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MONOTONICITY OF DYNAMICAL DEGREES FOR HENON-LIKE AND
POLYNOMIAL-LIKE MAPS

FABRIZIO BIANCHI, TIEN-CUONG DINH, AND KARIM RAKHIMOV

ABSTRACT. We prove that, for every invertible horizontal-like map (i.e., Hénon-like map) in
any dimension, the sequence of the dynamical degrees is increasing until that of maximal value,
which is the main dynamical degree, and decreasing after that. Similarly, for polynomial-like
maps in any dimension, the sequence of dynamical degrees is increasing until the last one, which
is the topological degree. This is the first time that such a property is proved outside of the
algebraic setting. Our proof is based on the construction of a suitable deformation for positive
closed currents, which relies on tools from pluripotential theory and the solution of the d, 0,
and dd° equations on convex domains.

Notation. D, and D denote the disc of radius r and centre 0 and the unit disc in C, respectively.
For k > 1, B = B;, denotes the unit ball in C*. M and N will denote open bounded convex
subsets of CP and CF~P, respectively, for some fixed 1 < p < k. We will usually denote by
M’ M" (resp. N',N") open bounded convex subsets of CP (resp. C¥7P) which are slightly
smaller than M (resp. N), with M” € M’ € M and N € N’ € N, and set D' := M’ x N’ and
D" := M"” x N”. We also denote by M* C CP and N* C CF~P further auxiliary convex open
sets satisfying M"” € M* C M and N” € N* C N. For p = k, N reduces to a point and we
take N = N’ = N.

The definition of a horizontal-like map f on M x N is given in Definition [3.1] see also
Remark for the special case of polynomial-like maps (corresponding to p = k). For such
maps, the dynamical degrees of type I AF and of type II df are defined in Definitions and
respectivelyﬂ For 0 < s < p (resp. 0 < s < k — p) we denote by Hs(M* x N*) (resp.
Vs(M* x N*)) the space of horizontal (resp. vertical) positive closed currents of bi-dimension
(s,s) on M* x N* and of finite mass. We will denote by ’Hgl)(M* x N*) and Vél)(M* x N*)
the subsets of Hs(M* x N*) and Vs(M* x N*) given by currents of mass 1, respectively. For
0 < s < p the semi-distance disty«xy+ on Hs(M* x N*) is defined in . A similar semi-
distance is defined on Vs(M* x N*) for 0 < s < k —p.

The pairing (-,-) is used for the integral of a function with respect to a measure or more
generally the value of a current at a test form. By (s, s)-forms and (s, s)-currents, we mean
forms and currents of bi-degree (s, s), respectively. The mass of a positive (resp. negative) (s, s)-
current R on an open subset U C C* is ||R|y := [; R AwF™* (vesp. ||R|v := — [, RAwWF™?),
where w := dd°||z||? for z € C is the standard Kahler form on C*. Recall that d° = 5-(9 — 0)
and dd¢ = %85. The definition generalizes to positive and negative currents on compact Kéahler
manifolds.

The notations < and 2 stand for inequalities up to a multiplicative constant (usually depending
on the domains under consideration). We will use the notation 7 to denote a projection. In
general, given two domains A and B, we will denote by m4 and wp the natural projections of
the product A x B to the factors A and B, respectively.

1. INTRODUCTION

Let f: X — X be dominant rational self-map of a complex projective manifold, or more
generally a dominant meromorphic self-map of a compact Kahler manifold of dimension k. Let

IThe dynamical degrees d¥ were introduced in [9] for invertible horizontal-like maps. In the case of polynomial-
like maps, the dynamical degrees were introduced in [I0] and [I5], and denoted by ds and dj, respectively. We
choose here a notation to avoid confusion between them.
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w be a Kahler form on X. For any 0 < s < k one can define the sequence A/, := || (f™M)e(W*=9)|| x
of the masses of the positive closed (k — s, k — s)-currents (f™).(w*~%), and the dynamical degree

of order s of f as
Al = lim sup()\;’:n)l/".
n—oo

For cohomological reasons, w*~* could be replaced by any smooth form or some positive closed
current in the same cohomology class. In particular, the sequence ()\;F,n)neN detects the volume
growth of s-dimensional subvarieties (whenever they exist) under the action of ", for n € N.

It turns out that the sequences (A{,)nen are (almost) sub-multiplicative, hence the limsup
in the definition above is actually a limit [11} 12} 22 29 B5], see also [5l [34]. For a precise
behaviour of these sequences in a number of settings, see also [4] 6l 17, 26], 33] and references
therein. It is also a consequence of the fundamental Khovanskii-Teissier inequalities that the
sequence of the dynamical degrees A\ is log-concave, i.e., the function s — log A} is concave
[8, 20% 25, 32]. An immediate consequence of this property is that there exists 1 < p < k such
that

(1.1) Ay <A <A >N > A

When X is projective, this means that the growth rate under the action of f of the volumes
of s-dimensional analytic subsets, for s < p, dominates that of (s — 1)-dimensional analytic
subsets, and the reversed property is true for s > p. Moreover, the so-called algebraic entropy
log )\; of f is larger than or equal to the (topological) entropy of the system [I1} 12} 211 [36], see
also [7, 37].

Let us stress that the proof of the log-concavity of the sequence of the degrees {\! }o<s<r,
and as a consequence that of , deeply relies on the algebraic setting and on cohomological
arguments (Hodge-Riemann theorem). In particular, it breaks down when considering non-
compact or local situations, even when )\g is the degree of maximal value (i.e., when the system
is somehow geometrically expanding). We address this problem in this paper, with new tools
coming from pluripotential theory.

We consider in this paper invertible horizontal-like maps in any dimensions [9, [I3] and
polynomial-like maps in any dimensions [10}15]. Horizontal-like maps are essentially holomorphic
maps, defined on some bounded (convex, for simplicity) subset D of C*, that have an expanding
behaviour in p directions and contracting behaviour in the remaining k — p directions. Such
expansion and contraction are of global nature, and these maps are in general not uniformly
hyperbolic. Assuming D = M x N (with M € C? and N € C*¥~P bounded convex domains), the
map f sends a vertical open subset of D to a horizontal one and, roughly speaking, the vertical
(resp. horizontal) part of the boundary of the first to the vertical (resp. horizontal) part of the
boundary of the second. As a particular case, when p = k the set N reduces to a point and one
recovers the notion of polynomial-like maps, proper holomorphic maps of the form f: U — V,
for some open bounded subsets U € V' € C*, with V convex [0, [15].

Horizontal-like and polynomial-like maps can be seen as the building blocks of larger systems
and, in particular, give a good setting to study local dynamical problems in larger dynamical
systems. Small perturbations of such maps still belong to these classes (up to slightly shrinking
the domain of definition), hence we get large classes of examples, and the families are infinite-
dimensional. As examples, perturbations of lifts to C¥*1 of holomorphic endomorphisms of
P%(C) give examples of polynomial-like maps. Perturbations of complex Hénon automorphisms
of C? |2, 19, 30] give horizontal-like maps with k = 2 and p = 1. Such maps were for instance
considered in [I6]. More generally, we call any invertible horizontal-like map a Hénon-like map.

Given a Hénon-like map or a polynomial-like map, one can introduce dynamical degrees as
above. Denoting again by w the standard Kéhler form on C*, one can roughly define (see Section
for the formal definition)

A = limsup(AL,)Y", where Al = [[(f")u" " lar -
n—oo
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Here M’ @ M and N’ @ N are open convex sets slightly smaller than M and N respectively.
In fact, we can show that A is independent of the choice of D’ := M’ x N’, see Lemma
Because of the geometry of the problem, these definitions are only given for 0 < s < p. On
the other hand, for Hénon-like maps, since p < k, one can also define the remaining degrees as
A (f) == AF(f71) for 0 < s < k—p (since f~! is a “vertical-like” map with k& — p expanding
directions).

Observe that, a priori, the sequences (/\In)neN above need not be sub-multiplicative this
time. More importantly, the lack of a Hodge theory means that, a priori, the resulting degree
may change if one replaces w® with the integration on a given analytic set of dimension k — s,
or more generally with a (positive closed) current of bi-degree (s, s). Hence, for 0 < s < p it is
natural to also introduce the degree

df == limsup(d,)"/", where dJ, :=sup ||(f")(S)|arxn
n—00 S
and S runs over the set of all horizontal positive closed currents of bi-dimension (s, s) and of
mass 1 on D' := M’ x N’. These definitions are also independent of the choice of D’. As for
A5, for Hénon-like maps we can define the remaining dynamical degrees as d (f) := df (f~1)
for every 0 < s < k —p.

The following theorems are our main results, which in particular answer [9, Question 6.3].
More complete and precise versions of Theorems [T.1] and [T.3] are given in Propositions and
[4.2] and Theorems [5.1] and 5.2

Theorem 1.1. Let 1 < p < k be integers and f be a Hénon-like map from a vertical open subset
of a bounded convex domain D = M x N C CP x CF=P to a horizontal open subset of D. Then,
the sequences {\} Yo<s<p, {\5 Yo<s<k—p, {dd Yo<s<p, and {d; Yo<s<k—p satisfy

/\ggAfg...gA;:A,;_pz...z/\;2)\5

and
l=dy <df <...<df=d_,>...>dy >dj.

Moreover, we have A} = df € N.

Since log d; is equal to the topological entropy hi(f) of f [9], we deduce the following
immediate consequence of Theorem [1.1

Corollary 1.2. Let p, k, f be as in Theorem . Then, for all0 < st <pand0< s~ <k—p
we have
log AL <logdZ, <logdy = hy(f).

As we will see, the proof of Theorem [L.1| can be applied also in the case of polynomial-like
maps, even if these maps are in general not invertible.

Theorem 1.3. Let k > 1 be an integer and take open sets U € V' € CF with V' convex. Let
f: U — V be a polynomial-like map of topological degree d;. Then the sequences {\I }o<s<k and
{d{ Yo<s<i satisfy

A <A << =d and 1=df <df <...<d} =d,.

In particular, all the dynamical degrees of f are smaller than or equal to d;.

As far as we are aware of, the only (non trivial) cases where the monotonicity of the dynamical
degrees could be established until now are of algebraic nature, and such monotonicity is a
consequence of the log-concavity property mentioned above. In a nutshell, in order to establish
the monotonicity of the sequence {d; }o<s<p, given a (horizontal positive closed) current S of
bi-dimension (s, s) with s < p, one needs to find another current, of bi-dimension (s + 1,5+ 1)
whose mass growth under iteration bounds the mass growth of S under iteration. Although
tricky, this is not a big problem when S is smooth (which essentially gives the monotonicity of
the sequence {\] }o<s<p). The main problem arises when S is not smooth, and already in the
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case where S is given by the integration on an analytic set. Even considering an analytic set
containing the first one, it is not clear at all why the iterates of the first should behave nicely
inside the iterates of the second.

Our solution to the problem can be roughly explained as follows. Given a (horizontal positive
closed) current S in D, we first construct a “holomorphic” family of positive closed currents
Sy parametrized by 8 € D and with Sy > S ﬂ We then consider all these currents as the
slices of a unique current R, of bi-dimension (s + 1, s+ 1), on the space D x D, using the slices
D x {0#}. The candidate to the role of current of bi-dimension (s + 1,s + 1) in D would then
be R := (mp)«(R), where mp: D x D — D is the natural projection. Two difficulties arise here.
First, we need to make sure that R is well-defined and horizontal in D. In order to do this, we
suitably modify R in the space D x D = M x N x D, in order to make it become horizontal in
M x (N x D), i.e., to have support contained in M x K, for some compact subset K of N x D.
This makes both the projection (7p).(R) well-defined (since now the projection mp is proper
on the support of R), and horizontal there (since the projection of the support of R on N is
relatively compact). In order to do this, we exploit some results in the theory of the d,d, and
dd® equations. Observe that, in order to get all these controls, it is crucial to work with the
extra flexibility given by (positive closed) currents, and not only with analytic subsets.

Once R is well-defined, we still need to make sure that the growth of the mass of (f").(R)
dominates the growth of the mass of (f").(S). In order to get this, we need to pay extra
attention, and get further estimates, during the construction of R and R. More precisely, we
make sure that the family of deformations Sp, and the family of the slices Ry of R with D x {0}
are sufficiently continuous in a suitable sense. Studying the growth of the mass of (f™).(R) in
D amounts to study the mass growth of (F").(R), where F' := (f,id) on D x D. We prove that
the sequence of functions ¢,, on D, where ¢,,(0) is the mass of (f™).(Rp) (suitably normalized),
is bounded with respect to a suitable norm (the DSH norm). A now-classical theorem by
Skoda then implies that a large growth of this sequence at § = 0 must imply a large growth of
this sequence for # sufficiently close to 0. Going back to currents, this implies a bound (from
below) on the growth of the mass of (f™).(Ry), hence of (F™).(R), and hence of (f™).(R). The
assertion then follows.

Organization of the paper. In Section [2] we give the main construction, that we will use in
the sequel, to produce a current of bi-dimension (s+ 1, s+ 1) in a product space from one of bi-
dimension (s, s). The construction gives a good control on the support and norms. In Section
we define the dynamical degrees for horizontal-like maps, and we give their first properties. The
two chains of inequalities in Theorems and are proved in Sections [ and [5, respectively.

Acknowledgments. The authors would like to thank the National University of Singapore
and the University of Lille for the warm welcome and the excellent work conditions.

This project has received funding from the French government through the Programme
Investissement d’Avenir (I-SITE ULNE /ANR-16-IDEX-0004, LabEx CEMPI /ANR-11-LABX-
0007-01, ANR QuaSiDy /ANR-21-CE40-0016, ANR PADAWAN /ANR-21-CE40-0012-01) and
from the NUS and MOE through the grants A-0004285-00-00 and MOE-T2EP20120-0010.

2. DEFORMATIONS OF HORIZONTAL POSITIVE CLOSED CURRENTS

We fix in this section integers 1 < p < k and convex open bounded subsets M" € M' € M &
CPand N € NN @ NeCFPandset D:= M x N, D' :== M x N, and D" := M" x N".
Observe that, when p = k, we have N = N’ = N” and these sets reduce to a single point. We
denote by ms and wn the natural projections of D on M and N, respectively, and use similar

2For technical reasons, we often need to reduce slightly the domain D, and the estimates that we obtain at any
fixed n may depend on the chosen domain. On the other hand, we will show that the limit objects do not depend
on such choice. The possible bad behaviour of the currents near the boundary of their domain of definition is a
source of technical difficulty in all the paper. For the sake of simplicity, we do not specify this change of domain
in this Introduction.
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notations for the projections of D’ to M’ and N’ and of D” to M"” and N”. We say that a
subset E C M x N is horizontal in M x N if ny(E) € N and vertical if mps(E) € M. A current
in M x N is horizontal (resp. vertical) if its support is horizontal (resp. vertical). These notions
naturally generalize to subsets of and currents on other product spaces. Note that when p = &
any current in M x N is horizontal, since NV is a single point.

Consider any convex open sets M* and N* with M"” € M* C M and N” € N* C N. For
0 < s < p, we denote by Hs(D*) the set of all horizontal positive closed currents of bi-dimension
(s,s) of finite mass on D* := M* x N*. We consider the semi-distance on Hs(D*) given by

(2.1) distps (S, 8') == sup | (S — &', Q)|
Q

where Q is a real smooth vertical (s, s)-form on M” x N* whose C'-norm is at most 1. A
similar semi-distance can be defined on the set Vs(D*) of all vertical positive closed currents
of bi-dimension (s, s) of finite mass on D*, for 0 < s < k — p, by testing against real smooth
horizontal (s, s)-forms on M* x N” whose C!-norm is at most 1.

The main result of this section is the following technical theorem, which will be used in
Section 5| It gives the deformation of a horizontal positive closed current S on D as described
at the end of the Introduction.

Theorem 2.1. Let S be a horizontal positive closed current of bi-dimension (s, s) and of mass
1 on M x N with support contained in M x N”, for some 0 < s < p—1. Then, there exist a
positive closed current R of bi-dimension (s +1,s + 1) on M’ x N x D and a constant ¢ > 0
independent of S such that

(i) R is smooth outside 75 (0);
(ii) the slice Ry := (R, mp, 8) is well-defined as a current of M’ x N of bi-dimension (s, s)
and of mass at most 1 for every 8 € D, and |R|| < 1;
(i) S < c¢Rp on M' x N;
(iv) distp/(Rg, Re) < |0 — 0’| for all 6,0" € D;
(v) R is horizontal in M’ x (N x D), with horizontal support in M' x (N’ x Dy 5).

In particular, (mp«N)«R is well-defined and ||(marxn)«R]| < 1.

Observe that the quantity distp/(Rg, Res) in the fourth item is well-defined by (2.1]) since,
for all # € D, the current Ry is horizontal on M’ x N’ by the fifth item.

We refer to [18] for the general theory of slicing of currents, and to [13] [16] in the particular
case of horizontal positive closed currents. When well-defined, the slice (R, mp, ) can be seen
as the intersection current R A [r5'(#)]. In particular, it is a current of bi-dimension (s, s) on
M’ x N x D, supported by M’ x N x {6}, that we can identify with a current of bi-dimension
(s,8) on M’ x N, see also [I]. In our case, since R is smooth outside of 75*(0), for 6 # 0 the
slice (R, mp, #) is equal to the restriction of R to 7r51(9).

Although, a priori, the first property in the statement will not be needed in the sequel, we
will use smooth deformations in order to obtain the other properties. In particular, the proof
of Theorem uses the following lemma, which relies on the solution of the d and 0 equations
by means of integral formula, see for instance [3, [0, 23], 24] 28].

Lemma 2.2. Let m > 2 and 0 <1 < m—1 be integers. Let U, U, V, V' be open conver domains
of C™ with V! € V. C U € U. Let ¥ be a positive closed current of bi-degree (m — l,m — 1)
on U, and assume the U is smooth on V. Then there exists a negative L' form Uy of bi-degree
(m—1—1,m—1—1) on U, which is smooth on V, and a positive constant ¢ (depending on the
domains but independent of W) such that

(2.2) ddcu\p =W on U/, HZ/[\IJHU’ S CH\I/HU, and HU‘I/HCQ(V’) S CH\IIHCQ(V)'

We will also need the following basic lemma, which will be used several times in the paper.
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Lemma 2.3. Letm>2,1<p<m-—1, and 0 <1 < p be integers. Let U C CP and V C C"~P
be bounded convex open domains. For every compact subset K @ U x V there exists a smooth

horizontal positive closed (m — I, m —1)-form Qg on U XV such that Qf is strictly positive on
K.

Proof. Fix an open convex set V' @ V such that K C U x V'. Take z € K. Since [ satisfies
0 <1 < p, we can find an [-dimensional complex plane II, passing through z and contained in
U x {z}, so that it does not intersect U x dV’. By using a convolution, we can average small
perturbations of [II,] to obtain a closed positive horizontal (m — I, m — )-form Q, on U x V’,
which is strictly positive at z. By continuity, €2, is actually strictly positive on a neighbourhood
of z. By taking a finite sum of such 2,’s, we can construct a positive closed horizontal form 2
on U x V' which is strictly positive in a neighbourhood of K. The assertion follows. O

Proof of Theorem [2.1. We fix M* and N* convex open sets satisfying M’ € M* € M and
N" @ N* € N/, and set D* := M* x N*. Fix r > 0 sufficiently small so that the 3r-
neighbourhood of M’ (resp. M*, N” N*) is contained in M* (resp. M, N*, N’). Denote by B
the unit ball of C* and let Dy be the disc centred at 0 and of radius 2 in C. For a € B and every
6 € D2 define the holomorphic automorphism hg g : Ck — CF as

heo(2) =z +rba

and the holomorphic submersion H, : C* x Dy — CF as
Hy(z,0) := h;é(z) =z —rba.

Define §¢ := (H;S)|prxp,- Then §¢ defines a current on D* x Dz of bi-dimension (s +1,s+1).
Since N is convex and hg g is close to the identity (by the choice of r), for every 6 € Dy the set
(supp Sa)ﬂﬂgj(G) is a horizontal set in M* x (N*x{0}), where mp, : D* xDy — Dy is the natural
projection. Hence, the slice (§%)g := (S%, mp,, ) is a horizontal current of bi-dimension (s, s)
in M* x N, supported on M* x N* (where we identify M* x N x {0} with M* x N). Observe
that, with this identification, we have (S%)y = (h, ;)*S on D* and, in particular, (S%)y = S on
D*. Moreover, the dependence 6 — (S%)y is continuous for the weak topology of currents.

Let p(a) be a fixed smooth positive form of maximal degree with compact support in B and
of integral 1. It defines a probability measure on B. Set

S = /B S%p(a).

Then S is a current on M* x N x Dy, supported on D* x Dy. For 8 € Do, we denote by
Sp = (S,mD,,0) the slice current of S by 77521(9), and we identify it to a (positive closed)
current on D* of bi-dimension (s, s).
Claim. The current S satisfies the following properties:

(i) So =5 on M* x N;

(ii) Sp is smooth for all § € Do \ {0};

(iii) [Sll¢2 < ¢ outside M* x N x Dy 19 and [|S|| < éon M* x N x Dy;

(iv) distp/(Sp, Ser) < ¢l — 0’| for all 0,0 € Do;
where ¢ is a positive constant independent of S.

Observe that, as Sy is supported on M* x N* for all § € Dy, we can see its restriction to

M’ x N* as a (horizontal) current on M’ x N’. Hence, the quantity distp/(Sp,Ser) in the last
item is well-defined by ([2.1)).

Proof of the Claim. It follows from the definition that Sy = .S on M* x N. To prove the second
item, we show that the coefficients of Sy are smooth. First, observe that

Sp = / (S")pp(a) for all § € Do.
B
6



For any two given multi-indices I := (iy,...,ix—s) and J = (j1,...,Jk—s) With i;,5; €
{1,...k} forall 1 <1 < k—s,let y(2), v§(2), and v4(z) be the coeflicients of dzy A dZy :=
dziy N+ Ndz,_ NdzZj N---Ndzj,_, in S, (8%)p, and Sy, respectively. Consider the change of
coordinates on C*¥ given by the translation

(2.3) = w = h;é(z,G) =z —rba.

Since (§%)p = (h;é)*S, we have 7§ (2) = y(w). Hence, we have

o= [ o (552).

Thus, 7g is smooth for 6 # 0. It follows that Sp is smooth for # € D2\ {0}. The second assertion
follows.

We now prove the third item. In the variables ¢ = (¢/, (kv1) := (2,0) with ' := (¢, .-, Cr),
let 02(¢) and o (¢) be the coefficients of d(; A d(y = d(iy A ... NdCi, . AdCjy A ... NdG;,_, in S
and S respectively, where I := (i1,...,ix_s) and J := (j1,...,jk—s) with 4,5, € {1,...,k+ 1}
for all 1 <1< k — 5. Consider this time the change of coordinates on C**1 given by

(¢, Cog1) = (w0, 1) = (¢ = 7Chr10, Cg1)-

Then, we have

(2.4 a@»=1¥ma%wxmnp(iif).

Since § = (H;S)|p+xp,, We can see that o%(w, (x41) is independent of the coordinate (j,1. So
the right-hand side of (and hence o(()) is smooth outside (341 = 0. Hence, S is smooth
outside 77521 (0). As the estimates are uniform out of a neighbourhood of {(;+1 = 0} = {6 = 0},
this gives the proof of the first part of the item. For the second part, observe that

S = (7p+xy)« (p(a) A H* ()| pe o, 8)

where H : CF x Dy x B — CF is defined as H(z,0,a) = Hy(2,0), and mp-xp, : D* x Dy x CF —
D* x Dg is the natural projection. Since H is a submersion, the masses of p(a) A H*(S) on
D* x Dy x B and of its push-forward to D* x Dy are bounded above by a constant which only
depends on p and the considered domains. This completes the proof of the third assertion in
the claim.

Let us prove the last item. Let  be a smooth real (s, s)-form with vertical support in M” x N’
and C'-norm less than or equal to 1. Then, for all § € Dy, we have

(25) S0 = [ (S0 Dpla) = [ (5. (hao) Dpla) = (5.9%).
acB a€B
where we set
= [ (o) @pla).
a€B
Since € is a vertical form with vertical support in M” x N’, Qg is well-defined as a vertical form
on M* x N*. As S is supported on M x N’ the pairing in last term in (2.5)) is well-defined.

Since €2 is smooth and real, and [|Q||co(as»« N7y < 1, there exists a constant ¢; independent of
 such that

—CleHle - Qg2||CO(D*) < le — 992 < Clwsuggl — QQQHCO(D*) for all 91,02 € DQ.

Moreover, since [|€[|¢1 (7w nvy < 1 there exists also a constant ¢z (depending on p but independent
of ) such that

||Qg1 — QQQHCO(D*) < CQ|01 — 92| for all 81,605 € Ds.
Since S has mass 1, we have

‘(‘391 - 5927Q>‘ = ’<S7 Q91 - Q92>’ < ClHQ@1 - Q6’2HC0(D*) < 6|01 - 02‘7
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where ¢ = c¢jcg is independent of Q. So, we have distp/(Sp,, Sp,) < ¢|61 — 62|. The proof of the
claim is complete. O

The Claim implies that the current JS satisfies properties (i)-(iv) in the statement of Theorem
for any constant 6 > 0 small enough. We now need to modify this current in order to satisfy
also the last property. Observe that 7y (suppS N (M* x N x Dy 4)) @ N* by the choice of r.

Since S is positive and closed, by using Lemma for ¥ = S on U = D’ x D and for
U:=M"xXNxDy,m=k+1and ! =s+1 <k, we see that there exists a current Us on
D’ x D such that ddUs = S on D’ x D. Moreover, Us is smooth on D’ x (D \ {0}), with good
C? estimates on compact subsets of D’ x (D \ {0}).

Denote W := N’ x D. Let 0 < x < 1 be a non-negative smooth cut-oif function, horizontal
in M’ x W, which is equal to 1 on a neighbourhood of M’ x N* x D;,, and vanishes on
M’ x (N1 x Dy/3)¢ for some open convex set Ny such that N* € N1 € N'. Define, on M’ x W,

S :=dd°(xUs) = dd°x ANUs + dUs N d°x + dx N dUs + xddUs
=dd°x NUs + dUs N d°x + dx N dUs + xS.

Then S is horizontal and closed in M’ x W. It is smooth outside T 1(0). Moreover, we have
S =8 on M x N* x Dy/4 (since dd°x = dx = d° = 0 and x = 1 there) and suppS C
M’ x Ny x 61/3 since x vanishes on M’ x (N1 x Dy/3)¢. In particular, S satisfies (v). On the
other hand, S is not necessarily positive on M’ x Ny x (D, /3\D1/4). However, it is bounded from
below by some smooth negative form independent of S because the C2-norm of Us is bounded
there by a constant independent of S. We now construct a smooth horizontal positive closed
(k — s,k —s)-form Q, on M’ x N' x Dy /5 such that S+ Q4 is (horizontal, closed and) positive,
and has good support and norm estimates.

Set F:= Ny x D, /3- By Lemma applied with m = k+1, [ = s+ 1 (which is possible since
s < p—1 by assumption), U = M, V = N’ x D2, and K = M’ x F, there exists a smooth
horizontal positive closed (k — s,k — s)-form Q; on M x N’ x Dy, which is strictly positive on
M’ x F. Since S =8 on M’ x N* x D1/4, and outside this set the C%-norm of S is bounded by
a constant independent of S, by taking large enough constants by,bs > 0 (independent of S) we
can see that the current R := by 1(S 4 019, ) satisfies the requirements on the statement. This

concludes the proof.
O

3. DYNAMICAL DEGREES OF HORIZONTAL-LIKE MAPS

We again fix in this section integers 1 < p < k and a bounded convex domain D = M x N C
CP x CF=P. We also set 9,D := OM x N (resp. 0D := M x ON) and we call it the vertical
(resp. horizontal) boundary of D. We denote by 71 and 7y the first and the second projections
of D x D on its factors, respectively.

Definition 3.1. A horizontal-like map f on D is a holomorphic map whose graph I' C D x D
satisfies the following properties:

(i) T is a submanifold of D x D of pure dimension k (not necessarily connected);
(ii) (m1)r is injective;
(iii) (m2)r has finite fibers;
(iv) T does not intersect 8,D x D and D x 9y D.

Observe in particular that f does not need to be defined on the whole D, but only on the
vertical open subset 71 (I') of D. Likewise, the image of f is the horizontal subset m2(I") of D.
We will write D, 1 = m1(I') and Dp, 1 = m2(I") in the following. More generally, for all n > 1 we
consider the iterate f™ = fo---o f (n times). These are also horizontal-like maps. We denote
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by D, and Dy, the domain and the image of f™. Observe that the sequences (D, ,)n>1 and
(Dh,n)n>1 are decreasing.

Remark 3.2. In the case where p = k, as N is a point, Definition amounts to simply
considering proper holomorphic maps f: My — M, where My := f~1(M) is open, My € M,
and M & CF is a convex open set (we set in this case )N = @ by convention, to keep the
condition (iv) consistent). These are the so-called polynomial-like maps, see for instance [10].
A polynomial-like map f: My — M defines a ramified covering over M. We usually call the
degree d; of the covering the topological degree of f.

The filled (forward) Julia set K4 of f is defined as
Ky :={z€ D: f*(z) is defined for all n > 0}.

Note that Ky = Ny>1D,,. Define also K_ := N,;>1Dp,,. Both Ky and K_ are non-empty,
and we have f~1(K,) =K, and f(K_) = K_. Observe that K (resp. K_) is a vertical (resp.
horizontal) closed subsets of D. In particular, Xy NX_ is a compact subset of D.

We call any invertible horizontal-like map (i.e., any horizontal-like map such that (72)r is
also injective) a Hénon-like map. In the rest of this section, f will be either a Hénon-like map
or a polynomial-like map in the sense of Remark The sets M', M", N', N” will be as in the
Notation at the beginning of the paper. We will assume in what follows that M’ and M" (resp.
N’ and N") are chosen sufficiently close to M (resp. N) so that

(3.1) DUJ CcM'xN and Dh71 C M x N".
In particular, we can replace D with D’ or D” and still get horizontal-like maps. We denote

by Dy s Dy, Dy, and Dy | the domains and images of the restrictions of f" to D" and D",
respectively. Note that, When f is a polynomial-like map, N, N’, and N consist of a single
point and we have D, = f~"(M) and Dy, = M (and, similarly, D, ,, = f~"(M’), D}, ,, = M,
Dy, = f"(M"), and Dy, = M"). In this case, condition (3.1) means that Y M) c M”.
The following lemma gives some basic compactness estimates that follow from the inclusions
(3.1) and that we will need in the sequel. Recall that the operators f, and f* are defined as

fe = ((m)r)« o ((m)jr)*  and  f* = ((71)jr)« o ((m2)r)"

The operator f, is continuous on horizontal currents, and the operator f* is continuous on
vertical currents. Recall that we only consider Hénon-like maps and polynomial-like maps.
Lemma 3.3. Let M,M',M" ,N,N',N", and f be as above. Then, there exists a constant A
(depending on the domains and f) such that

(1) (fM)*(w®) < A" H*(w®) on DL, for all0 < s <k andn > 1;

(i) (f«(S))pr € Hs(D') and || f(S N < AlSIn for all 0 < s < p and S €

Hs(D").

Proof. Set A := (nax, 1f*(@)ller(p: ). Then we have f*(w®) < Aw® on Dy, for all 0 < s < k.

v,n?

The first assertion follows from the inclusion D, ,, C Dj, 4
Take now S € H(D'), for some 0 < s < p. Using (3.1)), we have

[+ ( a7 xn = / fe(S)nw® < / Fe (S A fH(w?))

M'xN M'xN

-/ SAPE)S [ SAre)
F=1(M'xN) M""xN
:/ SAF* (W) < AllSIarn-

M//><N/

In the last inequality, we used the fact that S € Hy(D') and the first assertion with n = 1.

Since f is horizontal-like, (f+(S))|p is a horizontal current on D’. By the above inequality its

mass is finite and hence (f«(S))|pr € Hs(D'). This completes the proof. O
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We now define quantities to measure the growth of the mass of the currents (f™).(S) (for
S horizontal and of dimension up to p) and (f")*(R) (for R vertical and of dimension up to
k — p). The case of dimension p and k — p, respectively, is given by Lemma below. Recall
that, by [I3, Theorem 2.1] for any S € H,(D), the slice measure (S, 7y, z) is well-defined for
any z € M’ and its mass, denoted by ||.S||, is independent of z and is equal to (S, 7},(Qas)) for
every smooth probability measure Qs with compact support in M’. Similarly, if R € Vy_,(D)
the slice measure (R, my/, w) is well-defined for any w € N’ and its mass, denoted by [|R|,
is independent of w and equal to (R, 7} (y)) for every smooth probability measure ¥ with
compact support in N’.

Lemma 3.4. If S € H,(D) is supported in M x N', then ||S|pr S |1S|n S 1S pr- Similarly,
if R € Vi_p(D) is supported in M’ x N then ||R||pr < ||Rllo S || Rllpr-

Proof. 1t is enough to prove the assertion for S € H,(D). The inequality ||S||s < [|S||pr is a
consequence of the fact that (mas)«(S|pr) = [|S||n - [M'], which gives ||S]|pr > [|(mar)«(S|p/)ll 2
||S| - | M|, where | M'| denotes the Lebesgue measure of M’. The proof of the other inequality
is essentially given in [10, Lemma 3.3.3], see also [I5, Lemma 2.5]. We recall here the idea of
the proof.

Let wps and wy denote the standard Kéhler forms on M and N, respectively. Then, w =
wpr + wy is the standard Kéhler form on D. For any [p x (k — p)]-matrix A, consider the
projection s 4: (CP x CE=P) — CP defined as mpra(2,w) = 2z + Aw. If the entries of A are
sufficiently small (depending on M, M’, and N), mar 4 is well-defined on D', with image in M.
By the first part of the proof, the slice (S, a4, ) is then well-defined for every z € M’. Its
mass is independent of A, and in particular equal to ||S||;. Hence, the integral [, SA®}, 4(wh))
is well-defined and bounded by a constant times ||S||;-|M| for every A. To conclude, it is enough
to observe that wP can be bounded on D’ by a finite sum of forms ¢; - oA, (wh,), where the
entries of A; can be taken small as above, and the ¢;’s are positive. As a consequence, we have

1Sl _/D/SMP <e | SATialA) S IS
%

The assertion follows. O

Lemma 3.5 ([I3, Proposition 4.2]). The operators f.: Hp(D') = Hp(D') and f*: Vi_p(D') —
Vi—p(D') are well-defined and continuous. Moreover, there exists an integer d > 1 such that

| f«(S)||n = d||S||n for all S € H), and ||f*(R)||» = d||R]» for all R € V(D).

We call the integer d as in the last statement the main dynamical degree of f. Note that
when f is a polynomial-like map (see Remark [3.2)), since H(D') is the set of constant functions,
the main dynamical degree is the topological degree d; of f.

We now introduce some invariants in order to measure the growth of currents of arbitrary
dimension and degree, as above. The first is an adaptation of the (smooth) dynamical degrees
for polynomial-like maps introduced in [10].

Definition 3.6 (Dynamical degrees of type I). Let M, M’ N,N’, and f be as above. For
0 < s < p, we define the dynamical degree \[ as

A = limsup(AL,)Y", where AL, = [|(f") (w5 ).

$,n |D'{) n
n—oo ’
For 0 < s < k — p, we define the dynamical degree \; as

AL = limsup(A;,)'", where A, = () (@i )lI-
n—oo h,n
The mass in the definition of Af, (resp. A,) is taken on M’ x N (resp. M x N’), or
equivalently on the image D;w (resp. the domain Dy, ,,) of f".
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Remark 3.7. Note that for polynomial-like maps we only consider A\ with 0 < s < k. For
Hénon-like maps, we can see that AT (f) = A7 (f7!) for all 0 < s < p and A\ (f) = AT (f7h)
for all 0 < s < k — p, where the degrees of f~! can be defined reversing the role of f, and f*
and using the fact that f~! is a vertical-like map with k& — p expanding directions, see also [9)
Section 3.

Lemma 3.8. The definitions of N[ and \; are independent of the choice of M’ and N’ as
above. Moreover, we have )\; = /\,;_p = d, the main dynamical degree.

Proof. For the proof in the case of polynomial-like maps we refer to [I5, Lemma 2.3]. So, we
assume that f is a Hénon-like map. By Remark [3.7] it is enough to prove the statement for
AF, for 0 < s < p. We fix convex open sets M” @ M’ and N” € N’ as above and 0 < s < p,

A+ the dynamical degrees of type I defined using D", instead of D

™) < )l )

it is clear that, for all n > 0, we have A{, < AL, for 0 < s < p, hence A} < A} for every s as
before. So, we only need to prove the reverse inequality.

Recall that we are assuming that Dy C MxN"and D,; C M"xN, see . In particular,
Lemma E 3| holds and since f™ : n — Dy, . is bijective we have

(32) f (Dh,n) - fn_l(D;,n) - Z,nfl N D;,l

for all n > 2. Indeed, for all n > 2, since Dj , C D}, | we have that f~'(Dj, ) C D; ;. Thanks
to (3.1) we also have D, ,, = f~"(D') = f~"(M’' x N") C f~"*1(M" x N") = D}, ;. So (3.2)
follows.

Using (3.2)) and the first assertion in Lemmait follows that, for allm > 2 and 0 < s < k—p,
we have

and we denote by )\5 i
in Definition B.6. Since

v

Il = [l ) e
= [l A @)
=D}, )
< n—1 k—s W
</ Al

<[ el ) e

h,n—1

<[ el e =10l I

v,n—1
h,n—1

)\+

where in the last inequality we used the inclusion Dy, ,, C Dy, ;. Hence we have AT n S g1

which implies that A7 < A} and the independence of A} from the domains.

Finally, let us show that )\;; = d. A similar proof also shows that )\,;p = d, see also Remark
There exists a_, oy € Hp(D') such that ||as||, =1 and

a_ <wFPonD and w*P<ayonD”

(where the existence of o follows from Lemma . We apply Lemma with S = a_ and
obtain that )\;r > d. By the first part of the proof, the dynamical degree of type I is independent
of the choice of D’. So we can replace D’ with D" in the definition of . Applying Lemma
with oy gives Af < d. Hence, we have A} = d. The proof is complete. O

We will also consider the following notion of dynamical degrees, which was introduced in [9],
see [15] for the earlier definition in the setting of polynomial-like maps.
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Definition 3.9 (Dynamical degrees of type II). For 0 < s < p, the dynamical degree dJ is
defined by

df = limsup(d],)"/" where dJ, = sup||(f")«(S)|larxn
n—00 S

(1)

and S runs over the set Hs ' (D’) of all horizontal positive closed currents of bi-dimension (s, s)
of mass 1 on D' := M’ x N'.
For 0 < s < k — p, the dynamical degree d is defined by

dy :=lim sup(d;n)l/"

S
n—oo

where dy, := sup [|(f)"(B)llarxnr,
and R runs over the set V§1)(D’ ) of all vertical positive closed currents of bi-dimension (s, s) of
mass 1 on D' := M' x N'.

Remark 3.10. Similarly as for dynamical degrees of type I, for polynomial-like maps we have
p = k, hence we only need to consider d} with 0 < s < k. When f is a Hénon-like map, we
can define the degrees of type II for the vertical-like map f~! and we have df (f) = d; (f~1)
for0<s<pandd;(f)=df(f})for0<s<k—np.

The following lemma is proved in [15, Lemma 2.6] in the case of polynomial-like maps and
in [9, Lemma 3.5] in the case of Hénon-like maps.

Lemma 3.11. The dynamical degrees df and d; do not depend on the choice of M’ and N'.
Moreover, we have da' =dy =1 and d;r = d,;_p =d.

In particular, it follows from Lemma, [3.5] that

d"<dt <d* and d"<d; <d'  asn— .

pn ~ k—p,n ~

Remark 3.12. By considering a current S given by the integration on a horizontal analytic
subset of dimension 0 < s < p which intersects K we can see that df > 1 because (f").(9)
satisfies the same property for all n, and hence these currents have mass bounded from below.
Recall that for polynomial-like maps we only have to consider df with 0 < s < k. When f is
a Hénon-like map, we can apply the above argument for f~!. By Remark we get that
dg >1for0<s<k—p.

Remark 3.13. Take 0 < s < p. By Lemma one can bound wlkDTf from above with a smooth

horizontal positive closed (k — s, k — s)-form 2 on D’ (we used here t