
HAL Id: hal-04164096
https://hal.science/hal-04164096

Submitted on 18 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

SkyPole-A method for locating the north celestial pole
from skylight polarization patterns

Thomas Kronland-Martinet, Léo Poughon, Marcel Pasquinelli, David Duché,
Julien R Serres, Stéphane Viollet

To cite this version:
Thomas Kronland-Martinet, Léo Poughon, Marcel Pasquinelli, David Duché, Julien R Serres, et al..
SkyPole-A method for locating the north celestial pole from skylight polarization patterns. Pro-
ceedings of the National Academy of Sciences of the United States of America, 2023, 120 (30),
�10.1073/pnas.2304847120�. �hal-04164096�

https://hal.science/hal-04164096
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


BRIEF REPORT ENGINEERING
ECOLOGY OPEN ACCESS

SkyPole—A method for locating the north celestial pole from
skylight polarization patterns
Thomas Kronland-Martineta,b ID , Léo Poughona ID , Marcel Pasquinellib ID , David Duchéb , Julien R. Serresa,c ID , and Stéphane Violleta,1 ID

Edited by Hui Cao, Yale University, New Haven, CT; received March 24, 2023; accepted June 10, 2023

True north can be determined on Earth by three means: magnetic compasses, stars,
and via the global navigation satellite systems (GNSS), each of which has its own
drawbacks. GNSS are sensitive to jamming and spoofing, magnetic compasses are
vulnerable to magnetic interferences, and the stars can be used only at night with a
clear sky. As an alternative to these methods, nature-inspired navigational cues are of
particular interest. Celestial polarization, which is used by insects such as Cataglyphis
ants, can provide useful directional cues. Migrating birds calibrate their magnetic
compasses by observing the celestial rotation at night. By combining these cues, we
have developed a bioinspired optical method for finding the celestial pole during the
daytime. This method, which we have named SkyPole, is based on the rotation of the
skylight polarization pattern. A polarimetric camera was used to measure the degree
of skylight polarization rotating with the Sun. Image difference processes were then
applied to the time-varying measurements in order to determine the north celestial
pole’s position and thus the observer’s latitude and bearing with respect to the true
north.

celestial navigation | celestial compass | polarized vision | geolocation | GPS-denied environment

During the last few decades, many high-precision geolocation tools have emerged thanks
to Global Navigation Satellite Systems (GNSS) (1). However, GNSS-based position
estimates are sometimes unreliable because of the multipath reception involved (2) and
their sensitivity to jamming and spoofing. To overcome this problem, inertial navigation
systems (INS) have been used to obtain position and orientation by implementing dead
reckoning methods (3). However, INS suffer from a loss of precision in time due to the
accumulating sensor measurement errors. Navigation issues have also been successfully
handled by some animals by processing scarce information using simple navigational
methods. The authors of neuro-ethological studies have described the use of skylight
polarization patterns by insects such as desert ants for navigation purposes (4). Several
studies have also established that migratory birds, such as Indigo Buntings (5, 6) and
Savannah Sparrows (7), calibrate their magnetic compass at night by observing the
dynamic movements of stars around the celestial pole (8). On similar lines, migratory
songbirds calibrate their magnetic compass during the daytime on the basis of skylight
polarization patterns (9, 10). Skylight polarization can be described by Rayleigh’s single
scattering model (11), in which sunlight is assumed to be scattered by small particles
present in the Earth’s atmosphere. Based on this model, cheap and reliable GPS-free
polarization-based navigation methods have been developed. For instance, by mimicking
the Cataglyphis desert ant, a polarization-based optical compass can provide a reference
local bearing defined with respect to the polarization pattern in the sky (12, 13). However,
like ordinary INS, polarization-based INS also suffers from integration drift. To overcome
this problem, direct geopositioning can be achieved based on skylight polarization
patterns without any need for GPS. By estimating the Sun’s position from the skylight
polarization pattern and combining this information with complex calculations (solar
ephemeris), the observer’s position can be computed (14–16). However, animals do not
have access to ephemeris, and their use of polarization as a local or global reference for
navigation purposes has not yet been completely elucidated.

In line with previous assumptions about the perception of polarized light by animals,
we have adopted the suggestion put forward by Brines (17) that the temporal properties
of the skylight polarization pattern can be regarded as a strong useful navigation cue. We
developed a bioinspired method to find the geographical north bearing and the observer’s
latitude, requiring only skylight polarization observations.

Skylight is mostly linearly polarized and characterized by two parameters: the angle
of linear polarization (AoLP) and the degree of linear polarization (DoLP). The present
method consists in comparing skylight DoLP images taken at different moments, in
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Fig. 1. (A) Scattering angle  , azimuth �P of a point P, and altitude �S of
the Sun S. Parameters are presented in the ENU frame, namely East, North,
and Up frame, centered on the observer O. The colored patterns stand for
the skylight DoLP as described in Eq. 1. Dark blue corresponds to near-zero
DoLP and yellow to maximum DoLP values (1 in theory, less in reality). (B) The
trajectory of the Sun in the ENU frame, centered on an observer O located
at latitude �. NCP is the north celestial pole. The Sun moves on a plane
perpendicular to the observer–NCP vector. (C) Invariance axis on the celestial
sphere. Comparison between simulated and analytical sets of solutions. The
green circle is the radial invariance circle; the red circle is the plane invariance
circle computed from analytical calculations (cf. SI Appendix). The colored
half sphere is the simulated absolute difference between two DoLP patterns
associated with the Sun’s positions S1 and S2 at two different times. Dark
blue corresponds to near-zero values. The red dot is the NCP. (D) Method for
finding the NCP based on the skylight’s DoLP pattern. In the first row are the
DoLP patterns taken at four different times. Absolute differences between
DoLP patterns were then computed, giving the second row. A thresholding
step was then applied to those images, and the results are presented in the
third row. Last, binary images were summed, and the NCP was then located
at the intersection between the radial invariances.

order to find the north celestial pole (NCP). The geographical
north bearing and the observer’s latitude can then be deduced
from the NCP coordinates.

Numerical Simulations of the SkyPole Method

When sun rays enter the atmosphere, Rayleigh scattering occurs,
resulting in an observable pattern of skylight polarization depend-
ing on the Sun’s position. As described by the single scattering
Rayleigh model, skylight polarization is mostly linear, and two
quantities describing this phenomenon can therefore be observed,
namely the direction of linear polarization and the DoLP. In this
study, we focused on the DoLP, which is defined by the ratio
between the polarized light intensity and the total light intensity.
In the Rayleigh single scattering model, the pattern of DoLP can
be described as follows (11):

DoLP(γ ) =
1− cos2 (γ )
1 + cos2 (γ )

, [1]

where γ is the scattering angle (cf. Fig. 1A).
Eq. 1 describes two noteworthy properties of the DoLP

pattern: its radial symmetry about the solar vector and the plane
symmetry about the plane perpendicular to the solar vector,
including the reference point O (Fig. 1A). Therefore, as depicted
in Fig. 1C, when the Sun has shifted from an initial position,
the resulting shifted DoLP pattern remains unchanged on two
axes due to the symmetry of the DoLP function. From now on,
we will refer to these invariances as radial and plane invariance.
Similar patterns in the magnetic field might be seen by migratory

birds to find north (18). We computed the difference between
the images of the two patterns of DoLP taken at two distinct
moments (with time intervals ranging from 30 to 60 minutes)
in order to display the radial and plane invariance axes (Fig.
1C ). Since the Sun rotates around the NCP (the south celestial
pole as perceived by an observer in the Southern hemisphere,
cf. ref. 19 for further details), the scattering angle γ is constant
at this point, and therefore, the DoLP at the NCP will remain
constant at all times of day. The NCP is located on the radial
invariance circle, and this is the only visible point on the
celestial sphere which is present at all times on this axis (cf. SI
Appendix). The NCP can therefore be found at the intersection
between the radial invariance axes resulting from time-varying
DoLP image differences. Theoretically, only three views of the
sky’s DoLP pattern are necessary for computing the position of
the NCP.

Results

The SkyPole algorithm was tested on data recorded with a
polarimetric camera equipped with a fisheye lens. The camera
was placed on the roof of a laboratory in Marseille, France
(43.286987◦N, 5.4032786◦E) giving a quasi-hemispherical view
of the sky dome. The SkyPole algorithm described in Fig. 1D was
applied to DoLP images of the sky in order to locate the NCP
and assess the accuracy of the method. As the NCP is located
in the sky at an azimuth equal to that of the geographical north
and an altitude equal to the observer’s latitude, the latitude and
north bearing measured were compared with the ground truth
values obtained from the solar ephemeris. As shown in Fig. 2, the
results obtained by applying the SkyPole method to experimental
data (20) were consistent with the simulated results presented in
Fig. 1D. We also estimated the NCP’s position with an azimuth
of the camera ranging from 0 to 170◦ in steps of 10◦ (cf. Fig.
3). A mean absolute azimuth error of 2.6◦ and a mean absolute
latitude error of 3.8◦ were obtained.

Discussion

The method presented here for locating the NCP requires only
visual observations of the skylight polarization patterns. No

Radial 
Invariance

Radial 
Invariance

Radial 
InvariancePlane 

Invariance
Plane 

Invariance Plane 
Invariance

thresholding thresholding thresholding

- - -

NCP

Fig. 2. SkyPole algorithm applied to experimental data for finding the NCP.
Preprocessing of the first row of DoLP images consisted in filtering the images
obtained using a circular averaging filter. Details of the following steps are
presented in Fig. 1D.
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Fig. 3. NCP coordinates computed with the SkyPole algorithm (Fig. 2) from
experimental data versus ground truth NCP coordinates. �cam is the azimuth
of the camera with respect to the north. �NCP is the azimuth of the NCP with
respect to the azimuth of the camera. �NCP is the altitude of the NCP, which
is also equal to the camera’s latitude. 1�NCP and 1�NCP are the azimuth and
altitude error, respectively, of the NCP measured with respect to the ground
truth values. nmeas is the number of measurements for each error interval.

knowledge of time, date, or ephemeris, and no estimates of the
actual or initial position are required for this purpose. The image-
processing steps do not rely on large computational resources.
The efficiency of our method has been proved in simulations and
under experimental conditions, thus confirming the validity of
the theoretical model (cf. SI Appendix).

The accuracy of our algorithm may also seem rather too low for
some geolocation applications. It is worth noting, however, that
this algorithm has been kept as simple as possible, and that more
sophisticated data processing algorithm would no doubt greatly
improve the accuracy. Most of the errors in the NCP position
estimates can be explained by two different sources of noise:
skylight noise and camera noise. Skylight noise originates from
multiple scattering or non-Rayleigh scattering in the atmosphere,
such as Mie scattering, for instance. In this study, in order to
reduce the influence of this kind of noise, we used data with

low noise levels, corresponding to a clear blue sky or an only
slightly overcast sky. In future studies, special emphasis should
be placed on image filtering in order to reduce the influence of
noise. In addition, in the case of both simulated and measured
observations, each NCP position estimation process required
several hours of observation. In this study, the aim was to
find the NCP using only the radial invariance of the difference
between skylight DoLP patterns. However, the point visible at the
intersection between plane invariance and radial invariance gives
the sky’s maximum DoLP value, which gives direct information
about the Sun’s elevation.

Materials and Methods

The SkyPole method was tested with data collected from a Rayleigh sky
simulation. We also tested our method with experimental data obtained with
a calibrated Lucid Vision Lab PHX050S-QC, division of focal plane polarimetric
camera. Our data were first preprocessed with a circular averaging filter. Next,
we implemented the absolute difference in DoLP between several moments
of time. We then applied a threshold-based binarization algorithm. Next, in
order to obtain the NCP, several binary images were added. The NCP was
located by searching for the maximum valued point, namely the intersection
between all the radial invariance axes (cf. Fig. 1D). Last, the coordinates of the
point were transformed to north and latitude coordinates and compared with
the ground truth values. Additional experiments and data are available here:
https://osf.io/fcsgk/.

Conclusion

In this paper, a method is presented for finding the NCP in the
daytime by measuring the skylight polarization patterns. This
method gives an estimate of the bearing toward the Geographical
North Pole and the latitude of the observer.

Our minimalistic SkyPole algorithm could suggest a hypoth-
esis in terms of possible visual processing steps used by animals
to navigate. With a relatively long acquisition time, SkyPole may
not be sufficient for autonomous navigation. However, SkyPole
might be implemented on board future geolocation systems to
provide navigation information in GPS-denied environments
since it requires only skylight polarization observations.

Data, Materials, and Software Availability. Code and data images have
been deposited in Open Science Foundation.
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Supporting Information Text10

We provide here a mathematical explanation of the SkyPole method.11

12

For readers unfamiliar with spherical astronomy, we highly recommend the reading of Smart’s textbook on spherical astronomy13

(1). In particular, chapter II, "The Celestial Sphere" provides useful illustrated definitions.14

Warning, Symbols used in this document might differ from those used in (1).15

Preliminary hypotheses16

For the sake of simplicity, we made the following hypotheses:17

1. we assume that the rotation of the Earth around the Sun, as well as the movements of nutation and precession of the18

Earth can be neglected. Therefore, the scattering angle between the Sun and the celestial pole can be considered constant19

on a short time period of about one day or less;20

2. we consider only Rayleigh single scattering, even though Mie scattering and multiple scattering occur in the atmosphere.21

This hypothesis is yet reasonable as it has been shown that Rayleigh scattering described quite faithfully the skylight22

polarization (2). We also consider that the maximum value of skylight degree of linear polarization (DoLP) is constant23

during the observation time. Therefore, this value will not appear in the calculus;24

3. we only consider observations made on the Earth north hemisphere. Therefore, only the north celestial pole (NCP) will25

be evoked. However, the calculations are similar for observations made on the south hemisphere.26

Mathematical materials related to DoLP invariances27

In this section, we will demonstrate that the DoLP is time invariant at the NCP. We will also introduce the sets of DoLP time28

invariant points.29

If we consider the origin O of the ENU frame, and a point P on the celestial sphere, the vector going from O to P is noted30 −→
P in all the document. We consider −→

P as a unit vector31

32

Let us define −→
S , the Sun vector. The Sun vector with respect to the latitude ϕ, the declination δ and the hour angle ω in33

the ENU (East, North, Up/Zenith) frame is defined as follows (cf. (3)):34

−→
S = − cos δ sin ω

−→
E + (sin δ cos ϕ − cos δ sin ϕ cos ω)−→N + (cos δ cos ϕ cos ω + sin δ sin ϕ)−→Z [1]35

Where ϕ ∈ [− π
2 , π

2 ], δ ∈ [−0.41, 0.41], and ω = (hour − 12)15◦, with hour the local apparent solar time (0-24h), such as in36

radians, ω ∈ [−π, π]. For the sake of simplicity, we will suppose ϕ ∈] − π
2 , π

2 [37

38

Let us consider a point P , whose scattering angle is given by the time dependant function γP . The DoLP at the point P is39

invariant between two times t1 and t2 if and only if :40

DoLP (γP (t1)) = DoLP (γP (t2)) ⇐⇒ 1 − cos2 (γP (t1))
1 + cos2 (γP (t1)) = 1 − cos2 (γP (t2))

1 + cos2 (γP (t2)) ⇐⇒ cos2 (γP (t1)) = cos2 (γP (t2))

⇐⇒ cos (γP (t1)) = ± cos (γP (t2)) ⇐⇒
−→
S1 ·

−→
P = ±

−→
S2 ·

−→
P

[2]41

Where S1 and S2 denote the Sun at time t1 and t2 respectively, and · is the scalar product.42

Moreover, if we consider a given point on the celestial sphere −→
P (xp, yp, zp), at a given time t, we have from Eq. (1):43

−→
S ·

−→
P = −xp cos δ sin ω + yp(sin δ cos ϕ − cos δ sin ϕ cos ω) + zp(cos δ cos ϕ cos ω + sin δ sin ϕ) [3]44

DoLP is time invariant at the NCP. Having determined the condition for the DoLP to be invariant, we will now show that the45

DoLP is time invariant at the NCP.46

At the NCP, we have: xp = 0 (North bearing in ENU frame), yp = cos ϕ and zp = sin ϕ (altitude of NCP is equal to the47

latitude of point P). Thus, Eq. (3) becomes:48

−→
S ·

−−−→
PNCP = cos ϕ(sin δ cos ϕ − cos δ sin ϕ cos ω) + sin ϕ(cos δ cos ϕ cos ω + sin δ sin ϕ)

= cos2 ϕ sin δ + sin2 ϕ sin δ = sin δ
[4]49

We notice here that the DoLP is only dependant on the Sun’s declination. However, we assumed earlier that the rotation of50

the Earth around the Sun was negligible, meaning the declination is constant. Therefore, we can reasonably assume that the51

DoLP is constant at the NCP during a one day observation.52

Sets of points whose DoLP is time invariant. In this section, we will seek for all the points with DoLP invariant between two53

successive instants t1 and t2. To find all the solutions, we should solve, from Eq. (2), the equations −→
S1 ·

−→
P = −→

S2 ·
−→
P and54

−→
S1 ·

−→
P = −

−→
S2 ·

−→
P .55
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First Set, radial invariance Let us consider the first equation −→
S1 ·

−→
P = −→

S2 ·
−→
P56

From Eq. (3), we have :57

−→
S1 ·

−→
P −

−→
S2 ·

−→
P = − xp cos δ [sin ω1 − sin ω2] − yp cos δ sin ϕ [cos ω1 − cos ω2]

+ zp cos δ cos ϕ [cos ω1 − cos ω2]
= cos δ (−xp [sin ω1 − sin ω2] + (−yp sin ϕ + zp cos ϕ) [cos ω1 − cos ω2]) = 0

[5]58

Where ω1 and ω2 are the hour angles related to S1 and S2 respectively.59

Moreover, the point P can be expressed in hemispherical coordinates by two coordinates only, the azimuth α and the60

altitude θ (α is null for a point in the north direction and positive when turning from North to East, and θ is null for a61

point on the horizon and 90° at the zenith), which reduces the equation to two independent unknowns. We therefore consider62
−→
P (cos θ sin α, cos θ cos α, sin θ). Eq. (5) then becomes:63

−→
S1 ·

−→
P −

−→
S2 ·

−→
P = cos δ(− cos θ sin α [sin ω1 − sin ω2]

+ (− cos θ cos α sin ϕ + sin θ cos ϕ) [cos ω1 − cos ω2]) = 0

⇐⇒ tan θ =
cos α sin ϕ tan

(
ω1+ω2

2

)
− sin α

cos ϕ tan
(

ω1+ω2
2

) [6]64

Therefore, the set of solutions (α, θ) of the equation −→
S1 ·

−→
P = −→

S2 ·
−→
P is:65

Set1 =

{(
α, tan−1

[
cos α sin ϕ tan

(
ω1+ω2

2

)
− sin α

cos ϕ tan
(

ω1+ω2
2

) ])
, α ∈ [−π, π[

}
[7]66

This set fully describes the radial invariance discussed in the article.67

Check : at the NCP α = 0, and we have a DoLP invariance between time t1 and t2 if tan θ = tan ϕ, that is θ = ϕ.68

Second Set, plane invariance Let us now consider the second equation −→
S1 ·

−→
P = −

−→
S2 ·

−→
P69

We have from Eq. (3):70

−→
S1 ·

−→
P + −→

S2 ·
−→
P = − xp cos δ [sin ω1 + sin ω2] + yp(2 sin δ cos ϕ − cos δ sin ϕ [cos ω1 + cos ω2])

+ zp(cos δ cos ϕ [cos ω1 + cos ω2] + 2 sin δ sin ϕ) = 0
[8]71

As before, we replace the cartesian coordinates of the point by hemispherical coordinates. We thus obtain :72

−→
S1 ·

−→
P + −→

S2 ·
−→
P = − cos θ sin α cos δ [sin ω1 + sin ω2]

+ cos θ cos α(2 sin δ cos ϕ − cos δ sin ϕ [cos ω1 + cos ω2])
+ sin θ(cos δ cos ϕ [cos ω1 + cos ω2] + 2 sin δ sin ϕ) = 0

⇐⇒ tan θ =sin α cos δ [sin ω1 + sin ω2] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω2])
cos δ cos ϕ [cos ω1 + cos ω2] + 2 sin δ sin ϕ

[9]73

Finally, the set of solutions (α, θ) of the equation −→
S1 ·

−→
P = −

−→
S2 ·

−→
P is:74

Set2 =
{(

α, tan−1
[

sin α cos δ [sin ω1 + sin ω2] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω2])
cos δ cos ϕ [cos ω1 + cos ω2] + 2 sin δ sin ϕ

])
, α ∈ [−π, π]

}
[10]75

This set fully describes the plane invariance discussed in the article.76

Remark : for an observer located on earth, the only visible solutions are those with θ ≥ 0 (without considering earth curvature77

effects).78

The NCP is the only point included in the radial invariance set at any time. This part aims at showing that if a point is on the79

radial invariance for different times, then this point is necessarily the NCP.80

Let (ω1, ω2) ∈ [−π, π[2, and Set1(ω1,ω2) the set of (α, θ) ∈ [−π, π[2 solution of −−→
Sω1 ·

−−−−−→
P (α, θ) = −−→

Sω2 ·
−−−−−→
P (α, θ), with −−→

Sω1 and −−→
Sω281

the sun vectors at time ω1 and ω2 respectively. Let us show the assertion : ∀(ω1, ω2) ∈ [−π, π[2, (α, θ) ∈ Set1(ω1,ω2) ⇐⇒82

(α, θ) = (0, ϕ).83
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Demonstration We already know that (0, ϕ) is always in Set1(ω1,ω2). Let us show that this solution is unique. Let (ω1, ω2, ω3) ∈84

[−π, π[2, and (α, θ) ∈ Set1(ω1,ω2) ∩ Set1(ω1,ω3).85

Since (α, θ) ∈ Set1(ω1,ω2), we have:86

tan θ =
cos α sin ϕ tan

(
ω1+ω2

2

)
− sin α

cos ϕ tan
(

ω1+ω2
2

) [11]87

We also have (α, θ) ∈ Set1(ω1,ω3), so :88

tan θ =
cos α sin ϕ tan

(
ω1+ω3

2

)
− sin α

cos ϕ tan
(

ω1+ω3
2

) [12]89

Without loss of generality, we set t1 = ω1+ω2
2 and t2 = ω1+ω3

2 . Then, from Eq. (11) and Eq. (12), and since θ ∈ [−π, π[, we have90

cos α sin ϕ tan t1 − sin α

cos ϕ tan t1
= cos α sin ϕ tan t2 − sin α

cos ϕ tan t2
[13]91

By assuming t1, t2 ̸= 0 and ϕ ̸= ± π
2 , we have from Eq. (13):92

sin α cos ϕ tan t2 = sin α cos ϕ tan t1 [14]93

Therefore, since ϕ ̸= ± π
2 and assuming t1 ̸= t2, we must have sin α = 0. Thus α ∈ {0, −π}. If α = 0, then θ = ϕ, and if94

α = −π, then θ = −ϕ. Yet, for an observer located on the earth surface only positive altitudes are considered, so (α, θ) = (0, ϕ)95

(observer on North hemisphere), which is by definition the NCP position.96

There is no point included in the plane invariance set at any time. In this section, we will show that their is no point such as the97

NCP in the plane invariance set.98

Let us consider (ω1, ω2) ∈ [−π, π[2 , and Set2(ω1,ω2) the set of (α, θ) ∈ [−π, π[2 solution of −−→
Sω1 ·

−−−−−→
P (α, θ) = −

−−→
Sω2 ·

−−−−−→
P (α, θ)99

Let us show the assertion :100

∃ (ϕ, δ) ∈ [−π

2 ,
π

2 ] × [−0.41, 0.41], ∀ (α, θ) ∈ [−π, π[2, ∃ (ω1, ω2) ∈ [−π, π[2, (α, θ) /∈ Set2(ω1,ω2) [15]101

We know from Eq. (10) that for a given (ω1, ω2, ω3) ∈ [−π, π[3,102

(α, θ) ∈ Set2(ω1,ω2)

⇐⇒ tan θ = sin α cos δ [sin ω1 + sin ω2] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω2])
cos δ cos ϕ [cos ω1 + cos ω2] + 2 sin δ sin ϕ

[16]103

and104

(α, θ) ∈ Set2(ω1,ω3)

⇐⇒ tan θ = sin α cos δ [sin ω1 + sin ω3] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω3])
cos δ cos ϕ [cos ω1 + cos ω3] + 2 sin δ sin ϕ

[17]105

Therefore, from Eq. (16) and Eq. (17), and since θ ∈ [−π, π[,106

(α, θ) ∈ Set2(ω1,ω2) ∩ Set2(ω1,ω3)

⇐⇒ sin α cos δ [sin ω1 + sin ω2] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω2])
cos δ cos ϕ [cos ω1 + cos ω2] + 2 sin δ sin ϕ

− sin α cos δ [sin ω1 + sin ω3] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω3])
cos δ cos ϕ [cos ω1 + cos ω3] + 2 sin δ sin ϕ

= 0

[18]107

Let us consider f : [−π, π[→ R such that108

f(α) =sin α cos δ [sin ω1 + sin ω2] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω2])
cos δ cos ϕ [cos ω1 + cos ω2] + 2 sin δ sin ϕ

− sin α cos δ [sin ω1 + sin ω3] + cos α (−2 sin δ cos ϕ + cos δ sin ϕ [cos ω1 + cos ω3])
cos δ cos ϕ [cos ω1 + cos ω3] + 2 sin δ sin ϕ

[19]109

Let us consider some fixed parameters, for example δ = 0.2, ϕ = π
4 , ω1 = 0, ω2 = π

5 . By plotting this function for α ∈ [−π, π[,110

and ω3 ∈
{

2π
5 ; 3π

5

}
, we see that when ω3 = 2π

5 , α solutions of f(α) = 0 are not solution of f(α) = 0 when ω3 = 3π
5 . Therefore111

there is no (α, θ) ∈ [−π, π[2 such that (α, θ) ∈ Set2(0, π
5 ) ∩ Set2(0, 2π

5 ) ∩ Set2(0, 3π
5 ).112
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Measurement device113

Experimental data were obtained with a division of focal plane color-polarimetric camera (PHX050S-QC from Lucid Vision114

Labs, sensor ref. Sony IMX250MYR) topped with a 185° fisheye lens (Fujinon FE185C57HA-1). The camera was installed on115

the roof of the INT Lab at La Timone, Marseille, France (43.286990365824785°N, 5.403361407820939°E), and was roughly116

pointing towards the zenith. Data were acquired on 23 September 2022 with an aperture of f/2.8. As the device was left117

several days unmoved on the roof, an orientation calibration was performed. In order to make the Sun appear as a spot on118

the sensor, several clear sky pictures were taken with minimal time of exposure (34µs). Then, the successive positions of the119

Sun were computed each time as the centroïd of the spot on the sensor plane. Next, with the distortion model provided by120

the manufacturer, we transformed the 2D centroïds coordinates to 3D hemispherical coordinates in the camera frame. We121

also used the Matlab calibration camera toolbox to estimate the intrinsic parameters (focal length and center of distorsion in122

pixels) of the camera with a fisheye lens. Simultaneously, we computed the groundtruth positions of the Sun in the ENU frame123

centered on the camera by using ephemeris estimated with the AstroPy python library (4). We therefore had two sets of solar124

vectors, a set of groundtruth solar vectors expressed in the ENU frame and a set of measured solar vectors expressed in the125

camera frame. The optimal rotation between the two sets of vectors derived in the least-squares (5) way allowed us to deduce126

the rotation matrix between the two frames and finally the absolute camera orientation. The Degree of Linear Polarization127

(DoLP) was calculated by selecting only the blue channel and by making the assumption that the four micro-polarizers of a128

pixel cluster (6) was roughly viewing the same spot in the sky.129

Our data were first preprocessed with a circular averaging filter. Next, we implemented the absolute difference in DoLP130

between several moments of time. The NCP was located by searching for the maximum valued point, namely the intersection131

between all the radial invariance axes (cf. figure 1d). Lastly, the coordinates of the point were transformed to North and132

latitude coordinates and compared with the ground truth values.133

Data availability134

All the data used for camera calibration, from further outdoor experiments with a polarimetric camera placed on the rooftop135

of a laboratory in Marseille and from further simulation experiments are available with their related programs (Matlab and136

Python) on the following OSF link: https://osf.io/fcsgk/?view_only=01d95ac195a14b65a113fb6a9381f25a137
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List of Abbreviations and Symbols149

αP azimuth angle of a point P150

θP altitude/elevation angle of a point P151

ϕ observer’s latitude152

δ sun declination153

ω sun hour angle154

γP scattering angle of a point P with respect to the Sun’s position155

xp East coordinate of a point P in the ENU frame156

yp North coordinate of a point P in the ENU frame157

zp Up/Zenith coordinate of a point P in the ENU frame158

−→
P unit vector going from the origin of the ENU frame O to a point P on the celestial sphere159

ENU East North Up frame160
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DoLP Degree of linear polarization161

NCP North celestial pole162
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