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ABSTRACT

Predictive student models are increasingly used in learning
environments due to their ability to enhance educational
outcomes and support stakeholders in making informed de-
cisions. However, predictive models can be biased and pro-
duce unfair outcomes, leading to potential discrimination
against some students and possible harmful long-term im-
plications. This has prompted research on fairness metrics
meant to capture and quantify such biases. Nonetheless, so
far, existing fairness metrics used in education are predictive
performance-oriented, focusing on assessing biased outcomes
across groups of students, without considering the behaviors
of the models nor the severity of the biases in the outcomes.
Therefore, we propose a novel metric, the Model Absolute
Density Distance (MADD), to analyze models’ discrimina-
tory behaviors independently from their predictive perfor-
mance. We also provide a complementary visualization-
based analysis to enable fine-grained human assessment of
how the models discriminate between groups of students.
We evaluate our approach on the common task of predict-
ing student success in online courses, using several com-
mon predictive classification models on an open educational
dataset. We also compare our metric to the only predic-
tive performance-oriented fairness metric developed in edu-
cation, ABROCA. Results on this dataset show that: (1) fair
predictive performance does not guarantee fair models’ be-
haviors and thus fair outcomes, (2) there is no direct rela-
tionship between data bias and predictive performance bias
nor discriminatory behaviors bias, and (3) trained on the
same data, models exhibit different discriminatory behav-
iors, according to different sensitive features too. We thus
recommend using the MADD on models that show satisfying
predictive performance, to gain a finer-grained understand-
ing on how they behave and regarding who and to refine
models selection and their usage. Altogether, this work con-
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tributes to advancing the research on fair student models
in education. Source code and data are in open access at
https://github.com/melinaverger/MADD.
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1. INTRODUCTION

Over the past decade, extensive research has focused on pre-
dictive student modeling for educational applications. The
systematic literature review of Hellas et al. [15] has iden-
tified no less than 357 relevant papers on the matter pub-
lished between 2010 and mid-2018. One of the most popu-
lar modeling technique in these works are machine learning
(ML) classifiers, as many important predictive tasks in edu-
cation can be framed as binary classification problems, e.g.
to predict dropout, course completion, university admission,
scholarship awarding. These classification models have thus
gained widespread adoption, and the multiple stakeholders
involved in education have recognized their potential to im-
prove student learning outcomes and experience [29, 16].

However, in recent years, there have been concerns about the
fairness of the models (also called algorithmic fairness [3])
used in education [3, 20, 11, 33]. This stems from a more
general trend of research in ML and Artificial Intelligence
(AI), where a large body of research has shown that classi-
fiers, and AI models in general, can produce biased and un-
fair outcomes, e.g. [27, 5, 4, 23, 10]. This has led to increased
public awareness about the potential harms of AI predic-
tive models and the enforcement of stricter regulations!. In
education too, recent studies have found that classification-
based student models can be biased against certain groups
of students, which could in turn significantly hinder their
learning experience and academic achievements [3, 20, 33,
14, 17, 25].

'e.g. General Data Protection Regulation (2016) at Eu-
ropean level, California Consumer Privacy Act (2018) at
the United-States level, Principles on Artificial Intelligence
(2019) from OECD (Organization for Economic Coopera-
tion and Development) at the international level, and more
specifically the upcoming European AI Act [32].
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To unveil, measure and mitigate algorithmic unfairness, re-
cent literature in Al has seen a proliferation of fairness met-
rics [35, 7]. Although many types of metrics exist (see Sec-
tion 2), some of them require extensive prior knowledge and
in practice the most common fairness metrics used in Al
are statistical [35]. Statistical metrics aim at quantifying
the differences in performance of a set of classification mod-
els across different groups of interest, with the assumption
that fair classifiers should achieve similar performance across
groups [7]. This is especially meaningful when some of the
groups are known to be vulnerable to unfair model predic-
tions. For instance, students with disability might be un-
fairly classified as at-risk of dropping out of an online course
because the features used to train the classifiers did not cap-
ture well the different way they engage with the learning ma-
terial [13] — when they can interact at all, since many K-12
material or educational technologies remain inaccessible [31,
6]. Hovewer, the pitfall of the existing statistical metrics is
that they are all predictive performance-oriented, meaning
that they solely consider the predictive performance of the
classification model across predefined groups, disregarding
that two classifiers with equal predictive performance can
exhibit very different, and possibly unfair, behaviors. In par-
ticular, a classifier could produce similar error rates across
two groups, but the actual errors made could be substan-
tially more harmful to one of the group than the other.

In this paper, we thus propose a new statistical metric,
the Model Absolute Density Distance (MADD), to analyze
a model’s discriminatory behaviors independently from its
predictive performance. We also propose a complementary
visualization-based analysis, which allows to inspect and
qualify the models’ discriminatory behaviors uncovered by
the MADD. Altogether, this makes it possible to not only
quantify, but also understand in a fine-grained way whether
and how a given classifier may behave differently between
the groups. As a case study, we apply our approach on
the common task of predicting student success to a course,
on open data for the sake of replication and on four com-
mon predictive classification models for the sake of gener-
alization. We also compare our metric to ABROCA (Abso-
lute Between-ROC' Area), the only predictive performance-
oriented metric developed in education [14] to the best of
our knowledge. This case study shows that the MADD can
successfully capture fine-grained models’ discriminatory be-
haviors.

The remainder of this paper is organized as follows. Sec-
tion 2 reports on related work on fairness metrics and their
usage in education. Section 3 presents the MADD metric
and the visualization-based analysis we propose to inspect
and characterize models’ discriminatory behaviors. Section 4
describes the experimental setup with which we applied our
proposed approach in order to demonstrate its benefits. Sec-

tion 5 presents our results and our comparison with ABROCA.

In Section 6, we discuss more generally what our approach
allows to unveil, the strengths and limitations it currently
has as well as some practical guidelines, before concluding
in Section 7 with future work.

2. RELATED WORK

Several fairness metrics have been proposed in Al for clas-
sification models. These metrics mostly fall into three cate-
gories: counterfactual (or causality-based), similarity-based
(or individual), and statistical (or group) [35]. The first two
categories, counterfactual and similarity-based, are seldom
used in practice because they require extensive prior knowl-
edge. More precisely, counterfactual metrics require building
a directed acyclic causal graph with the nodes representing
the features of an applicant and the edges representing rela-
tionships between the features [35]. Generating such a causal
graph is typically not feasible without extensive studies to
formally identify these relations. Similarity-based metrics
require defining a priori a distance metric to measure how
“similar” two individuals are, as well as to know from which
value the models’ results are considered “dissimilar” enough
for these two individuals to be pointed out as unfairness. In
contrast, statistical metrics, the category into which MADD
falls, are easier to implement and more popular, as they
solely require to identify a priori the groups of persons who
might suffer from unfair classifications. As noted in the in-
troduction, these metrics have so far sought to quantify dif-
ferences in classification performance across the groups, and
thus can be considered predictive performance-oriented only.
However, a classifier that has similar error rates across two
groups might actually produce errors that are harmless to
a group but very harmful to the other, an aspect that is
not quantified by existing statistical metrics. In this paper,
we focus on the new MADD metric meant to assess unfair
behaviors of classifiers, independently from their predictive
performance. We recommend using it as a complement to
a predictive performance analysis, rather than using predic-
tive performance-oriented fairness metrics only, in order to
gain a more refined and comprehensive understanding of the
classifiers fairness.

In education, fairness studies are more recent and sparse
(see overview in [3, 20]), and only a handful of them have
focused on the fairness of classification models used in this
context [14, 17, 18, 30, 25]. In Gardner et al. [14], the
authors propose a new predictive performance-oriented fair-
ness metric based on the comparison of the Areas Under the
Curve (AUC) of a given predictive model for different groups
of students. They used their metric to assess gender-based
(male vs. female) differences in classification performance of
MOOC dropout models, showing that ABROCA can cap-
ture unfair classification performance related to the gender
imbalance in the data. ABROCA was also used in other
educational studies, to evaluate the fairness across different
sociodemographic groups of classifiers meant to predict col-
lege graduation [18], and categorize students’ educational
forum posts [30]. The other fairness studies in education
have used more common statistical metrics in Al, such as
group fairness, equalized odds, equal opportunity, true pos-
itive rate and false positive rate between groups, to pre-
dict course completion [26], at-risk students [17], and college
grades and success [19, 36, 25]. Similarly to ABROCA, these
metrics are predictive performance-oriented. In this paper,
we contribute to this line of fairness work in education by
investigating the possibility and value of a fairness metric
that accounts for the behaviors of the classifiers.



3. AN ALGORITHMIC FAIRNESS ANALY-
SIS APPROACH

3.1 Definition of the MADD metric

We introduce a novel metric, the Model Absolute Density
Distance (MADD), which is based on measuring algorith-
mic fairness via models’ behavior differences between two
groups, instead of via models’ predictive performance. It is
worth noting that this focus on the models’ behaviors en-
ables us to not only quantify algorithmic fairness, but also
gain a deeper understanding of how the models discrimi-
nate via graphical representations of the MADD (see next
subsection 3.2).

We present the MADD under the scope of this study where
we consider binary sensitive features and binary classifiers
that output probability estimates (or confidence scores) as-
sociated to their predictions.

Assume a model M, trained on a dataset {X, S, Y} | where
S are the binary sensitive features, X all the other features
characterizing the students, Y € {0,1} the binary target
variable, and n the number of samples. {X,S}] ;| repre-
sents all the features of the prediction task. More precisely,
S = (s{)i=; where a is the index of the considered sensi-
tive feature and sf € {0,1}. Indeed, if a student (s, s{)
belongs to any group named Gy of the sensitive feature a,
then s§ = 0, and idem s§ = 1 if (x;, sf) belongs to the
other group named G of the same sensitive feature a. Note
that a sample (z;, si) describes a unique student in a group,
with the groups Go and G being mutually exclusive (i.e. a
student can only belongs to one of these two groups). Also,
none of these groups is considered as a baseline or privileged
group here.

M aims at minimizing some loss function £(Y,Y) with its
predictions Y to estimate or predict Y. M should assign to
each Y; a predicted probability (or a confidence score) that a
given sample (x;, s{) will be predicted as Y; = 1. This proba-
bility or score is noted p(xz;, s7) = P(Y = 1|X; = 24, S = s§).
We introduce a parameter e that is the probability sampling
step of p values between 0 and 1. In other words, p values are
rounded to the nearest e (e.g. p(wi,si) = 0.09 if e = 0.01
and the same p(z;,s§) = 0.1 if e = 0.1 for instance). M
predicts Y; = 1 if and only if p(zs,sf) > t where ¢ is a
probability threshold, and Y; = 0 otherwise.

We define two unidimensional vectors D¢, and D¢, as what
we call in short the density vectors of the respective groups
Go and G1 of the sensitive feature a. They actually con-
tain all the density values associated to each p(x;, s{) value
(rounded to the nearest e) of group Go or group Gi. In
particular, D¢, = (d&, k)k=o Where each d, , is the den-
sity of p(x;, s§) = k x e value, that is to say the frequency
that the model M gives p(zi, si) = k x e divided by the
sum of frequency of all p values. m is equal to the total
number of distinct p values and is related to e by the follow-
ing: m = 1/e + 1. The advantage of the introduction of e
could be seen here: having discretized the p values enables
us to have the two density vectors D¢, and D¢, of the same
length so that they are comparable on the probability space
and independent from the model M’s behaviors.

We now define the MADD as follows:
MADD(DE()?Dél) = Z|daGg,k _dgl,k| (1)
k=0

The MADD satisfies the necessary properties of a metric:
reflexivity, non-negativity, commutativity, and triangle in-
equality [9] (see the proofs in Appendix A). Moreover:

Va, 0 <MADD(D&,, D&, ) <2 (2)

The closer the MADD is to 0, the fairer the outcome of the
model is regarding the two groups. Indeed, if the model
produces the same probability outcomes for both groups,
then D¢, = D¢, and MADD(Dg,, D¢,) = 0. Conversely,
in the most unfair case, where the model produces totally
distinct probability outcomes for both groups, the MADD
is equal to 2. An example of such a situation is when
chovdaGo,kco = 1 and Vk € [0,m], k # kg,,d&, r = 0, and
Jka, # kGD’dgl,kGl =landVk € [0,m], k # kg,,d&, » = 0.
In that case, Equation 1 becomes:

MADD(Dgy, D&,) = ld%y ko, | + 146, g | = (1+1) = 2

®3)

3.2 Visualization-based analysis of models’ dis-

criminatory behaviors

We introduce a visualization-based analysis of the models’
discriminatory behaviors that complements our fairness anal-
ysis approach. This analysis is based on graphical interpre-
tations of the MADD. Let us plot in Figures la and 1b the
density histograms associated with each density vector D¢
and D¢, . These histograms represent the distributions of
the p values for the group Gy and the group G of a sensitive
feature a. The number and consequently the width of the
intervals depend on the probability sampling step e.

However, these histograms are not easily interpretable be-
cause of the numerous variations of the discrete values. We
solve this issue by applying a smoothing by kernel density
estimation (KDE) with Gaussian kernels, as shown in Fig-
ure lc. The smoothing parameter, also called bandwidth
parameter, is determined by the Scott’s rule, an automatic
bandwidth selection method?. This smoothing transforms
the discrete probability distribution (whose density values
cannot exceed 1 in the y-axis as they are related to discrete
random variables) into a continuous approximation of the
associated probability density function (PDF), which can in
turn take values greater than 1.

Therefore, a visual approximation of the MADD corresponds
to the red area in Figure 1d. Indeed, as the MADD uses the
absolute density distances point-by-point between the two
density vectors, the metric can be visually approximated
by the area in-between the two curves, considering that the
graph shows continuous density instead of the true discrete
values used in the MADD calculation. Conversely, the green
area, which is the intersection of the smoothed representa-
tions of the two density vectors, illustrates the area where
the model M produces the same predicted probabilities for
both groups up to a certain approximated density. We call
this area the fair zone.

2See documentation of scipy.stats.gaussian_kde.
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Figure 1: Visual representation of the MADD. Histograms of predicted probabilities for group Go (a) and group G1 (b).
Smoothing of these histograms (c). Approximation of the MADD in the red zone (d) vs. the fair zone in green.
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Figure 2: Two models’ discriminatory behaviors. The dot-
ted lines are the respective means of the two density vectors.

Thanks to this graphical representation approximating the
MADD, we are able to distinguish two model’s discrimina-
tory behaviors: unequal treatment (Figure 2a), and stereo-
typical judgement (Figure 2b). Unequal treatment behavior
can be summarized as follows: “how much the model fa-
vor or penalize individuals based on them belonging to each
group?” As displayed in Figure 2a, we can identify which
group get lower or higher predicted probabilities on aver-
age, allowing us to understand which group the model tends
to favor (the highest mean, here the group Gi) or to pe-
nalize (the lowest mean, here the group Go). It is worth
noticing that the means are not perfectly aligned with the
peaks of the distributions because they are calculated from
the density vectors, without the smoothing. The second dis-
criminatory behavior, stereotypical judgement, can be sum-
marized as follows: “how much the model makes repetitive
and invariant “judgement” about the individuals based on
them belonging to a group?” For instance in Figure 2b, the
model clearly tends to give to many persons in the group
G'1 the same predicted probabilities. These analyses cannot
be performed with existing predictive performance-oriented
fairness metrics, as the model could have the same accuracy
for both groups regardless of its underlying effective predic-
tions, either in terms of distributions or in terms of density
differences.

4. EXPERIMENTAL SETTING

We apply our approach on the common task of predicting
student success to a course, and we present in this section
(1) the data, (2) the models, and (3) the setting parameters
we used in our experiments. This case study is designed to
further investigate our proposed approach, and to show how
one can use it.

4.1 Data

4.1.1 Dataset presentation

We used real-world anonymized data from the Open Uni-
versity Learning Analytics Dataset (OULAD) [22]. The
Open University is a distance learning university from the
United Kingdom, offering higher education courses which
can be taken as standalone courses or as part of a univer-
sity program with no previous qualifications required. The
dataset contains both student demographic data and inter-
action data with the university’s virtual learning environ-
ment (VLE). The students were enrolled in at least one of
the three courses in Social Sciences or one of the four Science,
Technology, Engineering and Mathematics (STEM) courses
between 2013 and 2014. The dataset contains 32,593 sam-
ples including 28,785 unique students.

The choice of this dataset was motivated by several reasons.
First, the OULAD is one of the most comprehensive and
benchmark datasets in the learning analytics domain to as-
sess the performance of students in a VLE [1]. In addition,
it is an open dataset that answers the call to the community
for the development of new approaches on open datasets
[15]. Then, it also answers another call from [15] for replica-
tion in multiple contexts such as several courses with diverse
populations, as provided in the OULAD. Moreover, as it is
commonly the case with distance learning universities, the
students have a large variety of profiles [8] (including on
average more women than men and a wide age range [2]),
and these information are available in the dataset, making
it particularly relevant for studying the impact of demo-
graphic features in terms of fairness. Finally, the data was
collected in compliance with The Open University require-
ments regarding ethics and privacy, including consent and
anonymization.

4.1.2 Data preprocessing

We used the features presented in Table 1. The sum_click
feature was the only one that was not immediately avail-
able in the original dataset and was computed from inner
joints and aggregation on the original data. Also, we re-
moved samples where the value of the poverty feature was
missing (4% of the data samples) and when the students
withdrew from the courses (24% of the data samples). This
left us with 19,964 samples of distinct students, whose values
were scaled between 0 and 1 for every feature via normal-
ization. We indeed did not apply standardization to keep
the original data distributions and analyze the models’ be-
haviors accordingly. The target variable (course outcome)



Table 1: Features used from the OULAD dataset [22].

Name Feature type Description

gender binary the students’ gender

age ordinal the interval of the students’ age

disability binary indicates whether the students have declared a disability

highest_education ordinal

poverty® ordinal

num_of_prev_attempts numerical

the highest student education level on entry to the course
specifies the Index of Multiple Deprivation [22] band of the place
where the students lived during the course

the number of times the students have attempted the course

studied_credits numerical the total number of credits for the course the students are currently studying
sum_click numerical the total number of times the students interacted with the material of the course
gender ¢ gender in Figure 3. Mutual information is particularly relevant for
f— poverty

course_ARA = disability
disability

poverty

age

highest_education
num_of_prev_attempts
course_DDD
studied_credits
course_CCC

sum_click

course_EEE
course_GGG
course_FFF {o

[
course_BEB

000 002 004 006 008 010 012 014
Mi scores

Figure 3: Mutual information (MI) scores.

was coded as “Pass” or “Fail” (1 or O respectively). Plus,
students who got a “Distinction” outcome were also coded
as 1 (“Pass”), as we target binary classification for this case
study.

In our study, we considered three sensitive features: gender,
poverty, and disability. Although other sensitive features
could have been relevant, our main focus here is in inves-
tigating our proposed method itself. Therefore, one may
choose different sensitive features according to their pur-
pose (for instance including age as well, as in [34]), and one
would be able to conduct the same fairness analysis process.
Due to our method dealing with binary features as sensitive
features, we transformed poverty into a binary feature by
setting a 50% threshold of deprivation index [22], coding as
0 those below the 50% threshold (i.e. less deprived) and as
1 those above (i.e. more deprived).

We did not apply any data balancing techniques nor unfair-
ness mitigation preprocessing, still to keep the original data
distributions. However, our approach does not prevent the
use of such preprocessing.

4.1.3 Data analyses and course selection

We explored the correlations and imbalances of the sensitive
features across the different courses in the dataset to identify
those which were relevant for analysing algorithmic fairness.
We thus computed the mutual information (MI) between
all the features and the three sensitive ones, whose respec-
tive results are distinguished by a different color as shown

3Named as imd_band in the original data.

non-linear relationships between features. Figure 3 shows
that the course “BBB” followed by the course “FFF” are
the most correlated with the gender feature, with the over-
all highest MI scores. Therefore, the Social Sciences course
coded as “BBB” and the STEM course coded as “FFF”, two
different student populations, were good candidates for ex-
amining the impact of gender bias on the predictive mod-
els fairness. In addition, both courses presented very high
imbalances in terms of disability (respectively 91.2-8.8%
and 91.7-8.3% for 0-1 groups in courses “BBB” and “FFF”)
and gender (respectively 88.4-11.6% and 17.8-82.2% for 0-1
groups in courses “BBB” and “FFF”), and still some imbal-
ance for poverty (respectively 42.3-57.7% and 46.9-53.1%
for 0-1 groups in courses “BBB” and “FFF”). Based on these
preliminary unfairness expectations derived from the skews
in the data, it is interesting to analyze whether and how the
models will suffer from these biases in both courses. These
two courses are thus excellent testbeds for testing our ap-
proach.

4.2 Classification Models

To show that our fairness analysis approach can handle sev-
eral types of classification models, we chose models either
based on regression, distance, trees, or probabilities. More
precisely, we chose a logistic regression classifier (LR), a k-
nearest neighbors classifier (KN), a decision tree classifier
(DT), and a naive bayes classifier (NB).

We chose these particular models for the following reasons.
Firstly, they are widely used in education, and specially with
the OULAD [21, 1]. Models based on vectors (e.g. support
vector machines), also commonly used, were not selected
as they do not outcome probability estimates (or confidence
scores) on which to run our fairness analysis. Secondly, while
our approach can be generalized to other models with proba-
bility estimates (or confidence scores) such as random forest
or neural networks, we favored white boxes and explainabil-
ity over finding the best modeling with fine-tuning. Thirdly,
predicting students’ success with the data in the OULAD
is a rather low abstraction task due to the small amount
of features and variance in the data, for which using com-
plex predictive models would not lead to better performance
and could even overfit the data. Finally, the selected mod-
els are easy to implement for most use cases, which makes
them universally good candidates for predictive modeling in
general.



To fit the models, we split the data into a train and a test
set using a 70-30% split ratio in a stratified way, meaning
that we kept the same proportion of students who passed
and failed in both the train and the test sets. The result-
ing accuracies of the models were above the baseline (70%)
and up to 93%, except for the NB (62%) which instead pre-
sented interesting behaviors with the MADD analyses and
was worth keeping it (see Section 5). It has to be noted that,
contrary to most ML studies, achieving the best predictive
performance was not our focus here, since the purpose of
our experiments is rather to analyze the fairness of diverse
models with the MADD metric. Then, we used the models’
outcomes on the test set to compute the MADD metric and
generate the visualizations.

4.3 Fairness Parameters

For our study, we set e to 0.01 (i.e. m = 101), and ¢, the
probability classification threshold, to 0.5. For e, 0.01 corre-
sponds to a variation of the probability of success or failure
of 1%, which we deem a sufficient level of probability sam-
pling precision, considering on the one hand that probability
variations below 1% are not significant enough in the prob-
lem, and on the other hand that higher values of e (up to 0.1)
did not alter the MADD results. Regarding ¢, the success
prediction is generally defined by having an average score
above 50% and thus we chose ¢ with respect to the problem
rather than optimizing it for model performance. The odds
of positive or negative predictions are thus balanced and the
threshold is the same for each individual.

5. RESULTS

In the following, we show in subsection 5.1 how the MADD
and its visualization-based analysis can help unveil unex-
pected results based on (1) the respective importance of
each sensitive feature in algorithmic unfairness, (2) the mod-
els intrinsic unfairness, and (3) the nature of the unfairness
associated with the predictions made by the model. Then,
we show in subsection 5.2 how our results differ from and
complement what can be provided by ABROCA, a state-
of-the-art predictive performance-oriented fairness metric.
Both subsections 5.1 and 5.2 are concluded by a summary
of the obtained results.

5.1 Fairness Analysis with MADD

In the parts 5.1.1 and 5.1.2, we examine via Tables 2 and 3
the MADD results reported for the two courses. We high-
light in bold the best MADD per column, and with an aster-
isk (*) the best MADD per row. In this way, the MADD of
the fairest model for each sensitive feature is in bold, whereas
the MADD of the fairest sensitive feature for each classifier
is marked with a *. As examples, in Table 2 the DT is the
fairest model regarding the poverty feature (bold), and in
Table 3 the disability feature is the fairest for the KN (*).
For the part 5.1.3, we base our visual analyses and identi-
fication of discriminatory behaviors explained in subsection
3.2 on Figures 4 and 5.

5.1.1 Sensitive features analysis

Course “BBB” (Social Sciences). Table 2 reveals that
three models out of four (LR, KN, and DT) are the fairest for
the disability sensitive feature. Therefore, two interesting

observations can be made. First, it is contrary to what we
would expect since disability was the most imbalanced
(91.2-8.8% for 0-1 groups) sensitive feature in the training
data (see Section 4.1.3). Second, the gender feature was
particularly expected to be highly sensitive due to its high
correlation with the target in this course and its imbalance,
but it actually has the best MADD on average (1.02).

Course “FFF” (STEM). Similarly to the above results for
the course “BBB”, we can notice that the data skews are not
necessarily reflected in the MADDs. In the training data,
the disability sensitive feature was highly imbalanced, and
the poverty feature was quite balanced. Nonetheless, for
half of the models (see Table 3), both disability and pover-
ty are the two sensitive features with regard to which the
models are the fairest. On the other hand, in line with the
gender skew and correlation shown in Section 4.1.3, gender
has the worst MADD results in average, more than dis-
ability, although the difference is not substantial.

5.1.2 Model fairness analysis

Course “BBB” (Social Sciences). Now focusing on the
fairness of the models, DT appears in Table 2 to be the
fairest, with an average MADD of 0.73 across all the sensi-
tive features. DT is indeed the fairest for disability and
poverty and the second best for gender. On the contrary,
LR is the least fair, with the highest results for each senstive
feature and an average of 1.71, with a maximum value of 2.

Course “FFF” (STEM). NB and DT obtain the best
MADD averages across all three sensitive features (0.64 and
0.65 respectively). Therefore, there is no clear winner for
this course as they behave differently according to differ-
ent sensitive features: NB has better results for gender and
poverty but a higher MADD for disability, whereas DT is
more balanced across the three sensitive features. However,
we remind that NB performed below the accuracy baseline
and thus DT would overall be a better candidate.

Table 2: MADD results for the course “BBB”.

Model Sensitive features
gender poverty disability | Average
LR 1.72 1.85 1.57% 1.71
KN 1.13 1.12 0.93* 1.06
MADD DT 0.69 0.85 0.65* 0.73
NB 0.52% 0.9 1.37 0.93
Average 1.02 1.18 1.13

Table 3: MADD results for the course “FFF”.

Model Sensitive features
gender poverty disability | Average
LR 1.18 1.06% 1.12 1.12
KN 1.06 0.93 0.78* 0.92
MADD DT 0.76 0.65 0.55% 0.65
NB 0.56 0.47* 0.90 0.64
Average 0.89 0.78 0.84
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Figure 4: Models’ behaviors in course “BBB”. Note that for
these graphs e was set to 0.1 for better visualization of the
bars, but e was actually equal to 0.01 for computation, as
said in subsection 4.3.

5.1.3 Visualization-based analysis

Course “BBB” (Social Sciences). We examine in Fig-
ure 4 the models’ behaviors regarding the most sensitive
feature, namely poverty in this course, as it has the worst
MADD on average (1.18). We see in the subfigures, through
an offset of the distribution mean to the left for the group
0, that three models out of four (LR, KN, and DT) have
learned unequal treatment against those in better financial
conditions (group 0). Among them, KN and DT present the
highest stereotypical results reduced to only few probabil-
ity values, which illustrates well their inner workings. Con-
versely, NB produces the least discriminating results with
the closest means for the two groups. Its behavior is all
the more interesting since it shows that having poor predic-
tive performance is not necessarily interfering with behaving
fairly regarding two groups of the most sensitive feature. It
is precisely because it does not discriminate against any fea-
tures, whether they were sensitive or not, that it has poor
accuracy.

Course “FFF” (STEM). Likewise, we examine in Figure
5 the models’ behaviors for the most sensitive feature in this
course, gender, with the worst MADD average of 0.89. All
models but NB exhibit unequal treatment against group 0,
here the women. Similarly to the previous results, we can
again note the highly stereotypical behaviors of KN and DT,
and the relative fairness of the NB model.

5.1.4 Implications for the MADD
Following the double reading of the tables, feature-wise or
model-wise, as well as our visual analyses, we can make two
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Figure 5: Models’ behaviors in course “FFF”. Note that for
these graphs e was set to 0.1 for better visualization of the
bars, but e was actually equal to 0.01 for computation, as
said in subsection 4.3.

important observations regarding the insights provided by
the MADD.

Firstly, there is no direct relationships between biases in the
data (imbalanced representations, high correlations) and the
discriminatory behaviors learned by the models. We even
observe opposite conclusions (specially for the course “BBB”
in part 5.1.1).

Secondly, trained on the same data, the models exhibit very
different discriminatory behaviors (see parts 5.1.2 and 5.1.3),
both regarding different sensitive features, and different sever-
ity and nature of their algorithmic unfairness. This was also
shown by our visual analysis, which allowed finer-grained
interpretations of the discriminatory behaviors.

5.2 Comparison with ABROCA

We now aim to compare the MADD with the ABROCA
predictive performance-oriented fairness metric [14]. The
ABROCA results (computed with the source code from [12])
are displayed in Tables 4 and 5, and an illustrated example
for the course “BBB” is given through the Figures 6 and 7.

5.2.1 Sensitive features analysis

Course “BBB” (Social Sciences). Let us first focus on
the poverty feature which has the worst MADD average
(1.18 from Table 2). In particular, in part 5.1.1, poverty
was the feature with which LR obtained the worst MADD
(1.85 from Table 2), which was also the worst MADD overall.
Indeed, in Figure 6 it can be seen that LR has the smallest
intersection area compared to the other models. However,
in Figure 7 and Table 4 we see that LR has one of the best



ABROCA (0.03) with minimal area between the curves of
the respective groups. We found similar opposite results be-
tween MADD and ABROCA for gender. Thus, poverty
and gender could be seen as unfair sensitive features for a
model on the one hand (MADD) and as fair ones on the
other hand (ABROCA). Moreover, DT too has one of the
best ABROCA (0.03), while it provided the best MADD
value (0.85 from Table 2) regarding this feature. Therefore,
two models with the same ABROCA lead to opposite dis-
criminatory behaviors according to the MADD. In the end,
ABROCA and MADD do not highlight the same fairness
results, and can even lead them to show opposite results.

Course “FFF” (STEM). Now examining Table 5 for the
course “FFF”, ABROCA does not capture substantial dif-
ferences at the sensitive feature level (column-wise), with
an ABROCA average of 0.4 for all three features. Thus, the
MADD results can capture additional differences among the
models’ behaviors that are not reflected in the ABROCA
results. In addition, we again found that disability, the
most imbalanced sensitive feature, is actually the feature for
which DT is the fairest, regardless of whether we consider
the MADD in part 5.1.1 (Table 3) or the ABROCA (Ta-
ble 5). Therefore, ABROCA does not reflect the imbalance
bias in the data either, in contradiction with the findings
from [14].

5.2.2 Model fairness analysis

Course “BBB” (Social Sciences). In Table 4, LR and
NB appear to be the fairest models across all the sensitive
features (best common ABROCA average of 0.3). However,
with the MADD, NB indeed exhibited overall quite balanced
low values, but LR was always the least fair on average
(Tables 2 and 3). Thus, at the model level this time, the
trends in the MADD results are only partially reflected in
the ABROCA results.

Course “FFF” (STEM). Table 5 shows that ABROCA
results do not exhibit substantial variability to distinguish
differences in fairness between the models (row-wise this
time) in our experiment. In addition to similar ABROCA
averages, all models have very close ABROCA results spe-
cially regarding the gender and poverty features. There-
fore, the MADD allows to find complementary discrimina-
tory results as compared to using only ABROCA.

5.2.3  Summary of the comparison

Two main takeaways could be reported from our comparison
between the ABROCA and MADD metrics.

Firstly, fair predictive performance (i.e. similar numbers of
errors across groups, here captured by low ABROCA val-
ues) does not guarantee fair models’ behaviors (i.e. low
severity of discrimination across groups, here captured by
low MADD values). This demonstrates what we advocated
in the introduction (Section 1) regarding investigating the
models’ behaviors to gain a comprehensive understanding
of the models fairness. In particular, two models with the
same ABROCA could suffer from substantial, and even op-

Table 4: ABROCA results for course “BBB”.

Model Sensitive features
gender poverty disability | Average
LR 0.02 0.03 0.03 0.03
KN 0.08 0.06 0.06 0.07
ABROCA DT 0.06 0.03 0.05 0.05
NB 0.04 0.02 0.04 0.03
Average  0.05 0.04 0.05

Table 5: ABROCA results for course “FFE”.

Model Sensitive features
gender poverty disability | Average
LR 0.04 0.03 0.03 0.03
KN 0.04 0.05 0.04 0.04
ABROCA | 'pp | go5 004 001 | 003
NB 0.03 0.03 0.07 0.04
Average 0.04 0.04 0.04

posite algorithmic discriminatory behaviors, which can be
uncovered by the MADD (see parts 5.2.1 and 5.2.2). Using
the MADD together with a predictive performance-oriented
metric such as ABROCA can thus allow more informed se-
lection of fair models in education, and here in our experi-
ments, they provide strong evidence that DT is the fairest
model on both courses.

Secondly, in line with our previous findings that biases in
the data may not be related with models’ discriminatory
behaviors (see part 5.1.4), we also observed that the biases
in the data are independent from predictive performance
biases too. For instance, the highest imbalanced sensitive
feature could actually lead to both the best ABROCA and
the best MADD. Although this observation is aligned with
the findings in [11, 17], it is worth noting that it goes against
what the authors of ABROCA had observed [14] (see part
5.2.1).

6. DISCUSSION

In this section, we discuss (1) the overall implications of
the results of our fairness study, (2) the limitations and the
strengths of the proposed approach, (3) some potential ex-
perimental improvements, and (4) some guidelines to use
our fairness analysis approach with the MADD.

6.1 Fairness results

Our results lead to three main conclusions, as follows. First-
ly, we found no direct relationships between data bias and
predictive performance bias nor discriminatory behaviors
bias. It confirms previous findings that unfair biases are not
only captured in the data, but are inherent to the model
too [27, 28]. It further suggests that exclusively mitigating
unfairness in the data might not be sufficient, and that mit-
igating unfairness at the model level is key too. Secondly,
even trained on the same data, each model exhibits its own
discriminatory behavior (likely linked to its inner working)
and according to different sensitive features. It raises inter-
esting questions on how different models could be combined
in order to balance discriminatory behaviors with regards
to multiple sensitive features at the same time. Thirdly,
fair predictive performance does not guarantee by itself fair
models’ behaviors and thus fair outcomes. Additional intro-
spection of the model is therefore needed, and our approach
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Figure 7: ABROCA slide plots for the poverty sensitive feature across all the models for course “BBB”.

appears as a possible solution.

6.2 Limitations and strengths

Although our approach was initially designed for analyz-
ing algorithmic fairness at an individual sensitive feature
level, our prospective work includes a generalization of the
MADD metric to capture the influence of multiple sensitive
features simultaneously. Moreover, the current MADD is
particularly suitable for binary sensitive features and binary
classifiers, and future work should also focus on extending
it to multi-class features and classifiers. As an example,
an extension for categorical sensitive features would enable
us to have a finer-grained analysis of discrimination across
more relevant subgroups. Despite these current limitations,
the strengths of our approach stand in (1) its ability to be
used with any tabular data, the most prevalent data repre-
sentation [24] from any domain, and without needing any
unfairness mitigation preprocessing; (2) being able to have
a richer understanding of models’ discriminatory behaviors
and their quantification with an easy-to-implement fairness
metric that is independent from predictive performance; and
(3) since the MADD is bounded, being comparable between
different datasets to measure the discriminatory influence of
a particular sensitive feature in different contexts and pop-
ulations.

6.3 Experimental improvements

In our experiments we purposely focused on the MADD re-
sults to highlight its contribution and interest to fairness
analysis, however for real-case applications one should ob-
viously pay attention to both predictive performance and
fairness performance in order to thoroughly select satisfying
models. As an example, the NB model used in our exper-
iments could be seen as fair regarding its MADD results,

but it had in fact poor accuracy particularly because it was
unable to predict well the success or the failure of students
regarding any features, which makes this model not usable
for real-case purposes but nonetheless interesting for our ex-
ploratory analysis. We thus recommend using the MADD
on models that show satisfying predictive performance, to
gain a finer-grained understanding on how they behave and
regarding who and to refine models selection and their us-
age. Moreover, one should also consider testing variations
of the probability sampling parameter e in their application
and context. Although the impact of its variation in the
range from 0.01 to 0.1 was low in our experiments, it might
not be always the case. Determining the optimal value for
this parameter is also a key part of our prospective work. Fi-
nally, we have demonstrated the validity and value of our ap-
proach on two courses of the OULAD dataset. Nonetheless,
in a broader context of investigating model unfairness, this
work should be replicated with other educational datasets
providing more students data and more diverse sensitive fea-
tures [3].

6.4 Guidelines

In order to facilitate replication studies and the use of our
approach (in addition to the availability of the data and
our source code), we provide in the following a 7-step guide
to help readers compute the MADD and plot the models’
behaviors as in Figures 4 and 5.

1. Choose binary classification models that can output
probability estimates or confidence scores.

Transform, when needed, every sensitive feature into
binary one.

Train the models, and in the testing phase separate



their predicted probabilities or confidence scores ac-
cording to the groups of each sensitive feature.

4. Compute the MADD for each sensitive feature, and
compare the results between features and models.

5. Plot histograms of the predicted probability distribu-
tions of each group of the sensitive features, and their
smoothed estimations (e.g. with KDE).

6. Visually identify discriminatory behaviors among un-
equal treatment (i.e. distance between the two distri-
bution means) and stereotypical judgement (i.e. dif-
ferences of local amplitudes).

7. Depending on the fairness analysis goals:

e Identify which models are the fairest overall or
according to which sensitive features, using a row-
wise reading of the results table.

o Identify which features are the most sensitive over-
all or according to which models, using a column-
wise reading of the results table.

e Using the plots, identify which groups (i.e. which
distributions) are the most discriminated against
by the models (relatively to each sensitive fea-
ture).

7. CONCLUSION

In this paper, we developed an algorithmic fairness analy-
sis approach based on a novel metric, the Model Absolute
Density Distance (MADD). It measures models’ discrimi-
natory behaviors between groups, independently from their
predictive performance. Our results on the OULAD dataset
and comparison with ABROCA show that (1) fair predic-
tive performance does not guarantee fair models’ behaviors
and thus fair outcomes, (2) there is no direct relationships
between data bias and predictive performance bias nor dis-
criminatory behaviors’ bias, and (3) trained on the same
data, models exhibit different discriminatory behaviors and
according to different sensitive features.

This approach, for which we provide a set of guidelines in
subsection 6.4 and our source code and data in open access
at https://github.com/melinaverger/MADD, can be used
to help identify fair models, exhibit sensitive features, and
determine students who were the most discriminated against
and how (unequal treatment or stereotypical judgement) in
an education context. Being bounded, an advantage of this
metric is that it can be used across different contexts and
data to discover the features that more generally cause al-
gorithmic discrimination.

Future work will involve the generalization of the MADD
metric to multiple sensitive features, its extension to multi-
class sensitive features and classifiers, determining the opti-
mal probability sampling parameter, and we will investigate
how to use the MADD as an objective function to optimize
models accordingly (in addition to predictive performance
objectives).
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APPENDIX

A. PROOFS FOR MADD AS A METRIC
We remind the definition of the MADD:

MADD(Dg()?Dél) :Z|déo,kidg1,k| (1)

k=0
The MADD satisfies the necessary properties of a metric [9]:
MADD(D¢,, Dé,) =0  reflexivity (4)
MADD(D¢&,, D&,) > 0 non-negativity (5)

MADD(D¢,, D¢g,) = MADD(D¢,, Déo) (©)

commutativity
MADD(D%O, Dg,) < MADD(D%O, Dg,) T
+MADD(D¢,, D¢,) triangle inequality

Proof for reflexivity (Eq. 4)
MADD(Dg,, D&,) = > |d&, 1, — dé, .l =0
k=0

Proof for non-negativity (Eq. 5)

Due to the positivity of each term in the sum thanks to the
absolute value operator, the sum of these positive terms is
always positive and MADD(D¢,, D¢, ) > 0.

Proof for commutativity (Eq. 6)

Let = and y be real numbers. By commutativity of the
absolute value operator, |z — y| = |y — z|. Thus, for any k,
|d&o.x—AdG, x| = |d&, x—d&, ] and then MADD(Dg,, D¢, ) =
MADD(Dg, , D¢, ).



Proof for triangle inequality (Eq. 7)

Let z and y be real numbers. By triangle inequality of the
absolute value operator, |z +y| < |z| + |y|. Let x = dg, . —
dg,  and y = d, p — dé, - Then, for any k :

lz +yl < |z|+ |yl

& [(dGgx — d&, k) + (d&y 1, — dé, )| < 1dGg ke — déy okl
HdE, o — skl

S |dEg ke — déy k] < |dége — A&y il +1dE, 0 — A&kl

Then, by linearity of the sum :

m m
Z ld&o ke — déy il < Z |d&o,k — déy k|
k=0 k=
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Z ‘dacl,k - dacz,k|

k=0
& MADD(Dg,, D,) < MADD(Dg,, D&, )+
MADD(D“G1 , DéZ)



