changes. It is worth to note that this implementation of BFASTmonitor 
does not include the automatic determination of a stable training period 
yet. 

2.3.1.2. BFAST Lite. The newly BFAST Lite unsupervised algorithm is 
built upon the BFAST algorithm (Verbesselt et al., 2010a) with the aim 
to improve its speed and flexibility (Masiliūnas et al., 2021). Compared 
to BFAST, this offline approach avoids the seasonal-trend decomposition 
and performs the model fitting in a single step, using a multivariate 
piecewise linear harmonic regression. In addition, it provides more 
robust statistics for breakpoint magnitude calculation, such as the Root 
Mean Squared Deviation (RMSD) and the Mean Absolute Deviation 
(MAD), which are computed between the predicted values of the adja-
cent segments over the time span of one year before and after the 
detected break, as opposed to BFAST that computes the difference of the 
fitted value immediately before and after the break (Masiliūnas et al., 
2021). 

This study used the BFAST 1.6.1 R package available at https://cran. 
r-project.org/web/packages/bfast/index.html. Default parameters were 
used, with the number of harmonic terms equals to 3. The biggest 
breakpoint in magnitude was selected using the root mean squared de-
viation (RMSD). 

2.3.1.3. Edyn: The dynamic version of EWMACD. EWMACD (Exponen-
tially Weighted Moving Average Change Detection) is an online moni-
toring algorithm that aims to detect persistent subtle changes, such as 
forest degradation or thinning (Brooks et al., 2014). As BFASTmonitor, 
EWMACD uses a statistical control chart (here, the EWMA) on the re-
siduals to detect deviations from the mean. In the original version, the 
algorithm does not retrain after having flagged a breakpoint. In Edyn, 

the dynamic version of EWMACD (Brooks et al., 2017), the harmonic 
model coefficients are dynamically updated, and the optimal training 
period length is automatically found based on the quality of the model 
fit. 

Global parameters defined by the end-user are: 1- the parameter λ 
which defines the algorithm’s robustness to low signal-to-noise ratios, 
and 2- the persistence that refers to the number of times flagged de-
viations must be successively detected for a change to be considered (in 
Edyn it is given as a proportion of a year). Finally, and with respect to 
the breakpoint magnitude, while originally given as a standardized 
value (i.e. the residual value divided by the chart’s control limits, and 
then rounded down to the nearest integer value), the magnitudes in this 
study correspond to the residual values at the breakpoints’ location. The 
reason for this choice is that, when ran continuously, more than one 
breakpoint may have the same standardized value impeding the selec-
tion of a unique breakpoint. 

In this study the same values as in Awty-Carroll (2019) were applied 
(λ = 0.3, persistence = 6). Their R version of Edyn (available at: 
https://github. 
com/klh5/season-trend-comparison/tree/master/ewmacd) was used, 
adapted from the original R script (Brooks et al., 2014) and Edyn (Brooks 
et al., 2017). This version enables selection of stable (without break-
points) sliding windows of fixed length (2 years) that are used as training 
periods, thus allowing continuous monitoring. Compared to the original 
Edyn this adaptation does not find the optimal training period length 
based on the model fit quality. 

2.3.2. BFASTm-L2: A new approach 
The procedure to select the BFASTmonitor breakpoint linked to the 

biggest pattern change in long-term NDVI SITS is detailed in this section. 
The approach (hereafter BFASTm-L2) is based on the Euclidean distance 
(L2 distance) and is schematized in Fig. 3. 

In step 1 of Fig. 3, BFASTmonitor is successively run each 3 months 
over the entire time series. Then, for each detected breakpoint, the time 
series segments L2-w (L2-w = 3) before and after the breakpoint are 
extracted (step 2), and monthly averaged in annual subsamples (step 3). 
In step 4, the Euclidean distance between the 2 annual subsamples is 
computed using the Python numpy.linalg.norm function. Finally, the 
breakpoint with the highest L2 distance is selected (step 5). 

This selection procedure is somehow similar to the method in 
Setiawan and Yoshino (2012), where a mean-based distance measure is 
computed between each two successive annual segments. It however 
differs in many aspects: 1- The distance metric is computed only where 
BFASTmonitor breakpoints are detected; 2- The segment length used 
here is 3 years (instead of 1 year), enabling to skip non-persistent 
changes mainly due to climate variability; 3- The (L2) distance used is 
more representative of an overall pattern change than the mean-based 
distance used in Setiawan and Yoshino (2012). 

Table 2 
Main characteristics of the change-detection algorithms used in this study, their strengths and limitations.   

Algorithm  Speed Parameter 
number * 

Model Decomposition Strengths Limitations (others than 
speed and number of 
parameters) 

Offline BFAST Lite 
(Masiliūnas et al., 
2021) 

++ + Model- 
deviation 

None Detection of abrupt and trend changes. 
Possibility to select a model with a unique (the 
highest-magnitude) breakpoint. 

Low performance in 
capturing seasonal changes 

Online BFAST monitor ( 
Verbesselt et al., 
2012) 

+++ + Model- 
deviation 

None Sensitivity to seasonal changes (Awty-Carroll, 
2019). 

High false positive rate ( 
Masiliūnas et al., 2021) 

EDYN 
(Brooks et al., 2017) 

++ – Model- 
deviation 

None Detection of subtle (sub-pixel) changes in long 
time series (model dynamically retrained); Able 
to capture seasonal changes 

High sensitivity to algorithm 
parameters (Saxena et al., 
2018) 

* Number of key parameters (others than (if applied) the order of the harmonic term, the probability threshold/ statistical significance level and the training period 
length): 
<=2: +, >=3: -. 
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2.3.3. Evaluation of the algorithms’ performance 

2.3.3.1. Temporal accuracy to different types and intensities of change. 
The temporal accuracy of the single breakpoint detected by the four 
algorithms (BFASTmonitor, BFAST Lite, Edyn, and BFASTm-L2) was 
performed as following: 1- Each algorithm was run on each simulated 
time series, 2- the highest-magnitude breakpoint was selected (no se-
lection performed for BFAST Lite), and 3- the absolute difference be-
tween the breakpoint date and the date of change (January of 2011) was 
recorded. Finally, bar charts of the selected breakpoints’ date per type of 
change relative to the true date of change were plotted to assess the 
performance of each algorithm to accurately detect in time the different 
types of change. 

2.3.3.2. Breakpoint-magnitude sensitivity to different types and intensities 
of change. The breakpoint magnitude is often used to spatially detect 
significant hotspots of change. To unravel the type of change most likely 
detected by each algorithm (and thus spatially highlighted), the 

sensitivity of each algorithm to different types and intensities of change 
was assessed. For that, the distributions of the magnitude of the detected 
breakpoint were calculated per type of change, and represented using 
violin plots. Absolute values were used and normalized for each algo-
rithm to allow comparisons between them. For all the change types 
(except the change in trend only, and the no-change category), only the 
breakpoints comprised between 2010 and 2012 (included) were used. 

2.3.3.3. Running times of the algorithms. The 5-run average times of 
BFASTmonitor, BFAST Lite, Edyn and BFASTm-L2, but also of the L2 
distance metric alone computed sequentially each 3 months, were re-
ported for areas of different sizes: 50x50, 100x100, 150x150, 200x200 
pixels (the whole red box Fig. 1), using the MODIS NDVI 2000–2021 
data set. Six CPU cores (parallel processing) were used on a 64 GB RAM 
computer. 

2.3.3.4. Detection and mapping of LSLAs induced LULC changes: Individ-
ual study cases. Evaluation of the change detection accuracy on the four 

Fig. 3. Flowchart of the BFASTm-L2 approach (in this example with L2-w = 3 years). Blue lines represent the NDVI time series subsamples (dark blue before 
breakpoint, and light blue after breakpoint). Detected BFASTmonitor breakpoints are presented with dashed red vertical lines. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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real study cases presented in 2.1 was performed for: BFASTmonitor 
(training period of 3 years), BFAST Lite, Edyn (with lambda = 0.3) and 
BFASTm-L2 (using a training period length and L2-w size of 3 years), 
which were run continuously every 3 months. All the detected break-
points, and selected highest-magnitude breakpoint were recorded (date 
and magnitudes). 

Change maps based on the highest-magnitude breakpoint found in 
the 2000–2020 MODIS NDVI time series by BFASTm-L2, BFAST Lite, 
BFASTmonitor and Edyn were produced over the 200 × 200 MODIS 
pixels study area. The magnitudes for each map were then normalized 
between 0 and 1 in order to allow comparison. To quantitatively assess 
the performance of each method in detecting LSLAs induced changes, 
the average breakpoint magnitude within and outside the LSLAs (rep-
resented by red polygons in the study area) were computed and are 
presented in Table 3. 

3. Results 

3.1. Temporal accuracy and magnitude sensitivity of the single breakpoint 

3.1.1. Temporal accuracy of the breakpoint 
BFASTmonitor, BFAST Lite, Edyn and BFASTm-L2 were tested on the 

benchmark dataset (cf. section 2.1) to assess the performance of each 
method to accurately detect in time the different types of change 
(occurring in January of 2011). The breakpoints with the highest- 
magnitude were selected, and their temporal distributions relative to 
the true change are presented in Fig. 4 (cf. section 3.3.1). 

As a first observation one can see that most of the highest-magnitude 
breakpoints (of almost any change intensity), and with the exception of 
BFASTmonitor (4.a), are close in time to the true real change (less than 
6 months). The algorithms have however slightly different sensitivity to 
the different types of changes: 

- Regarding the seasonal changes (amplitude, LOS and NOS), 
BFASTm-L2 breakpoint magnitudes (4.d) are the most responsive to this 
type of change (>76% of the breakpoints in each subcategory of change 
are located ± 6 months of the true change). When looking more in 
detail, and compared to the other algorithms, BFASTm-L2 breakpoint 
magnitude is particularly sensitive to LOS changes (84.6% vs 70.1% for 
BFAST Lite and 41.6% for Edyn, at ± 6 months), and is as good as BFAST 
Lite in detecting NOS changes (98% vs. 100% at 6 ± months) and 
amplitude changes (76.8% for both at ± 6 months).  

- In what concerns gradual changes (Trend), all the algorithms have at 
least one breakpoint induced by this type of change, mostly occur-
ring one year before/after the true date of change.  

- BFAST Lite (4.a) breakpoint magnitude is very responsive to the 
break/trend changes (99% of the changes detected within 6 months 
vs. 83.4% for both BFASTm-L2 and Edyn). 

- Finally, regarding the no-change type, Edyn (4.c) was the only al-
gorithm to correctly detect no change in almost 80% of the cases (as 
seen with the NA class). 

Those first results show that selecting the BFASTm-L2 highest- 
magnitude breakpoint to correctly detect in time seasonal changes is 
effective. However, as one can expect multiple breakpoints detected in 
long and dense time series triggered by different types of change, the 
next question that comes up is: how comparable are the breakpoint 
magnitudes induced by the different change types? 

As a small parenthesis, it is worth to note that the performances of 
Edyn, BFAST Lite and BFASTmonitor are different than in Awty-Carroll 
et al. (2019). This is explained by the fact that: 1- A subsample of the 
original dataset was used (dataset without missing data), and smoothed; 
2- BFASTmonitor was run continuously without considering any “pen-
alty” period after each detected breakpoint; 3- Only the distributions of 
the highest-magnitude breakpoints were evaluated; 4- The “correct” 
detection period considered here for the abrupt changes is larger than in 
Awty-Carroll et al. (2019), who considered a maximum period of 3 
months for the abrupt changes and 1 year for the seasonal ones. 

3.1.2. Breakpoint-magnitude sensitivity to the type and intensity of change 
Fig. 5 shows the violin plots of the breakpoint’s magnitude for each 

algorithm and type of change, as explained in 2.4.2. This type of rep-
resentation helps in the identification of the type of change that will 
most likely be highlighted on a map when using the breakpoint 
magnitude as the mapping variable. 

Some general findings can be drawn from Fig. 5. First, one can 
observe that all the algorithms, with the exception of Edyn, have their 
highest breakpoint magnitudes (>0.4) induced by medium to large 
abrupt changes (i.e. the trend/break data subset without any associated 
trend change) (>0.2 NDVI units; cf. Table 1). Detection of seasonal 
changes will therefore very likely be hindered in time series with large 
abrupt changes. Second, and with the exception of the no-change cate-
gory, the lowest magnitudes are globally associated to the LOS changes. 
As such, one can expect LOS changes to be hardly detected in 
breakpoint-magnitude change maps. 

Going more in depth with the algorithms’ analysis, one can see that 
the BFASTm-L2 distributions means are the highest for two out of three 
(LOS and NOS) of the seasonal changes, with a remarkably high average 
for the NOS changes. In addition, the LOS and NOS distributions are well 
separated from the “No-change” category. This is important as it ensures 
the ability of the algorithm to highlight seasonal changes in breakpoint 
magnitude-based change maps. As a reminder, this remains possible as 
long as there are no large abrupt changes, or moderate to larger gradual 
changes (trends). Indeed BFASTm-L2, contrarily to BFASTmonitor or 
BFAST Lite, is sensitive to trends. Regarding the seasonal changes, 
BFASTmonitor, BFAST Lite and Edyn respond much better (higher 
magnitudes) to the amplitude changes than to NOS/LOS changes. This is 
particularly true for Edyn and even more for BFASTmonitor, which 
distribution base (for the smallest change intensity) is at almost 0.3. 

Finally, it is important to remember that the values represented in 
Fig. 5 were obtained from short and smoothed simulated time series, 
containing a unique change. As a result, the “No change” values for the 
different algorithms could in fact be higher in real time series with 
multiple small types of change, thus impacting the performance of each 
algorithm. To assess this, the different algorithms were tested on real 
time series and over a small area. Results are presented in the next 
section. 

3.2. Detection of LSLAs LULC driven changes 

3.2.1. Assessment on individual (pixel) study cases 
In this section, the capacity of the four algorithms to detect real 

seasonal changes on the four study cases (distributed from arid to humid 
conditions, see Fig. 1) is evaluated. The overview of Fig. 6, on which are 
overlaid the 2000–2021 MODIS NDVI time series and the period of 
change (grey boxes) for each study case, shows the diversity of type and 
intensity of changes found in the dataset: seasonal changes (all study 
cases present changes in amplitude, and study cases 1 to 3 show 

Table 3 
Average breakpoint magnitude (mean ± standard deviation) in LSLAs (red 
polygons in the study area) and the whole study area.   

BFAST 
Lite 

BFASTmonitor BFASTm- 
L2 

Edyn 

Breakpoint magnitude 
average in LSLAs 
(mean ± std) 

0.22 ±
0.14 
(n = 258) 

0.60 ± 0.15 
(n = 262) 

0.50 ±
0.13 
(n = 262) 

0.46 ±
0.16 
(n = 258) 

Breakpoint magnitude 
average outside LSLAs 
(mean ± std) 

0.22 ±
0.10 
(n =
37,653) 

0.38 ± 0.13 
(n = 37,343) 

0.23 ±
0.07 
(n =
37,343) 

0.28 ±
0.10 
(n =
37,684) 

Difference (in-out) 
(mean ± std) 

0.0 ±
0.17 

0.22 ± 0.20 0.27 ± 
0.15 

0.18 ±
0.19  
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Fig. 4. Temporal distributions of the highest-absolute magnitude breakpoint detected by BFASTmonitor (4.a), BFAST Lite (4.b), Edyn (4.c) and BFASTm-L2 (4.d), for 
six types of change (amplitude, length of season (LOS), number of season (NOS), monotonic trend (Trend), abrupt change (Break/trend) and no– change (None)). The 
x-axis represents the absolute difference in months between the breakpoint’s date of change and the real date of change (January of 2011). The y-axis represents the 
proportion of samples detected at each x-axis unit. The stacked bars colours indicate the different intensities of change (see Table 1). The second y-axis (in orange) 
represents the cumulative percentage of the number of samples within each change type. A bar at 6 months was arbitrarily added to allow comparisons (% of samples 
with date of change ≤ 6 months from real date of change). The NA class represents the cases for which no breakpoint was detected. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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important NOS changes), an extreme abrupt change (~+0.25 NDVI 
units) for study case 1 in 2018, and a strong positive trend (study case 2, 
start in 2016). 

On Fig. 6 (subpart b of each subplot), the multiple breakpoints 
detected by BFASTmonitor, BFASTm-L2 and Edyn are represented with 
vertical lines. The selected breakpoints are the ones having the highest 
magnitude, and are highlighted with a red dot at the extremity. BFAST 

Lite, BFASTm-L2 and Edyn performances (position of the unique 
breakpoint) are overall similar, with the following exceptions: i) a gap of 
3/4 years is observed between BFASTm-L2 and BFAST Lite/Edyn in 
study case 2 and, ii) Edyn selected breakpoint is far away (>10 years) 
BFASTm-L2/BFAST Lite breakpoints in study case 4. Compared to 
BFASTmonitor, Edyn found significant fewer breakpoints, mainly due to 
the used-fixed period length needed after each detected breakpoint to 

Fig. 5. Violin plots of the normalized highest-magnitude breakpoint, per type of change for: BFASTm-L2 (green), BFAST Lite (orange), BFASTmonitor (white) and 
Edyn (blue). Dots represent the mean of each distribution. “Abrupt” refers to the Trend/break data subset without any trend change (refer to section 2.2.1). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Application of the change detection algorithms to four Senegalese study cases showing agricultural LSLA implementations. For each study case, the cor-
responding pre-processed MODIS 2000–2021 NDVI time series with the different breakpoints detected (BFAST Lite)/selected (all others) are presented in the a 
subparts of the figures at the left. Figures at the right correspond to Google Earth snapshots closest in time with the LSLA implementation: the top/bottom snapshot 
for to the closest date available before/after the change. In the left figures: dashed lines correspond to the highest-magnitude breakpoints: green for BFASTm-L2, 
orange for BFAST Lite (1 break), black for BFASTmonitor and blue for Edyn (break dates are also given in the same colors to facilitate identification when 
breakpoints are superimposed). Grey shaded areas correspond to the period of change (1 year before and after the observed date of change). Grey subplots (subparts 
b) at the bottom present all the breakpoints detected by BFASTmonitor (black), BFASTm-L2 (green) and Edyn (blue), along with their magnitude (height of vertical 
lines). Red dots pinpoint the highest-magnitude breakpoint (in absolute value). Hatched areas correspond to periods without monitoring (because of the initial period 
of time needed for training, and for computation of L2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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ensure stability for model retraining. 
In study case 1, two major events occur: a central-pivot irrigation 

system was installed at the end of 2011 (conversion from small to large- 
scale agriculture), and as from 2018 a huge increase in productivity is 
observed. The first change mostly translates as seasonal changes (NOS, 
amplitude), while the second induces a sharp abrupt change in 2018. In 
this case, BFAST Lite, BFASTm-L2, but also Edyn, output a higher- 
magnitude breakpoint for the abrupt change than the seasonal one, 
which is in line with the findings made in section 4.1.2 (Fig. 5). 

Study case 2 (conversion from natural vegetation), is also concerned 
by the installation of a central-pivot irrigation system at the beginning of 
2016. It translates in the signal as seasonal changes (NOS, amplitude), 
with a positive trend. In this case BFAST Lite and Edyn selected break-
points are closely located in time (~1 year of difference), and both 
differs (>3 years) from BFASTm-L2 selected breakpoint. While BFAST 
Lite and Edyn breakpoints are closely located from big changes in 
amplitude, BFASTm-L2 highest magnitude breakpoint is located at the 
beginning of 2017, when seasonal changes are most marked, and most 
probably related to the concession implementation and start of 
activities. 

Study case 3 is another example of transition from natural vegetation 
to intensive agriculture, but in a less arid environment. The transition is 
visually observed in 2008 and mostly related to seasonal changes (NOS). 
Despite the high variability exhibited in the time series (particularly 
after 2008), BFAST Lite and BFASTm-L2 detects the same breakpoint, 
while Edyn differs from 9 months away in the middle of the second 
growing cycle of the first year of production. 

Lastly, study case 4 located in the most humid environment, shows 
more stability than the other study cases. Indeed, the land use change 
does not induce a significant change in the time series shape. The change 
being sought translates in a significant change in amplitude and a 
negative trend. Here again, BFAST Lite and BFASTm-L2 agreed in the 
breakpoint detected, inside the sought period of change. Edyn diverges 
from many years away, and outputs its highest-magnitude breakpoint 
where an amplitude change is observed. As a reminder, the Edyn 
breakpoint magnitude used here is the residual of the detected break-
point. While the standardized magnitude should be more adapted for the 
comparison of breakpoint magnitudes, it was not used here as more than 
one breakpoint may share the same maximum value thus hindering the 
selection of a unique breakpoint. Edyn sensitivity to the parameter 
lambda was tested, with the parameter set to 0.6 (Appendix A). All the 
highest-magnitude breakpoints found differed from those presented in 

Fig. 6, including for study case 1 which contains a huge abrupt change. 

3.2.2. Detection of LSLAs induced LULC changes in breakpoint magnitude 
maps 

So far, it has been shown that the performances of BFAST Lite and 
BFASTm-L2 in detecting in time seasonal changes are similar. However, 
because of the different sensitivities of the breakpoint magnitudes to the 
different types of change (Fig. 5), differences in the change maps based 
on the breakpoint magnitudes are expected. The change maps obtained 
with the different algorithms were evaluated over a study area close to 
Dakar, in which several LSLAs have been implemented since 2003 
(Fig. 7). 

The change maps based on the breakpoint magnitude display 
different spatial patterns. While LSLAs (red polygons) in the BFASTm-L2 
(subplot I.3) change map are clearly highlighted and have significantly 
higher magnitude values than the background (highest difference for 
BFASTm-L2 as shown in Table 3), this is not the case for BFAST Lite 
(subplot I.4) which difference between the values inside and outside 
LSLAs is null. 

BFAST Lite (subplot I.4) highest magnitudes are mainly located in 
two areas of the map: 1- in the centre of the map, in the wooded vege-
tation of the reserve of Bandia (see Appendix B.1) and, 2- in the top left 
of the map, forming a stripe pattern of high values related to a highway 
construction in 2016 (see Appendix B.2). When looking more in detail 
the time series of these two places, the first change corresponds to an 
amplitude change (what seem to probably be the end of a recovery 
phase), while the second correspond to an abrupt change. This is in line 
with the results shown in Fig. 5, which indicate that BFAST Lite 
breakpoint magnitude is mostly sensitive to abrupt changes and in a 
lesser extent to amplitude changes. Other seasonal changes (NOS and 
LOS) are not expected to be well discriminated from the background, 
particularly if, as it can be observed in I.4, the real background values 
are higher than what was expected from the no-change category in the 
simulated data set (less than0.1 vs. 0.1–0.3). 

At the opposite, and as mentioned above, BFASTm-L2 change map 
(Figure I.3) based on the highest-breakpoint magnitude is able to 
highlight reported LSLAs such as those represented by polygons A 
(corresponding to the study case 3) and C (also see zoom-ins II.A and II. 
C), but also to detect newer LULC changes located in points B and D, and 
induced by agricultural activities as observed in the subplots II.B and II. 
D of Fig. 7. “Pattern” changes induced by activities other than agricul-
ture are also detected, such as the ones related to the highway 

Fig. 7. PART I) From left to right, top to bottom: 1) Snapshot view of the study area (Map data ©2015 Google), (2) MODIS NDVI average over 2000–2020, 3–4-5–6) 
Breakpoints (normalized) magnitude maps using: (3) BFASTm-L2, (4) BFAST Lite, (5) BFASTmonitor, (6) Edyn. Red polygons represent the active agricultural LSLAs 
reported in the ISRA ground-field database. PART II) Google Earth zoom-in of points A, B, C, D plotted in all the maps of PART I. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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construction at the north-west of the map. 
Regarding BFASTmonitor change map (I.5), one can see that the 

highest-breakpoint magnitudes are globally positively correlated to 
average NDVI (I.2). Even if the average of the magnitudes within LSLAs 
is high (0.6, the highest of the set; cf. Table 3), the magnitudes are not 
particularly sensitive to the changes induced by LSLAs. As an example, 
and in contrast with the BFASTm-L2 change map, magnitudes are 
overall low in points C and B. From Fig. 5, and considering that the 
correlation with NDVI is lower for the other algorithms, we can advance 
that the BFASTmonitor magnitudes are mostly responsive to amplitude 
changes (instead of abrupt changes which would also be highlighted by 
BFAST Lite), or as observed in the previous section, to trend changes. 

Finally, one can see in subplot I.6 that LSLAs are somehow 
discriminated in the Edyn residual-based change map (I.6). This is 
corroborated by the average difference of the magnitudes within and 
outside LSLAs, which even if lower than the BFASTm-L2 one, is still non- 
negligible (0.18 vs. 0.27, cf. Table 3). Despite the fact that the break-
point residuals are not adapted for the breakpoint selection approach 
applied in this study (as the standardized magnitudes would be), the 
algorithm proved to respond to seasonal changes (in particular to 
amplitude changes). The drawback of the algorithm, and in particular 
for large-scale applications, is however its high sensitivity to the lambda 
parameter (Saxena et al., 2018) and low speed. This last point will 
certainly be improved in the future through the implementation of the 
algorithm on cloud platforms. 

3.2.3. Running times of the algorithms 
To assess the algorithm speed on real time series, the four algorithms 

and the L2 distance alone were applied on varying-size areas: from 
10x10 to 200x200 pixels. Results are presented in Fig. 8. 

From Fig. 8, BFASTm-L2 appears to be very fast (16.4 min for a 
200x200 pixels area), just after BFASTmonitor (2.0 min for a 200x200 
pixels area, with a median of numbers of breakpoints of 37). The “force- 
brute” method (the continuous computation of L2 at a 3-month step) 
took 21.1 min for the same area size, followed by BFAST Lite (86.5 min), 
and finally Edyn (439.8 min). Worth is to note that the R implementa-
tion of Edyn was called from python using the rpy2 interface, which may 
slower the entire process. Faster python implementation of Edyn may be 
further tested (as the vey recent pyEWMACD available in github 
https://github.com/lewistrotter/pyEWMACD). 

4. Discussion 

4.1. BFASTm-L2, an efficient method to detect seasonal changes 

The results obtained with the single-change simulated data set 
showed that BFASTm-L2 was the approach with the overall best per-
formance in accurately detecting seasonal changes, thereby demon-
strating the efficiency of combining BFASTmonitor and L2 distance for 
timely breakpoint selection (Fig. 4). The algorithm was particularly 
good at detecting, in a benchmark dataset with single changes, LOS 
changes (84.8%) and NOS changes (98%), but also changes in amplitude 
(76.8%) and break/trend changes (83.4%), which were however better 
detected by BFAST Lite (99%). 

When tested over simulated time series with a unique change, all the 
algorithms showed increased sensitivity (i.e. higher breakpoint magni-
tude) to abrupt changes (Fig. 5). However, when considering the sea-
sonal distributions alone in the violin plots of Fig. 5 BFASTm-L2 
presented the highest magnitude means for LOS and NOS. This was 
also a goal of this study, as it enhances the probability of being able to 
spatially identify large-scale persistent seasonal changes. 

When applied to real MODIS NDVI time series of individual case 
studies, BFAST Lite and BFASTm-L2 performed particularly well, pro-
ducing similar performances in detecting the different types of change 
(Fig. 6). However, on the study area, BFAST Lite in contrast to BFASTm- 
L2 failed to spatially highlight the changes in LULC caused by the setting 
up of the different types of agro-industrial concessions (LSLAs) (Fig. 7). 
This is mostly explained by the lower breakpoint magnitudes of BFAST 
Lite associated with seasonal changes (LSLAs mostly seemed to induce 
changes in NOS, as shown in Fig. 6), but also because the real back-
ground values of BFAST Lite were higher than, the simulated data led us 
to expect (see Table 3). On the contrary, BFASTm-L2 and in a lesser 
extent Edyn, efficiently spatially capture LSLA driven changes. To better 
identify the type of change induced by LSLAs, the violin plots of Fig. 5 
along with the change maps of Fig. 7 were helpful in this task. Consid-
ering the performance similarities in breakpoint detection between 
BFAST Lite and BFASTm-L2, and the responsiveness of BFAST Lite 
magnitudes to abrupt and amplitude changes, in case LSLAs induced 
changes were of any of these types (i.e. amplitude or abrupt), they would 
certainly be highlighted in the BFAST Lite’s change map. This is not the 
case. Agro-industrial LSLAs induced changes are therefore probably of 
seasonal type (NOS and/or LOS). This interpretation is strengthened by 
the different specific study cases presented in Fig. 6. In addition, because 
Edyn (which was also able to capture LSLAs changes) outputs breakpoint 
magnitudes for gradual changes of the same order as the no-change 
category, the probability that the LSLAs changes captured by BFASTm- 
L2 but also by Edyn are due to trend changes is low. 

In terms of process speed, BFASTm-L2 produced the second-best 
performance after BFASTmonitor, despite its high rate of false posi-
tives, probably enhanced in this study by the absence of a “penalty” 
period applied after each detected breakpoint, and the non-automatic 
determination of a stable training period. Indeed, it is worth to 
remember that the BFASTm-L2 approach relies on the L2-distance, 
computed whenever a breakpoint is detected by BFASTmonitor. As a 
result, the speed of this approach depends on the number of breakpoints 
found in long time series. With a step frequency of three months, and a 
monitoring period of 14 years, BFASTm-L2 proved to be faster than the 
force-brute method represented by L2 computed continuously over 
areas of>100x100 pixels (Fig. 8). Worth is to notice that running times 
may be improved by changing the step frequency, by removing some of 
the detected breakpoints if too close one to the other, or by using a more 
optimized algorithm (that effectively does implement the automatic 
detection of the training period). 

To resume, the main contributions brought to the change detection 
community through this study are: Fig. 8. Running time mean and standard-deviations (5 runs) over areas with 

varying-size, using 6-cores parallel processing (64 Go RAM) for the 5 change 
detection approaches. 
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- The proposition of BFASTm-L2 as a change detection method faster 
than BFAST Lite, already known for its speed, making easier its 
application at larger scales;  

- A change detection approach with breakpoint magnitudes more 
sensitive to seasonal changes. This allows to highlight agricultural- 
induced LULC changes, supporting the hypothesis that generic 
LULC changes are very often seasonal, and that more importance 
should be given to the detection of this type of change.  

- More understandable BFASTmonitor, BFAST Lite and Edyn 
magnitude-based change detection maps. Because of the sensitivity 
analysis made to the different types of change, insights on the dy-
namics behind the changes observed in a change map are gained. 

4.2. Recommendations for using BFASTm-L2 to detect and map LULC 
changes at regional/ national scale 

While it is clear that changes in land use/land cover (LULC) involve 
changes in the composition of the vegetation which, in turn, result in 
changes in phenology and seasonality (e.g. a transition from grassland to 
croplands (Mardian et al., 2021)), the relationship between a change in 
land use and a change in seasonality is less straightforward. To check 
this link, we focussed on changes in the system of land use caused by 
agroindustrial LSLAs installation in the study area. Foreseen specific 
changes were transitions from natural vegetation or small-scale agri-
culture to large-scale agricultural systems. These changes were identi-
fied without the use of any threshold, mask, or any prior information on 
the type of land cover or on the direction of the change, meaning the 
method is suitable for use in unsupervised change detection pipelines. 
Most of the known LSLAs-related land use changes in the study area 
were spatially highlighted with BFASTm-L2 and in a lesser extent with 
Edyn, but not with BFAST Lite, suggesting that these specific LULC 
changes may occur without necessarily causing any abrupt change. 

However, even if BFASTm-L2 produced promising results, some 
limitations should be mentioned. First, and as pointed out in the violin 
plots of Fig. 5, the breakpoint highest-magnitude based selection 
approach hinders the identification of seasonal changes when time se-
ries contain abrupt changes. Second, BFASTm-L2 aims to detect seasonal 
changes based on the use of the time signal canopy greenness (estimated 
through the NDVI) as a disturbance indicator. In greener environments 
such as in Casamance (Southern Senegal), where the difference in sea-
sonality may be less marked, the method may be less sensitive to 
changes in land use. In such cases, other indicators more sensitive to 
vegetation biomass should be tested. Third, BFASTm-L2 is highly sen-
sitive (i.e. high breakpoint magnitudes) to trends, which are often linked 
to vegetation recovery/degradation land processes. While trends 
induced by these land processes are frequently accompanied by changes 
in amplitude, other seasonal changes such as NOS changes are less ex-
pected. Because of this, and because amplitude changes do not pro-
foundly affect the time series shape, shape metrics such as the Procrustes 
distance could be used in the future to minimize the detection of these 
type of changes. A last limitation is the inability of BFASTm-L2 to detect 
recent changes (earlier than the defined L2-w period, in our case 3 
years). 

When thinking of using this method with other sensors, it is useful to 
remember that BFASTm-L2 relies on time series that: 1- have a high 
temporal frequency sufficient to properly represent the phenology, 2- 
are long enough (8 years as minimum) and 3-are gap-free and smoothed, 
in order to minimise false detections. As such, applications with Sentinel 
are currently hampered because of the short temporal depth. On another 
hand, under tropical conditions and with frequent cloud coverage, 
highly temporal frequency time series are hardly obtained with Sentinel 
and Landsat. Finally, because of those sensors’ higher spatial resolu-
tions, running times would increase, thus hindering the application of 
BFASTm-L2 at larger scales. With MODIS data, BFASTm-L2 is able to 
detect other LULC changes occurring at large scale than those related to 
LSLAs, such as the changes related to mining and urbanization 

processes. 
Lastly, it is worth emphasising that the method proposed here is 

purely pixel-based, and that it needs to be completed by a spatial 
analysis, in order to better identify the drivers of changes in land use and 
to better interpret the changes. Because of the positive correlation be-
tween the NDVI and the breakpoint magnitudes, spatial analysis should 
be limited to areas that do not encompass many different ecoregions. 
Further research on spatial analysis at larger scale will be done. 

5. Conclusions and perspectives 

We developed a simple, automatic and rapid approach to select the 
breakpoint linked to the largest seasonal change in long and dense NDVI 
MODIS real time series with multiple breakpoints. The method, named 
BFASTm-L2, is based on the combined use of BFASTmonitor algorithm 
and the L2 euclidean distance for breakpoint selection, and was shown 
to accurately detect most of the single change types included in a sub-
sample of the Awty-Carroll et al. (2019) benchmark set. Applied to a 
study area in Senegal using 20 years of MODIS satellite imagery the 
algorithm, through the spatialization of its single breakpoint magnitude, 
proved to be able to spatially identify LULC changes induced by the 
implementation of agro-industrial concessions in Senegal. This task, 
performed automatically without the need for any prior knowledge, is fit 
to be included in unsupervised pipelines to map and analyse generic 
LULC changes at regional scale. This was also possible because of the 
absence of any abrupt changes, supporting the hypothesis that generic 
LULC changes are very often seasonal, and that more importance should 
be given to the detection of this type of change. 

To improve the detection of changes in the LULC at regional and 
national scales, an operational tool will be developed on a platform such 
as Google Earth Engine. This will enable supporting land monitoring 
initiatives such as the Land Matrix in detecting and monitoring 
anthropogenic changes such as those driven by LSLAs, for which much 
information remains to be gathered to help ground local teams. 

CRediT authorship contribution statement 

Yasmine Ngadi Scarpetta: Conceptualization, Methodology, Data 
curation, Formal analysis, Validation, Visualization, Writing – original 
draft. Valentine Lebourgeois: Writing – review & editing, Supervision, 
Resources, Funding acquisition. Anne-Elisabeth Laques: Resources, 
Supervision. Mohamadou Dieye: Investigation, Data curation. Jérémy 
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