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Abstract: - The classical Exner model coupled with a bed-load sediment flux formula is widely used to describe 
the morphodynamics of coastal environments. However, the main drawbacks of this model are (i) Lack of 
robustness, (ii) Lack of differentiation between sediment and fluid velocities, and (iii) Generation of 
instabilities when the interactions between sediment and fluid flow become more important.  Moreover, Exner's 
model does not allow us to know with which characteristic velocity the bottom is moving.  This set of 
drawbacks weakens the effectiveness of most sediment transport models proposed in the literature, particularly 
the Exner model.   In this work, we reformulate the bed-load equation and we propose a new averaged sediment 
transport model for application in coastal or estuarine environments. The proposed model incorporates phase 
shift effects into the bed-load equation. The bedform's characteristic velocity, sediment, and fluid velocity are 
differentiated. We developed a new first-order, well-balanced, positivity-preserving, path-preserving, and 
central wind (WBPP-PCCU) scheme to solve the proposed hyperbolic sediment transport model (HSTM). We 
used the Averaging Essentially Non-Oscillatory (AENO) reconstruction coupled with the third-order Runge-
Kutta Semi-Implicit (SI-RK3) method to achieve second-order accuracy. The balance and positivity of the 
water depth properties were proven. In this work, a resonance condition is proposed.  The model facilitates the 
application of several other schemes such as Roe, HLLC, HLLEM, PVM (polynomial viscosity matrix), RVM 
(rational viscosity matrix), which require the diagonalization of the Jacobian matrix. The accuracy, robustness, 
positivity preservation, and equilibrium properties of the resulting model are evaluated using a series of 
carefully selected test cases. The proposed model provides an excellent ability to simulate sediment transport in 
a wide range of coastal environments.  
 
Key-words: - Hyperbolic Sediment Transport Model (HSTM), Phase lag effects, Resonance condition,  Path-
Conservative Central-Upwind (PCCU) scheme, Well-Balanced Preserving-Positivity, (WBPP),  AENO 
reconstruction,  Coastal environment. 
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1 Introduction 
When a fluid moves over a mobile bedform, a 
buoyant force, which tends to lift the sediments 
from its bed, appears. Under the action of their 
weight (depending on their density or size), they 

may fall (sedimentation), or under the action of the 
turbulence, they may remain in motion (or in 
suspension) and then be transported by the current 
(erosion) or by a combined action of the current 
and waves.  The number of grains eroded from the 
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bed load per unit area and time is also defined as 
the pick-up rate.  A coastal zone frequently adjusts 
its cross-section, longitudinal profile, course flow, 
and pattern through the processes of scouring 
deposition, which hinders the optimal operation of 
seaports.  Two main modes of transport are 
therefore highlighted: (i) The transport by 
suspension of sediments above the bottom or on the 
boundary layer, (ii) the bed-load transport of the 
same that have fallen to the bottom. We recall that 
sediment transport occurs when the bottom stress is 
slightly above the threshold.  The bed load 
transport is difficult to predict due to the presence 
of some physical and hydrodynamic parameters 
complicated to model. 
These parameters that influence the bedload 
sediment transport processes have been studied by 
some authors: Cannata et al, [1], Chengini and 
Pender, [2], Exner,  [3], Greimann and Huang, [4], 
Tassi and Villaret, [5], Vah et al, [6], Rijn, [7], Rijn 

et al, [8], Soulsby, [9].  These parameters are of 
interest to geomorphology. Some among them 
(such as phase lag and shear) are often neglected in 
several coastal engineering applications.  To 
investigate sediment transport with accuracy, these 
parameters are necessary.  Accounting for these 
parameters can improve the prediction of flood 
inundation for insistence. The prediction of dam-
break flows over erodible sediment requires an 

important choice of the bed-load equation for 
morphodynamics. For example, when the sediment 
size becomes greater, exaggerated inaccurate 
results can appear and even produce a non-realistic 
description of the dynamics of the sediment bed.  
Several sediment transport models require some 
sediment flux formula as the well-known Grass 
formulae, [10].  Meyer-Peter & Muller (MPM), 
Nielsen, and Van Rijn formulas (see [9]) can be 
written in the form of Grass-type by adapting the 
constant depending on experimental data and 
taking into account the grain diameter and the 
kinematic viscosity. All the Grass-type formulas 
assume that the motion begins at the same time for 
the fluid and the sediment. This assumption is not 
realistic in some practical cases. The sediment 
transport includes the dynamics of the water flow 
modeled by Shallow Water Equations (SWE), [11], 
widely studied in the literature in Cartesian, [12], 
[13], [4], [14], [15]  and in curvilinear coordinates 
[16]. Sediment transport models based on SWE and 
Exner-based models ignore the phase lag effect and 
cannot give us the characteristic velocity with 
which the bottom moves.  The sediment time is 
greater than the hydrodynamic time. Thus 
dynamics of the water and the dynamic of sediment 
must be studied using a mathematical model. 
Differentiating the bedform’s characteristic 

velocity, fluid velocity, and sediment velocity.  
The proposed model is less time-consuming and 
can compete with those using two-phase equations, 
[12]. Generally for some fully coupled STM, it is 
more expensive and complicated to find the 
eigenvalues and eigenvectors (loss hyperbolicity) 
due to the presence of several coupled terms. The 
lack of hyperbolicity can create some numerical 
difficulties. A numerically suitable Alternative is to 
formulate a bed-load equation in which the 
characteristic velocity  b bu Z  (see Fig.1) of the 
bedform is given as a function of the depth average 
of the flow and sediment characteristics (as the 
Froude number Fr ) 
   , ,b b su Z f Fr p u .  

p  and su being the bed porosity and the sediment 
velocity respectively.  

 
Fig. 1: Physical description of the model. 
 
The model admits an easy-to-find eigenstructure 
without using the Lagrange theorem as in, [17], or 
Gerschgorin as in, [18], or a splitting technique as 
in Siviglia et al,   [19], Ngatcha et al, [20]. The 
implementation of the Lagrange or Gerschgorin 
theorems is not easy and requires several 
considerations.  Additionally, for some sediment 
transport problems, the splitting technique can fail. 
Therefore the model is hyperbolic (eigenvectors 
and eigenvalues are easily computed) and a wide 
range of existing numerical methods in the 
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literature without major difficulties. Hyperbolicity 
ensures the existence of a numerical solution.  
       Some numerical schemes have been used to 
solve the sediment transport equations, [13], [21], 
[1], [22] [23], [24], [25], [26], [27]. Computer 
software could be very helpful to understand both 
hydrodynamics and morphodynamics. The STM is 
nonconservative and must be solved by using a 
nonconservative scheme. The above schemes do 
not apply to several sediment transport problems. 
One of the causes of these shortcomings is the 
presence of nonconservative terms and many 
coupled terms.  The proposed model is solved by 
the finite volume methods in path-conservative 
frameworks. The concept of path conservative 
developed by Parès, [28], is based on the 
nonconservative product theory of Dal Maso-
Lefloch-Murrat, [29]. This numerical method is 
widely used to design suitable numerical schemes 
for solving sediment transport problems, [14], [19], 
[30].    Another objective of this study is to develop 
a high-order resolution well balanced and positive 
numerical method to approximate solutions to 
sediment transport problems.  We aim to extend the 
path-conservative central-upwind scheme (referred 
to as the PCCU scheme) originally developed by 
Castro et al, [31], for solving fully coupled STM. 
The classical well-balanced PCCU scheme turns 
out to be limited for sediment transport problems.  
This scheme has been used to solve SWE by  
Castro et al, [31], the Saint-Venant-Exner model by 
Ngatcha et al, [14], and Ngatcha et al s model, 
[32]. The PCCU scheme is seen as a version of the 
path-conservative HLL scheme of  Dumbser and 
Basalra, [33], or of the path-conservative HLL of 
Xin [34].  
A major difficulty in developing the PCCU or path-
conservative HLL schemes isrelated to the 
numerical computation of steady-state and quasi-
steady-state solutions. It’s important to design a 
numerical method that verifies the C-property. A 
well-balanced discretization strategy developed in, 
[14], is used here without major modifications. The 
scheme is also positive i.e. preserves the positivity 
of the water depth.  

The first objective of this paper is to 
propose a new sediment transport model that 
accounts for special properties. The model consists 
of SWE with density variation and sediment 
exchanges, a suspension equation, and finally an 
equation that describes the motion of the bottom. 
The model is simple and is seen as an improvement 
of existing sediment transport models based on 

classical Exner equations such as, [23], [35], [24]. 
With this special bed-load equation, it’s possible to 
identify the hypersurface on which some waves 
have the same characteristic fields. 

The goal of this paper is to propose a 
second-order well-balanced positivity preserving 
PCCU scheme to solve the model. To design this 
scheme, we adopt a version of the AENO 
(Averaging Essentially Non-Oscillatory) procedure 
originally developed by Toro et al, [36] and applied 
for the first time in Ngatcha and Njifenjou, [14].  
We have used a strategy of time-discretization 
based on the Semi-Implicit third-order Runge-Kutta 
(SI-RK3) method of Chertock et al, [37]  to solve 
the problem related to friction which is another 
difficulty of the present model.  The resulting fully 
discrete second-order scheme is well-balanced, 
positive, stable, accurate, robust, and non-
oscillatory and can be extended to a class of 
nonconservative problems. 
The rest of the paper is presented as follows. 
Section (2) is dedicated to introducing the 
mathematical model that couples the generalized 
Saint-Venant equations, bed-load equation, and 
sediment transport equation. The hyperbolicity 
study of the system is also proposed. In section (3) 
the semi-discrete first-order PCCU scheme is 
exposed. Section (4) presents the second-order 
well-balanced preserving-positivity scheme.  In 
section (5), some tests are made and the numerical 
results are compared and discussed.  Section (6) 
presents some conclusions and remarks. 
 
 
2 Mathematical Model and Properties  
 
2.1   Governing Equations 
The starting point is the 2D evolution equations of 
mixing fluid dynamics and sediment volume rate. 
These equations describe the evolution of fluid 
mixing in a domain bounded by a dynamic water 
surface and water bed.  Taking into account the 
kinematic conditions on the moving surfaces, we 
apply an average along the depth of the equations 
to obtain simplified equations (shallow water 
equation in Cartesian coordinates).  We also can 
use the integral form of contravariant shallow water 
equations in the one-dimensional curvilinear 
coordinate system, [16].   We take an Eulerian 
approach for the sediment transport equations. The 
sediment transport model proposed here reads: 
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                (1)                      

Here,   h m  is the water depth,  /u m s  is the 

averaged x-velocity, 2 /hu q m s     is the water 

discharge,  bZ m and is the bed level. 
2/g m s   is the gravity constant.  

The friction source term is given by manning’s 
laws 2 1/3   fC n gh , 

1/3[ / ]n s m  being manning's coefficient. Generally, 
this coefficient depends on the bed sediment 
distribution. All these parameters can be seen in 
Fig. (2). 

 
Fig. 2: Physical and hydrodynamic parameters  
 
There is a counterpart in the evolution of the fluid 
volume fraction that will compensate to achieve the 
following evolution of the mixture density:  
 

(1 )w sC C     ,                                   (2)                                                                                                      
 
where 3, /w s Kg m      and C is the water density, 
sediment density, and averaged sediment 
concentration volumetric respectively.   The 
pressure here is considered hydrostatic. But we also 
can consider the non-hydrostatic part of pressure as 

in, [38].  sf   is the transport mode parameter 
representing the suspended load fraction as 
introduced by Greimann and Huang, [4] (see 
appendix A). The suspension is sufficiently dilute 
(Boussinesq approximation) to consider that the 
value of the kinematic viscosity of water/sediment

m  is equal to the corresponding clear water.  
Different modes of suspensions can be integrated 
into the governing equations: frozen particles 
mode, when su u ( su solid velocity) 
asymptotically, and the filtering particles mode, 
when su u . In all cases, the size of particles is 
much less than the distances between the nearest 
particles. However, the suspension equations 
describing the asymptotic behavior of the solution 
when the diameters of particles and the distances 
between neighbors tend to zero can be given by a 
homogenization approach. Here for sake of 
simplicity, only the case when the velocities of 
particles coincide (asymptotically) with the 
averaged fluid velocity is considered.  

2[ /,  / ]Kg mD sE  are the erosion and deposition 
we detail in appendix A (see also [8]).  Here, we 
have approximated the sediment flux by  

( ) b
b b

Z
u Z

x




 where ( )b b bu Z u  is the 

characteristic velocity of the bedform given by:   
 

2

1 1
(1 ) (1 )

s
b

u
u

p Fr u


 
                      (3) 

 
where p is the sediment bed porosity,  s su C u  is 

the averaged sediment velocity, and sC is a 
positive calibration parameter and where 
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| |u
Fr

gh
 is the Froude number.  It’s important to 

remark on that ( )b b su Z u u  . The new bed-load 
model given by the last equation of Eq. (1) and Eq. 
(3) permits us to take into account the phase lag 
effect. The characteristic velocity of the bedform 
depends on sediment velocity, bed porosity, and of 
the Froude number.  Therefore, the movement of 
the bedform is directed by the regime of flow. 
Remark Here, the mass conservative of moving 
particles and boundary conditions at the bed 
interface are used for the modeling of the bed-load 
sediment transport. The bed boundary is viewed as 
a phase interface across which the fluid/sediment 
mixture undergoes a transition from solid to fluid-
like behavior.  
 

2.2 Generalized Jump Conditions (R-H 

Relations) 

In the following, we will assume that ,  W W  the 
right and left state is a Riemann problem. Let us      
define the average and jump operators by: 

. (.) (.)      and  
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Here,   is a jump of discontinuities     . 

An admissible space can be given by
 0 4 , 0W h    .  

This model is a quasi-linear nonconservative 
system of equations admitting non-trivial 
steady-state solutions that often carry 
important physical meaning. Solving this 
system requires a particular numerical method 
exposed below. 
 
2.3 Hyperbolicity Study   
Let us use the conservative variable and rewrite Eq.  
(1)   in non-conservative form as: 
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conditions. 
The physical flux vector is given by  
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The nonconservative vectors are: 
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The Jacobian matrix of the LHS of the system 
reads:  
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where   ( )s w     
The system is strictly hyperbolic because has four 
distinct eigenvalues:  
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The eigenvectors for associated eigenvalues   read:
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Recall that the characteristic is genuinely nonlinear 
in 0  

    0. 0,      k kW E W W    . 
Or linearly degenerate if  

    0. 0,      k kW E W W      
0  being an admissible space on which the system 

is hyperbolic. The third and fourth eigenvalues (

3,4 ) correspond to genuinely non-linear 
characteristic fields in the sense of Lax. While 
remaining eigenvalues correspond to linearly 
degenerate characteristic fields be satisfied. This 
eigenstructure is similar to the one found by 
Benkhaldoun et al, [21].  
However, the situation is very different due to the 
resonance that may appear.  Note that under a 
particular condition, the resonance appears and 
modifies the characteristic fields of the waves.  The 
admissible waves for the system (1) are the 
following ones: Rarefaction waves, which are 
smooth solutions of (1), stationary waves which 
have zeros speed and satisfy R-H relations when

0W W   , shock waves which satisfy the 
Rankine-Hugionot relations given above.  Under 
some conditions, all the wave solutions can be 
obtained by weak formulation.  Such a condition 

may be the occurrence of the resonance 
phenomenon. 
 
2.4 The Apparition of Resonance 

Phenomenon 
Internal waves trapped by the topography can have 
a significant effect on local flow dynamics. This 
effect can be expected to increase the velocity of 
the fluid near the bottom and thus increase the 
Shields parameter. Therefore, it can be suggested 
that the internal waves influence sediment transport 
and may participate in the formation of sand waves. 
With this model, we will observe a unique series of 
resonant internal waves under some conditions.  
Note that resonant waves may be important in 
understanding the flow dynamic over the sediment 
bed.  From the eigenstructure of the proposed 
model, we can see that the conditions for resonance 
are satisfied if the free internal wavelength that 
satisfies the unforced equations coincides with the 
wavelength of topography forcing. This situation 
appears in our case when: 
 

2
bu u gh  ,   in      0                       (8)    

It’s convenient to set  

  0 2,  bu u ghW   C            
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which is the hypersurface on which all the 
characteristic fields linearly degenerate.  Therefore, 
the proposed model can predict bed evolution even 
in the presence of resonance phenomena. In fact, 
during evolution, a wavelength can be observed in 
the topography between some distances. In the case 
of floods with sediment transport, for example, 
resonance situations could occur only when the 
flood decelerates slowly.  
Remark 1 

In the presence of resonance, the above system can 
be weakly hyperbolic and, in this case, all the 
eigenvectors are linearly dependent. Under 
resonance conditions, all the wave solutions can be 
seen as limited traveling wave solutions.    
Remark 2 

For 1D and 2D cases, where the classical Exner 
equation with Grass formula is used, the 
computationally expensive process of finding all of 
the eigenvalues of the Jacobian matrices (the 
upper/lower bounds on the largest/smallest local 

speeds of propagation) can be avoided:  using the 
Lagrange theorem as in Xin et al, [17].  Here, using 
the novel bed evolution equation proposed above, 
we compute easily the upper/lower bounds on the 
largest/smallest local speeds of propagation without 
using Lagrange or Gerschgorin theorems.  
Remark 3 

Next, we develop a first-order PCCU scheme. This 
situation can refer to cases when the solution is 
piecewise constant.   The flux of the proposed 
semi-discrete scheme is given in the CU sense.  
 
 
3 New First Order Path-Conservative 

Central-Upwind (PCCU) Scheme 
The grid considered here is uniform that is

 1/2 1/2  ,  i i iK x x  , where its measure is the 
small spatial scale (see Fig. 2).

    

Fig. 3:  Finite volume discretization. Cell-centered mesh. 
 
The scheme uses a concept of coupling path-
conservative methods and central-upwind 
techniques.  In which the nonconservative terms are 
integrated directly into the discrete formulation.  To 
design the PCCU scheme, first, we write the central-
upwind (CU) scheme for the proposed model. 
Second, we rewrite the CU scheme of [39] in a path-
conservative form (where the fluctuations do not 
integrate the nonconservative contributions).  We 
will show how the CU scheme does not integrate 
non-conservative terms. That confirms the fact that 
the CU scheme (that is exactly the semi-discrete 
version of the HLL scheme introduced in, [26]) does 
not apply to non-conservative problems. Here, the 
fluctuations (denoted  ,D W W   ) represent the 
differences between the numerical flux and the 

physical fluxes at both sides of the cell interfaces 
are written only with the derivative of the physical 
flux ( )F W . Note that these fluctuations can also be 

computed by using matrices  , .W W  A that 

D contribute to the cell iK  and the other D  to the 

cell 1iK  .  Next, we integrate the non-conservative 
terms into the fluctuation without major difficulties. 
The PCCU scheme resulting can be seen as a 
version of the path-conservative HLL schemes of 
Balsara and Dumbser, [33]. Integrating Eq. (4) over 
the cell iK , we arrive at the first-order semi-discrete 
PCCU scheme: 

         * * 1/2 1/2
1/2 1/2 1, 2,

1/2 1/2 1/2

1/2 1/2

*(2) *(2) *(2) *(2)
1 2 1 21/2 1

1
/

/
2 1/2 1/2

2

1       =  ,i i
i i i i

i i

i
i i

ii i i i
i i

a a
B B

a a a a

dW
D D

dt

B B B B S
x

 

 

 




 
  


    

 







 
    
 

   
  

Ψ Ψ Ψ Ψ

F F

 

(9)
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which stands for the average value while 
representing the conservative numerical flux across 
the interface 1/2ix  .   * *

1, 2,,  i iB B   are the volume 
contributions of nonconservative terms on cell, 

   *(2) *(2)
1 21/2 1/2

,
i i

B B
 

Ψ Ψ

 are the nonconservative 

numerical flux.  Here, the numerical fluxes 1/2iF  
given in a CU flux version reads: 

 1/2 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2
1/2 1/2

1/2 1/2 1/2 1/2 1/

( ) ( )

21        ( ) ( )
2

i i i i i i
i i i

i i i i

i i i i
i i

i i i i i

a F W a F W a a
W W

a a a a

a a a a
F W F W

a a a a a

     
      

     

   

   
    
    

    


  

 


  

 

F

 1/2 1/2
2 1/2

i i

i

W W
a

 

  



 
 

 

           (10)      

 

    

    

(1) (2) ( )

(1) (2) (

*(2) *(2)
1 1

*(2) *(2)
2, , 2, ,

)

( ) , ,..., ,  

 = ( ) , ,...,

i

i

T
N

i i i
ii K

T
N

i i i
h ii K

C h C

dP dP dP
x dx

dx dx dx

dP dP dP
x dx

B

dx dx

B

B B
dx

 
  

 

 
 
 





P

P

            (11)

                     

       

    

   

*(2) *(2)
1 11/2

*(2)
/

(1) ( )1 1/2 1

2

/2
1/20

(1) ( )1 1/2 1/2*(2)
2, , , ,/ 1 201 2

( ) ,...., ,

( ( )) ,....,  

  

  

T

i

T

h C

N

i i
i

N

i i
ih Ci

d d
s ds

ds
B

d

B

B B

ds

d d
s ds

ds s

 

 





 


 


 
 
 

 
 
 

 



Ψ

Ψ

Ψ

Ψ

                     

(12) 

*(4)
1B is the fourth non-zero entry (namely bu ) of the 

vector *
1B . We note this term by 

 *(4) *
1 1/2 bi

B u



Ψ

 (13)                                                                                          

𝑢𝑏
∗  does not depend on unknown variables. Using 

the linear path, a very accurate numerical 
approximation of the characteristic velocity of body 
sedimentary also can be given by 

1
*

10

( ) ( )
NGp

b b g b g

g

u wu s ds u s


  ,                       (14)       

where 𝑁𝐺𝑝 is several points Gauss quadrature rule, 
gw are the weights and gs  are the positions 

distributed in the unit interval  [0, 1]. As an 
example, using a three-point Gaussian quadrature 
rule with the following points gs  and 

1 2,3 1 2,3
1 1 15 8 8,   ,  ,  ,
2 2 10 18 15

s s w w    
 
(15)   

 

In all the numerical simulations, one point-Gauss 
quadrature is used and therefore we have:   

 *
1 1b bu wu s                                           (16)  

This choice allows us to ensure the achievement of 
the second accuracy in  
space. Here, a piecewise polynomial  reconstruction 
is applied W , that is:  

     

 (1) (2) ( )

 

, ,.

,

.

 

. ,

ii

T
N

i i i

i

i

KW

P

x xx

P P





P

P

                        (17)              

The local speeds velocities using Eq.(6) are given 
by: 

 
 

 

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2

max , ,0    

min , ,0

i i i i i

i i i i i

a u gh u gh

a u gh u gh

  

    

  





    









 



   (18)       

Note that at the first-order, we have: 
11/2 1/2

1/2 1 1/2

( )

( )

ii i i

ii i i

W x W

W x W


 



  

 

 

P

P
                                (19)        
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The CFL condition reads: 
 

1/2 1/2

;   0 1
2max( , )i i

x
t CFL CFL

a a 

 


   


  (20)  

 
where t is the step time?  

We have chosen in this scheme the simplest linear 
segment path given by: 

1/2 1/2 1/2 1/2( ) ( ),  [0,1]i i i is W s W W s  

        (21)       
Using this path, the discrete nonconservative terms 
read:    

      * *
1 1/2 1/20;  ;      

2

T

i i b b bi

g
B h h Z u Z 

 

 
    
 

(21) 
 

   

*
2,

1/2 1/2 1/2 1/2

(0, , 0,0) ,    

( ) ( ) ( ) ( )
2

T

i i

i i i i i

B A

A g h h hC hC hC h




   

   



       
 

(22)  
 
Using the definition of the linear path, we have:  

    *(2)
1 1/2 1/2 , 1/2 , 1/21/2 2 i i b i b ii

g
B h h Z Z   

   
  

Ψ  (23)  

 

 
 

   *(2)
2 1/2 1/2 1/2 1/21/2

( ) ( ) ( ) ( )
2

s w

i i i ii
i

g
B h h hC hC hC h

 



   

   


       
 

Ψ  

(24) 
 

Remark. The first-order semi-discrete scheme is 
given by Eqs.(9)-(13), (16)-(19) PCCU and (22)-
(24). It’s necessary to improve the numerical 
solution of the proposed first-order scheme by 
processing the solution on the edges of each cell. 
This leads to achieving the second order in space.  
For this reason, we use a new AENO reconstruction 
technique. 

 
 

4 Second Order WBPP Semi-Discrete 

PCCU Scheme  
In this section, we develop a second-order PCCU 
semi-discrete scheme to improve the solution.  We 
prove that the proposed is well-balanced and 
preserves the positivity of the water depth.  We use 
first, a modified AENO reconstruction procedure of 
Toro et al, [36], and second, we develop a strategy 
to maintain the balance between the flux and source 
terms.  
 
4.1   AENO Reconstruction  
In the above first-order semi-discrete scheme, the 
piecewise polynomial given by Eq. (17) is assumed 
constant.  To deal with the second-order scheme, we 
adopt the new expression for the reconstruction W   
given by W  expressed as:   

       (1) (2) ( ), , , ..  . ,
i

T

K

N

i i i

i

i iW Pxx Px P P P  

where  ( )i xP  is given by:   

1/2 1/2

( ) ( );  ,   

with  ,
2

i i i i i

i i
i

x W x x x K

x x
x  

   




P

                    (25) 

where ( )i iW    are the slopes that 
approximate ( ( , )n

iW x t  in a non-oscillatory 
manner using a nonlinear slope obtained by a 
convex combination of 1/2 1/2  i iand    as 
follows 

1/2 1/2( ) (1 ) ,  n n n n

i i i iW          

[0,1]                                                          (26)       

where 1/2
2 2

1/2

( ) ;  with   i

i

r
r r

l r
 




 

  ς
and 

where 1 1
1/2 1/2,   i i i i

i i

W W W W

x x

 
 

 
   

 
l is a   

positive parameter,  ς  is a small positive tolerance 
to avoid division by zeros. The resulting semi-
discrete second-order PCCU-AENO scheme (given 
by equations (9)-(13), (22)-(24), and (25)-(26)) is 
then obtained by   using the new expression W in all 
the above equations.  Next, for the sake of 
simplicity, we take W instead ofW .   
 
4.2   Well-balanced Strategy of the Scheme 
The well-balanced property of our scheme is 
obtained when the discrete version of the source 
terms 0, , , ,, , ,i c i e i F iS S S S exactly balances the 
numerical fluxes so that the right-hand-side (RHS) 
of Eq. (9)   vanishes for ‘lake at rest’ steady states

 0 0 0,0, ,W h K b , where 0 0 0,0, ,h K b ,  are the 
non-negative constants.   In this subsection, we 
present an approach to achieve a well-balanced 
path-conservative central-upwind method, by an 
existing approach recently developed by Ngatcha et 

al, [14].   
For these steady states 1/2 1/2    i iW W i 

   .   
Moreover, the C-property is satisfied if   the 
condition: 

0 0 0 00,  ,  ,  0,  ,bE D hC K h h u Z b C            
(27)                                                             
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where 0 0 0 0,  ,  ,  K h b C  are nonnegative constants 
(valid for stationary flows at rest) is verified.  For 

the stationary solutions, we have 0idW

dt
 . And 

according to Eq. (9), we have:  
(1) (1) (1)
1/2 1/2 ,

(2) (2) *(2) *(2)
1/2 1/2 1, 2,

(3) (3) (3)
1

2

/2 1/

/

2 ,

(

2

4

( ) ( )
1 2

) (4) (4)
1/2 1/2 ,

1/2

0,

0,

0.

0,
i i e i

i i i i

i i e i

i i e i

i i

S

B B

S

S

 

 

 









  

   

  

  

 

F F

F F H H

F F

F F

(28) 
 
Therefore, we have the following well-balanced 
discretization for the topography source term: 
 

*(2) *(2) (2) (2)
1, 2, /1

)
/2 1 1/2

(2) (2
1 2 /2i i i ii iB B       F F H H  

(29) 
 

Here, the numerical flux according to Equation (21) 
reads:  

1/2 1/2
1/2 1/2

1/2 1/2 1/2
/

1/2

(2) 2 2
1 2  (0.5 ( ) (0.5 ( )) )i i

i i

i i i i

i

a a
g h g h

a a a a

 
 
    

  





  
 

F  

 
The nonconservative contribution reads: 

    (2) 1
2

/2
1/2

1/2 1/

*(2) *(2

2

)
2 11/2 1/i

i
i

i i
i

B B
a

a a











 



Ψ Ψ

H         (30a)            

 
where using the fact that  

1/2 1/2 , 1/2 1/2 1/2 , 1/2,  i i b i i i b ih Z h Z      

         ,  
 
we obtain the following well-balanced discretization 
of topography nonconservative term 

 
 

 1/2 1/2*(2)
1 1/2 1/21/2

.   
2

i i

i ii

h h
B g h h

 
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 


  

Ψ  (30b)                                                                           

 
Here, the reconstruction values of unknowns are 
given by using the AENO reconstruction procedure.  
The well-balanced discretization PCCU scheme is 
finally obtained by replacing *(2)

1,iB given by (23) in 

the semi-discrete scheme (9) *(2)
1,iB  given by Eq. 

(30b).  With this discretization procedure, the 
proposed scheme is well balanced.  The first, third, 
and last equations are trivial. The discrete source 
terms eS , FS and  DS  read:  
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,
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m s i i s i i

S C C C C
f h f h

dx dx
   

   

 
 
 
      

   
   

 
 

(31) 
 

Here, we have used the central scheme to discretize 
the diffusion source term. The semi-discrete PCCU-
AENO scheme above given by equations (9)-(13), 
(22)-(24), and (25)-(26) with the equations (30)-(31) 
satisfies the C-property.   
 
4.3 AENO Preserving-positivity 

Procedure 
Here, we propose a procedure called AENO-
preserving positivity reconstruction to achieve both 
the positivity of water depth and the C-property of 
the scheme.  We use the reconstructed values of the 
unknowns to the left and right of 1/ 2i  the AENO 
technique developed above 1/2 1/2 , 1/2, ,i i b ih q Z  

  
. The 

left/right velocities and concentrations are 
calculated as: 
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1/2 1/2
1/2 1/2

1/2 1/2

( ) ( ),i i
i i

i i

C
hC hC

h h
C

 
  
  

 

   

 
(32) 

 
The bottom reconstruction at left and right is given 
by:  
 

  

  

, 1/2 , , 1 1

, 1/2 , , 1

min max , , ,   

min max , , ,

b i b i b i i

b i b i b i i

Z Z Z

Z Z Z







  



 





           

(33) 
 
and the discrete free surface is  
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, 111 ,  b i ii ii ih Z h Z       
(34) 

 
Which verified at the steady states: 

*, *,
1/2 1/2 1/2 1/2,   i i i ih h h h
   

     ,                           
(35) 

 
where  

  
  

*,
, 1/2 , 1/21/2

*,
, 1/2 , 1/21/2 11

min max , , ,   

min max , ,

b i b ii ii

b i b ii ii

h Z Z h

h Z Z h





  

 

  

  

 

 

 

The preserving-positivity procedure of water, depth 
is given by:    

 *,
1/2 1/2max 0,  i ih h 

   
                                     (36)  

 
The water discharge and the sediment flux are 
respectively: 

  1/2 1/2 1/2 1/21/2 1/2
, i i i ii

i
q h u hC h C

    

   


           

(37)     
Remark.    The fully discrete PCCU scheme. 

The fully discrete PCCU scheme is obtained by 
using a variant of the strong stability preserving 
(SSP) method also called the third-order semi-
implicit Runge-Kutta (SI-RK3) method originally 
developed by Chertock et al, [37], for the shallow 
water equations and recently applied for Saint-
Venant-Exner equations by Ngatcha et al, [14].  The 
discrete PCCU scheme is also well-balanced and 
preserves the positivity of the water depth.        
Remark. The semi-discrete PCCU-AENO scheme 
above given by equations (9)-(13), (22)-(24), and 
(25)-(26) with the equations (30)-(37) satisfies the 
C-property and preserves the positivity of the water 
depth.  

5 Results and Discussion 
The computational parameters are given in Table 1 
and the AENO reconstruction is performed with   ς
= 0.0001 and 1l  . The Neumann condition is 
adopted here. 
 
Table 1. Parameters used for the simulation 

Parameters Values 

w  1000 3/Kg m  

s  2650 3/Kg m  
  0.015 1.2m  
  1.2 6 210 /m s  
p   0.4 
g   9.81 
n  0.028 

50d  0.001 

 
5.1 Accuracy test. SWE 
To check the accuracy of the proposed method, we 
consider the SWE, [11]. Here, the sediment 
transport is removed.  i.e., ( , ) 0C x t  0E D 

0bu  the domain of simulation is the channel of 
length 2000L m . The initial conditions are given: 
 

 
10  if  1000

,0 ,   ( ,0) 0.
5    if  1000

x m
h x u x

x m


 


  (38)  

 
We use zero-order extrapolation at all of the 
boundaries. The solution obtained by our scheme at 
the final time 30t s is compared with the exact 
solution. The comparison tests of the velocity and 
water depth are plotted and illustrated in Fig. 4. 
 
 
  

 

                    
              Fig. 4: Comparison between the exact solution and numerical solution at the first order
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The result presented in Fig. 4 shows that the shocks 
are well captured during the simulation. The 
calculated numerical solution agrees very well with 
the exact solution. The profiles of water height and 
velocity are well represented and the physical 
properties of the studied problem are preserved.  
 
5.2 Verification of C-property 
Here, we validate the C-property of the PCCU 
scheme in the context of the full sediment transport 
equations. For this purpose, a slightly modified 
version of the test case proposed by, [17], is solved 
in the following.  The initial conditions read:  
 
 
 

2( ,0) 0.2,   ( ,0) 0.1 0.1exp(( 5) ),   
u( ,0) 0 and C( ,0) 0.  

bh x Z x x

x x

    

 
 

 (39)    
 
The rest of the computational parameters are 
available in Table 1. The final computational times 
are 0,  0.05,  5t t t   . The calibration 

parameter is 0.8sC  . The computational grid is 
composed of 400 cells and the CFL number has 
been set to 0.9.  We solve this problem without any 
perturbation of the 
free surface to verify the exact well-balance of our 
scheme. For all these three cases, the steady states 
should be exactly preserved.  The results are plotted 
and exposed in Fig. 5. 
 

Fig. 5: Well-balanced test with different time simulations. 
 
It is expected that the free surface remains constant 
and the sediment concentration should be zero at all 
times. We can observe that there are no spurious 
numerical oscillations and the propagated small 
perturbation is very well captured by the proposed 
well-balanced methods. This small perturbation 
erodes the sediment bed and decreases very weakly 

its height , ( ,0)
n

b iZ Z x .  This phenomenon is well 
observed in nature.  Therefore, the proposed well-
balanced PCCU-AENO method preserves the C-
property to the machine's precision.  
 

5.2 Dam Break over the Erodible Bed 

without Sediment Diffusion. Influence of 

Calibration Parameter sC  

We recall that dam breaks are characterized by a 
sudden fall of water initially placed at a certain 
height on a moving floor and cause  
strong variations of fluid and sediment velocities.   
The main objective is to assess the performance of 
the PCCU scheme described above to compute the 
dam break problem. A similar test is also done in, 
[21] (see also, [23]).  We consider the rectangular 
channel of length 1L m with a dam located in the 
middle of the domain. The initial conditions are 
given: 
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 

   

2     if  x 0.5
( ,0)  

,

,  
0.125  if  x>0.

0,  0,  

0, 0,   ,0  

5

0b

u xh

Z x C x

x


 








  (40)                                  

 and zero-order extrapolation is used at all of the 
boundaries. 

Here, we have assumed that ( ) 0.b
b b

Z
u Z

x





 We 

find a hyperbolic system similar to that developed 
by Cao et al, [23], and solved by using flux-limited 

methods, [21]. The eigenstructure of the system is 
well-known and is available in, [21]. In this 
situation, the resonance phenomenon disappears 
and all the characteristic fields are not completely 
degenerated. The computational parameters are 
given in Table 1.  The numerical  
solution for this test computed using the proposed 
scheme is shown in Fig. 6  

 

 

                                                                                              

Fig. 6:  Water depth, sediment concentration, bed level, and velocity profiles with PCCU-AENO, we have used 
N=200 cells grid, CFL = 0.1. 

 
It is expected that the bed level profile in Fig. 6 is 
similar to that obtained in, [21], by using the Flux 
limiter method and by experiment data in [24].    
Now we consider the movement of the bed with 
characteristic velocity bu i.e. 

( ) 0b
b b

Z
u Z

x





....... We use the same 

computational parameters as the previous test. The 
time of simulation is 0.2t  . The computational 
solution is plotted in Fig. 7.  
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Fig.7: Water height, sediment concentration, bed level, and velocity profiles with PCCU-AENO, we have used 
N=200 cells grid, CFL = 0.1. The calibration parameter is 0.45sC   

As one can see in Fig. 7, even under a high-
energetic flow considered in this example, the fully 
coupled model can predict a stable bed erosion 
process and leads to a smooth and physically 
expectable bed profile.  
Now we compare both the PCCU-AENO scheme 
and the CU-AENO scheme when the sediment 
diameter is 0.0001d  . The results of both 
schemes at different times  

are plotted in Fig. 8.   It is expected that the model 
can be solved by a CU scheme dealing with the 
non-conservative terms as source terms that 
physically is not clear.  At the time 0.1t  , the CU 
scheme does not capture the shock well. We can 
observe that there are no spurious numerical 
oscillations and the propagated fluid after the break 
is very well captured by the proposed well-
balanced methods. 

 

Fig. 8:  Comparison between the CU-AENO scheme and PCCU-AENO scheme for an erodible dam-break 
problem. 
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The computational parameters are CFL = 0.5, N= 
200 grid cells, 0.5sC   A variant of this test is 
given by the following initial conditions: 

 

   2

2     if  x 0.5
( ,0)  ,  

0     if  x>0.5

0.1 0.1exp((

,0  0,  

,0 ,   ,0  0.5) )b

u x

Z x C

h

x

x

x


 




   

  (41)          

 

We compare again both PCCU schemes for two 
classes of size grains to see the advantage of our 
method.  The results obtained by our model are 
plotted in Fig. 9.  We expect that the proposed 
model can apply to a large range of sediment sizes. 
Therefore, it can be applied in several 
environments 

.  
Fig. 9: Dam break over erodible sediment bum. Left, first-order PCCU scheme with sC =0.75, right first-order 

PCCU scheme with sC =0.25. The computational parameters are 0.5t   N=200 uniform grid cells, CFL = 0.1. 
 
It is expected that the first-order PCCU method has 
been successful in eliminating the numerical 
diffusion, and it does not give rise to nonphysical 
oscillations near regions of large gradients.  The 
non-entropic character is not observed in the 
rarefaction wave zone.  The test proves that our 
scheme can deal a sediment transport even in 
presence of a dry zone and for a large range of 
characteristic velocities bu (that depends on 
sediment size).  
 
5.3 Dam-break over Erodible Bed: 

Comparison between the Proposed Model 

(M1), SVE Model through Grass Formula 

(M2), and Experiment Data 
In this test, the SVE model with the Grass formula 
is solved and compared to the proposed sediment 
transport model and experiment data.  A similar test 
is done by Gunawan, Fraccarrolo, and Capart, [24].  
SVE model is obtained when 0E D   and when 
we remove the sediment concentration equation. 
The initial conditions read: 

  
 

 

0.1     if  x 0
( ,0) ,  

0        

.

i
 

f

 

  
 

x>0
0, 0,

0 0,b

h u xx

Z x


 






    (42)                                                                                                                                                            

For the classical Exner model, the sediment 
diameter is 50 0.0032d  , sediment density is

1.540s  , and the domain of simulation is

 1.25;1.25  . Grass formula is used with 
0.005,  3.gA m   Free surface and bed level 

profiles at a time 0.5,t   0.75t  and 1t  is 
computed and shown in Fig. 10.  They show a good 
agreement between the numerical computation and 
the experimental data of, [24], concerning the water 
level and bed sediment profiles. The difference 
between both models is plotted in Fig. 11.   
The results obtained by the PCCU scheme show 
that the proposed model converges better with the 
experimental data of  Fraccarolo and Capart [24] 
than the classical model.  We have used it in all the 
simulations 0.1CFL  , 100N  and cells.   We 
observe that the water level and sediment bed 
profiles are better approximated using the PCCU 
scheme. The profile of the bed level is obtained by 
the appropriate choice of calibration parameter sC . 
This shows the importance of the characterization 
of sediment velocity  su
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Fig. 10:  Comparison between the proposed model solved using the PCCU-AENO scheme (PCCU model),  

Saint-Venant-Exner model (Exner model), and the experiment data. The different simulation times from top to 
bottom are t=0.5s, t=0.75s, and t=1s respectively.  Here, bz Z    

We can see that the classical SVE does not capture 
the bed evolution very well during the different 
times.    
The results presented in Fig. 10, using the Exner 
model, are very similar to those reported in, [25], 
using the finite volume staggered grid.  A clear 
observation is that the study of morphodynamics 
with an SVE model is not realistic. 

 
Fig. 11: Numerical solution  ,  b bh Z Z . 
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Comparison between the proposed model (M1) and 
the classical model (M2) at time t=0.5. For the 
proposed model, we have taken 0.55sC  . 
 
We observe that in both cases, as time progresses, 
the flow adopts a rather sharp profile at the 
wavefront, consistent with the physics of shallow-
water flows.   
Therefore, from the Figs. (10)-(11), we have 
proven that the classical Exner model cannot 
accurately describe the movement of a sand wave 
on the bottom, and can’t let us know the speed at 
which the bottom is moving. 
 
 
6 Conclusion and Perspectives 
This paper has presented a novel sediment transport 
model based on shallow water equations. We have 
proposed for this model a new bed-load equation. 
This new equation has the particularity of 
integrating the phase lag effect and can help to 
know the characteristic velocity with which the 
bottom moves.  With this new equation, the fully 
coupled model resulting is hyperbolic and admits a 
simple eigenstructure. This eigenstructure can be 
determined without the use of the Lagrange or 
Gerschgorin theorems.  A second-order path-
conservative central-upwind scheme has been 
proposed for solving the proposed sediment 
transport model. The fluctuations at left/right are 
easily computed. The second order of accuracy is 
achieved by using a nonlinear reconstruction 
technique called AENO.  A strategy of well-
balanced discretization has been implemented here. 
Moreover, AENO hydrostatic reconstruction also 
has been proposed to maintain the positivity of the 
scheme. The resulting scheme has been proven 
well-balanced and preserving-positivity. SI-RK3 
time discretization allowed us to obtain a second-
order accuracy in time.  Several numerical tests are 
made to assess the accuracy, convergence, well-
balancedness, and positivity of the water depth and 
performances of the proposed shock-capturing 
method. The proposed model gives good and 
realistic results.  The proposed one-dimensional 
numerical methods can solve several arbitrary 
hyperbolic systems, both in conservative and 
nonconservative forms. The proposed scheme can 
simulate flooding with sediment deposition in a 
section of the TONGO BASSA basin located in 
Douala Cameroon (this is future research). 
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APPENDIX A:  Closure model  

The transport mode parameter  sf     is given by:                        

 min 1;  2.5 Z

sf e             (A1)                                                                                                              

where 
*

sW
Z

u
 is the Rouse number and where  

is von Karman number  ( 0.4  ).   
2

* fu C u is the shear stress velocity. 
2[ / / ]Kg m sE  and D   are the erosion and 

deposition given by [22] 
1

,50 ,50( ) ,  if 
0,                              otherwise;

( )

,

1

cr cr

m

s a a

h u
E

D W C C

      
 


 

 (A2)                                                                                    

The deposition rate of sediments D is almost equal 
to the vertical flux of particles at the boundary. 

For erosion rate, 
50( 1)

fhC

s d
 


is the Shields 

parameter, 

,50 *
*

0.3 0.055(1 exp( 0.02 ))
(1 1.2 )cr D

D
    


 is 

the critical shields parameter.  

*D is the dimensionless grain size parameter, 
depending on the submerged specific gravity of 
sediment.   
 1.2m    is a coefficient that controls the erosion 

force (we take 0.015  it for all the simulations 
in this paper). 
In areas where the current is faster than the 
reference current, erosion is favored. Conversely, 
when the forcing is more intense than friction, we 
speak of deposition.  Erosion takes place when 

. 0q q

q q


and deposition when . 0q q

q q


. For 

sediment deposition, m represent the effect of 
hindered settling due to high sediment 
concentration (we take here 2m  );  sW  is the fall 
velocity of sediment  given by:   

2

50
50 50

13.95 1.09 13.95sW sgd
d d

  
   

 
(A3)                                                                                          

where  is the kinematic viscosity of water
6( 1.2 10   ),   50d  is the average diameter of 

sediment particles, 1s

w

s



    is the submerged 

specific gravity of sediment, where s is the 

sediment density and w the water density. 

aC   is the local near-bed sediment concentration in 
volume  which can be determined following [5] : 
    a cC C                                                   (A4)                                                                                               

4

4

(1 ) if | 1| 101

| log( ) | if | 1| 10

r

c

A A
Z

r

A A Z






 
 

 

  

     (A5)                                                                                          

4

4

min( 1;3) if | 1| 10
0 if | 1| 10

Z Z
r

Z





   
 

 
       (A6)                                                                                              

with max( ,1)aA
h


 ,  a m  being the active 

layer of the bed which is the height of the bedload 
zone or active layer.  That is:  

max(0.007( ) ,0)a b cr w sk      ,   (A7)                                                                                          

where  b [ 2/N m ] is the grain-related bed-shear 
stress  given by: 

2

12,     5.75 ln ,h
b w z

z s

R
g C g

C k

u
 

 
   

 
(A8) 

 hR m  is the hydraulic radius,  (assumed to be 
equal to water depth).  
The critical bed shear stress cr is

50( 1)cr cr wg s d    .                            (A9) 

 sk m is a roughness coefficient taking into 
account the sediment condition supply (see 
appendix B).  
 
APPENDIX  B:   Sediment supply condition 

Knowledge of the quantity of sediment that can be 
mobilized on a sedimentary bed can help to 
improve the performance of existing sediment 
transport models. Studies on sediment availability 
are very rare. However, among those that have led 
to new results, they have yet to be applied to real 
situations.  Sediment availability can influence 
sediment transport by bedload, the migration speed 
of sedimentary structures, and the mean current 
profile. Its impact on the morphodynamics of a 
sedimentary bed on the movement threshold. The 
sediment supply impacts sediment transport in the 
coastal context and plays a role in 
deposition/transportation processes. The impact of 
the sediment supply on the morphodynamics of a 
sedimentary bed subject to a current was 
experimentally studied in the coastal context by 
Vah et al [6].   The consideration of this physical 
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parameter is necessary for a good numerical 
simulation. Some models describing deposition and 
erosion should integrate this parameter. 
Relationships to predict equivalent roughness sk

for oscillatory sheet flow can be computed with or 
without Shields number.  According to Rijn [7]  
and Taking into account sediment supply 
conditions. We have:  

90

25
3 1.1 1 exp eq

s eq

eq

h
k d h

 

 









 



  





  (B.1)                                                                               

90d  is the grain size where the material is finer (m).   

eqh    is the height (m), and 
eq is the bed form 

length (m). Taking into account sediment supply 
conditions, we have: 

_ _

1 exp .eq

T

eq inf T eq infh

 


 

 
    

 

           (B.2) 

and  
_ _

1 expeq

T

eq inf T eq inf

h

h h




 

 
     

 (B.3)                            

We take here 0.48,   0.62T T   . 

*

50( 1)
u

s gd



 


with *u bottom velocity without 

bedforms and based on grain diameters. 
8.24T  ,     is the Shields parameter calculated 

without bedforms or skin friction Shields 
parameter. 

_eq infh and  _eq inf are respectively  the  height and  
length  at the  equilibrium  state  for  unlimited  
sediment  supply conditions   we  have :     

0.554
50 *_ 202eq inf dh D , 

 1.5
5_ 0 *500 1881eq inf d D               (B.4)                      

APPENDIX  C:  Double mesh for decoupled 

sediment transport model. 

It is possible to decouple system (1) into two sub-
systems. The first sub-system contains Saint-
Venant-Exner equations and the second sub-system 
contains only the sediment transport equation given 
by the suspension equation. In this case, the 
suspension equation is given by  

 
 

( )
s m

huChC C
f h E D

t x x x


   
    

    
 

can be solved by the fractional steps method which 

implies that:  ( )
s m

huChC C
f h

t x x x


   
   

    
        

(C2.1)    
                          (C2.2) 
 
Eq. (C1.1) is solved using a finite volume method, 
to find the intermediate solution    
hC , the initial value problem in (C2.2) is solved to 
obtain the solution next time.  
Eq. (C1.1) can be transformed into an integral one 
to conserve mass

 ( )
i

s m

K

C
hC dx huC f h

t x


  
   

  
        

(C3) 
 The first term is the unsteady term, the second is 
the convective term and the RHS term is the 
diffusive term.  
The strategy of discretization consists to consider 
two different meshes. The first is based on the 
center cell-centered mesh (red color) and the 
second is based on the cell vertex-centered mesh 
(black color). We solve the first subsystem in the 
first mesh and the sediment transport equation is 
solved in the second mesh (see Fig. 3).        

 Fig. 3: Finite volume gridding: double meshes for the decoupled sediment transport problems

The grid of each cell is assumed uniform. ( )     hC
E D

t


 


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The measure of a vertex-centered cell and a cell-
centered at the center is denoted by vdx cdx and 
respectively. Here, for simplicity, we assume that

c vdx dx dx  . In Fig. 3,  
W= West, E=East. The cell vertex centered is 
denoted by 1/2v iK K   and c iK K denotes the 
cell center centered.  These measures are denoted 
by  1/2imes K   imes K and respectively. The 
first term is discretized by using an explicit method 

(or Euler method):

1/2

1
1/2 1/2( )

i

n n
ni i
i

K

C C
hC dx h x

t dt




 
 

   (C4) 

where 1
1/2

n

iC 

  is an approximation of at vertex cell 

centered at the time 1n , and where Vdx is the 
measure of the vertex cell centered. 
The second term is discretized following the 
approach given by: 

1/2 1/2( ) ( ) ( )i ihuC huC huC         (C5)                                                                                     

where 1/2( )ihuC  is given by:

 1
1/2 1/2 1/2 1( )

2
i i

i i i i i

C C
huC q q C C

   

 
   

 
    

(C6) 
where 1/2iq  is given by AENO reconstruction? 
Therefore, the discrete flux is given at second-order 

accuracy.  To get the second order at the time we 
used the Crank-Nicolson method  

   1 11n n n n n

i i i i i iC C C C C C         ,   
(C7)                                              
where  is the positive parameter ( 0 1  ) The 
final convective scheme is given by (C8):

 

   

   

1/2 1/2 1/2 1/2
1/2 1/2 1/2 1 1/2 1

1 1 11/2 1/2 1/2
1/2 1 1/2 1/2

1 1
2 2 2 2

1 1
2 2 2

n n ni i i i
i i i i i i i

n n ni i i
i i i i i i

q q q q
q q C q C q C

q q q
q C q C q C

   

  

   
     

    
   

          
                

        

     
            

     

11/2
1/2 12

ni
i i

q
q C 

 

 
  

 

 (C8) 

 

Diffusive term 

To find the second-order accurate discrete scheme, 
we use the central differential and Crank-Nicolson 
method.  

1 1
, 1/2 1/2 , 1/2 1/2

s m

i i i i
m s i i s i i

C
f h

x

C C C C
f h f h

x x



   
   

 
 

 

    
   

   



       (C9) 
Using Eq. (41), we obtain  

 

  

1 1 1
1 2 1 3 1

1 2 1 3 1

 

                             1

n n n

s m i i i

n n n

i i i

C
f h C C C

x

C C C
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   

  

 

 

 
    

 

  



 
       (C10) 

where   
   

 

, 1/2 1/2 , 1/2 1/2 , 1/2 1/2
1 2

, 1/2 1/2
3

,  ,

 

s i i s i i s i i

s i i

h h h

x x

h

x

  
 




     

 


 

 




    (C11) 
The final fully second-order scheme for the 
sediment concentration equation is given by: 
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   

   

1/2 1/2 1/2 1/2
1/2 1/2 1/2 1 1/2 1

1 1 11/2 1/2 1/2
1/2 1 1/2 1/2

1 1
2 2 2 2

1 1
2 2 2

n n ni i i i
i i i i i i i

n n ni i i
i i i i i i

q q q q
q q C q C q C

q q q
q C q C q C
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  

   
     

    
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        
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            

     

    
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1/2 1

1
1 1 1

1/2 1 2 1 3 1 1 2 1 3 1

2
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i i
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i i i i i i i

q
q C

C C
h dx C C C C C C

dt



       


 


  

    

 
  

 


      

(C12) 
 
The fully discrete scheme given by Eq. (C12) 
permits obtaining 1n

iC  an intermediate solution. 

The solution of system (C2) 
1

*,
n

iC 
 is obtained by 

solving Eq. (C2.2) by the third-order semi-implicit 
Runge-Kutta (SI-RK3) as in [37] (see also [14]). 
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