
HAL Id: hal-04163846
https://hal.science/hal-04163846v1

Submitted on 17 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing the Satisfiability of Formulas in Separation Logic
with Permissions

Nicolas Peltier

To cite this version:
Nicolas Peltier. Testing the Satisfiability of Formulas in Separation Logic with Permissions.
TABLEAUX 2023 32nd International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, Sep 2023, Prague, Czech Republic. �hal-04163846�

https://hal.science/hal-04163846v1
https://hal.archives-ouvertes.fr


Testing the Satisfiability of Formulas in
Separation Logic with Permissions

Nicolas Peltier

Université Grenoble Alpes, LIG, CNRS, Inria, Grenoble INP, F-38000 Grenoble,
France

Abstract. We investigate the satisfiability problem for a fragment of
Separation Logic (SL) with inductively defined spatial predicates and
permissions. We show that the problem is undecidable in general, but
decidable under some restrictions on the rules defining the semantics
of the spatial predicates. Furthermore, if the satisfiability of permission
formulas can be tested in exponential time for the considered permission
model then SL satisfiability is Exptime complete.

1 Introduction

Separation Logic [14, 22] (SL) is a dialect of bunched logic [18] that is widely used
in verification for reasoning on programs manipulating pointer-based data struc-
tures. It constitutes the theoretical basis of several industrial scale automated
static program analyzers [1, 7, 2]. SL formulas describe heaps, with atoms assert-
ing that some location (i.e., a memory address) is allocated and refers to some
tuple of locations (i.e., a record), combined with a special connective ∗, called
separating conjunction, which is used to compose heaps. Custom data structures
may be described in this setting by using spatial predicates, the semantics of
which is defined using inductive rules, similar to those used for defining recur-
sive structures in usual programming languages. Such rules allow one to describe
heaps of unbounded size with some particular structure such as lists or trees. In
this setting, existing work usually focuses on the fragment of SL called symbolic
heaps (defined as separating conjunctions of SL atoms).

Usually, SL formulas are interpreted in the standard heap model, where heaps
are defined as partial finite functions mapping locations to tuples of locations
and where the separating conjunction ∗ is interpreted as the disjoint union of
heaps. Both the satisfiability and entailment problems have been extensively in-
vestigated for this heap model. It was proven that the satisfiability problem is
Exptime complete [6], whereas the entailment problem is undecidable in gen-
eral, and 2-Exptime complete provided the inductive rules meet some syntactic
conditions [13, 11, 12, 15] which are general enough to capture usual data struc-
tures used in programming. The combination of spatial reasoning with theory
reasoning has also been thoroughly investigated, see for instance [20, 21, 19, 23,
16]).



However, richer models exist (see for instance [8]) accounting for additional
features of dynamic memory. The automation of reasoning in these models re-
ceived little attention. One such model that is of practical relevance is separa-
tion logic with permissions [3, 5], where allocated locations are associated with
so called permissions used to model the ownership of a given heap region (e.g.,
a process may have read or write permission over some location). The heap
composition operator that is used to define the interpretation of the separating
conjunction is more complex in this framework than in the above case: non dis-
joint heaps can be combined if they agree on all the locations on which they are
both defined and if the corresponding permissions can be combined (for instance
it is natural to assume that read permissions can be freely combined but not
write permissions). The framework is thus parameterized by some permission
model describing which permissions are available and how they can be combined.
In [10] algorithms are provided to decide the satisfiability and entailment prob-
lems for SL formulas (symbolic heaps) with permissions in the case of lists, i.e.,
when all allocated locations refer to a single location (i.e., to a record of size 1)
and when there is only one spatial predicate lsegp(x, y) denoting a list segment
from x to y, with permission p. The provided algorithms are generic w.r.t. the
permission model, and it is proven that these problems are in Np and co-Np,
respectively, assuming that some oracle exists for testing the satisfiability of
permission formulas in the considered model.

In the present paper, we investigate the satisfiability problem for SL formu-
las with permission defined over arbitrary spatial predicates, with user-defined
inductive rules. The goal is to allow for more genericity by tackling custom data
structures (such as trees, cyclic lists, doubly linked lists etc.) with arbitrary
permissions. The addition of permissions makes satisfiability testing much more
difficult: we prove that the problem is undecidable in general, and we devise
syntactic conditions on the inductive rules for which the problem is Exptime-
complete. The restrictions are similar – but stronger – to those given in [13] to
ensure the decidability of the entailment problem in the standard heap model.
In particular, the inductive rules defining the predicate lseg mentioned above
fulfill these restrictions1, as well as other usual data structures such as cyclic
list, trees etc. (however, doubly linked lists or trees with parent links are not
captured). The considered inductive rules use a special connective ◦ (different
from ∗) that is interpreted as a disjoint union. As we shall see, this is both
more natural for defining data structures (see also [5]) and required for deciding
satisfiability. Due to lack of space, proofs can be found in the appendix.

2 Definitions

Syntax. We first briefly review some basic notations. If xxx and yyy are finite se-
quences, then we denote by xxx.yyy the concatenation of xxx and yyy. We denote by |xxx|
the length of xxx and by xxx|i its i-th element (if 1 ≤ i ≤ |xxx|). If E ⊆ {1, . . . , |xxx|}
then xxx|E denotes the set {xxx|i | i ∈ E}. With a slight abuse of notations, a finite

1 provided the considered lists are not empty.



sequence xxx is sometimes identified with the set {xxx|i | i = 1, . . . , |xxx|}, for instance,
we may write x ∈ (uuu ∪ vvv) \www to state that x occurs in uuu or vvv but not in www.

We consider a multisorted framework, with two sorts l (for locations) and
p (for permissions). Let Vl and Vp be two countably infinite disjoint sets of

variables with V def
= Vl ∪ Vp, where Vl and Vp denote location variables and

permission variables, respectively. The set of permission terms Tp denotes the
set of terms built inductively as usual on the set of variables Vp and the binary
function ⊕ (written in infix notation). A points-to atom is an expression of the

form x
p7→ (y1, . . . , yk) with x, y1, . . . , yk ∈ Vl and p ∈ Tp. An equational atom is

an expression of the form x ≃ y or x ̸≃ y with either x, y ∈ Vl or x, y ∈ Tp.
We consider two disjoint sets of predicate symbols Pp and P. The set Pp

denotes permission predicates, where each predicate P̂ ∈ Pp is associated with a

unique arity #(P̂ ). A permission atom is an expression of the form P̂ (p1, . . . , pn),
P̂ ∈ Pp, n = #(P̂ ) and p1, . . . , pn ∈ Tp. P is a finite set of spatial predicate
symbols. Each symbol P ∈ P is associated with a spatial arity #l(P ) ∈ N and
with an arity #(P ) ∈ N, with #(P ) > #l(P ) > 0 (#l(P ) and #(P ) − #l(P )
denote the number of arguments of P that are of sort l and p, respectively).
A predicate atom is an expression of the form P (x1, . . . , xn, p1, . . . , pm), with
n = #l(P ), n+m = #(P ), x1, . . . , xn ∈ Vl and p1, . . . , pm ∈ Tp. A spatial atom
is either a points-to atom or a predicate atom.

The set of formulas is built inductively as usual on the logical constants emp,
and ⊥ and on the set of spatial, equational and permission atoms, using the
special connectives ∗ and ◦ and existential quantification on variables of sort
l only (existential quantification over variables of type p is not allowed). The
connective ∗ is usually called separating conjunction, and we call ◦ the disjoint
conjunction (it is intended to capture the disjoint union of heaps2). Formulas
are taken up to associativity and commutativity of the symbols ∗ and ◦, up to
the commutativity of ≃, ̸≃ and up to prenex form. We denote by |ϕ| the size of
ϕ. For technical convenience, we assume that the symbols ◦ and ∗ have weight of
1 and 2, respectively, and that all atoms have size 1. For conciseness, a formula
∃x1 . . . ∃xn ϕ will often be written ∃xxxϕ, with xxx = (x1, . . . , xn). A permission
formula is a formula containing no spatial atoms and no equational atom of the
form x ≃ y or x ̸≃ y with x, y ∈ Vl (note that emp is a permission formula). A
formula is spatial if all the atoms occurring in it are spatial. A pure formula is a
formula that contains no spatial atom (it is not necessarily a permission formula,
as it may contain equations or disequations between locations) A symbolic heap is
a formula containing no occurrence of ◦, and a ◦-formula is a formula containing
no occurrence of ∗.

A variable x is free in a formula ϕ if it occurs in ϕ outside of the scope
of any quantifier binding x. The set of variables (freely) occurring in a term
(or formula) ϕ is denoted by fv(ϕ). A substitution is a function mapping every
variable in Vl to a variable in Vl and every variable in Vp to a term in Tp. The

2 The connective ◦ is called strong separating conjunction in [5] and written ∗ (whereas
∗ is written ⃝∗ ). Our notations are mostly consistent with those in [10].



domain of a substitution σ (denoted by dom(σ)) is the set of variables x such that
σ(x) ̸= x. A substitution of domain {x1, . . . , xn} with σ(xi) = ti is denoted by
{xi ← ti | i = 1, . . . , n}, or {xxx ← ttt}, with xxx = (x1, . . . , xn) and ttt = (t1, . . . , tn).
For all formulas or terms ϕ, we denote by ϕσ the formula or term obtained from
ϕ by replacing every free occurrence of a variable x by σ(x).

Semantics. Permissions are interpreted in some permission model:

Definition 1 (Adapted from [10]). A permission model P is a triple

(PP,⊕P, (P̂P)P̂∈Pp
)

where PP is a non empty set, called the set of permissions, ⊕P : P2
P → PP is

a binary partial function that is commutative, associative and cancellative, and

P̂P ⊆ P#(P̂ )
P , for all P̂ ∈ Pp. If π, π′ ∈ PP, we write π ≤P π′ if π = π′ ∨ (∃π′′ ∈

PP π′ = π ⊕ π′′).

In what follows, P always denotes a permission model. If π ∈ PP and n ∈ N,
we denote by πn the permission π ⊕P . . . ⊕P π (n times), note that πn is not
necessarily defined and implicitly depends on the considered permission model,
which will always be clear from the context. In contrast to [10], we do not assume
that a maximal “total” permission 1P exists, we allow instead for arbitrary
predicates over permissions (the total permission can be encoded as a unary
predicate symbol T , with TP = {1P}).

Example 2. Assume that Pp = ∅. A simple example of permission model is w =
({read, write},⊕w, ∅), with read⊕w read = read and write⊕w π is undefined
for all π ∈ {read, write}. Another example (from [4]) is f = (]0, 1],⊕f, ∅) where
]0, 1] denotes the interval of rational numbers, with π⊕f π

′ = π+π′ if π+π′ ≤ 1
and π ⊕f π

′ is undefined otherwise (f stands for fractional).

Let L be a countably infinite set of locations. A store (for a given permission
model P) is a total mapping associating every variable in Vl to an element of
L and every variable in Vp to an element of PP. A store can be extended into

a partial mapping from Tp to PP inductively defined as follows: s(p1 ⊕ p2)
def
=

s(p1) ⊕P s(p2). Note that the obtained mapping is partial since s(p1) ⊕P s(p2)
is not always defined. If x1, . . . , xn are pairwise distinct variables in Vl and
ℓ1, . . . , ℓn ∈ L, we denote by s{xi ← ℓi | i = 1, . . . , n} the store s′ coinciding
with s on every variable not occurring in {x1, . . . , xn} and such that s′(xi) = ℓi
for all i = 1, . . . , n.

A heap (for a given permission model P) is a partial finite function from
L to L∗ × PP. The domain of a heap h is denoted by dom(h), and we de-
note by |h| the finite cardinality of dom(h). A heap of domain ℓ1, . . . , ℓn such
that h(ℓi) = (ℓi1, . . . , ℓ

i
ki
, πi) (for all i ∈ {1, . . . , n}) will be denoted as a set

{(ℓi, ℓi1, . . . , ℓiki
, πi) | i = 1, . . . , n}. For every heap h we denote by loc(h) the set

{ℓi | ℓ0 ∈ dom(h), h(ℓ0) = (ℓ1, . . . , ℓk, π), 0 ≤ i ≤ k}. A heap may be viewed as
a directed (labeled) graph: the locations in loc(h) are the vertices of the graph



and there is a edge from ℓ to ℓ′ if h(ℓ) = (ℓ1, . . . , ℓn, π) and ℓ′ = ℓi for some
i ∈ {1, . . . , n}.

A subheap of h is any heap h′ such that dom(h′) ⊆ dom(h) and h′(ℓ) = h(ℓ) for
all ℓ ∈ dom(h′). A p-weakening of h (w.r.t. some permission modelP) is any heap
h′ such that dom(h′) = dom(h) and for all ℓ ∈ dom(h), if h(ℓ) = (ℓ1, . . . , ℓn, π)
then h′(ℓ) = (ℓ1, . . . , ℓn, π

′) with π′ ≤P π. We write h′ ≤l h (resp. h′ ≤p h) if h
′

is a subheap (resp. a p-weakening) of h. The relation ≤ denotes the composition
of ≤l and ≤p. We write h ∼ h′ if h and h′ only differ by the permissions, i.e.,
dom(h) = dom(h′) and for all ℓ ∈ dom(h), if h′(ℓ) = (ℓ1, . . . , ℓn, π

′) then there
exists π such that h(ℓ) = (ℓ1, . . . , ℓn, π).

Example 3. Consider the permission model f defined in Example 2 with L = N.
Then

h0 = {(0, 0, 1, 0.1), (1, 0, 0, 0.2)}, h1 = {(0, 0, 1, 0.1)},
h2 = {(0, 0, 1, 0.1), (1, 0, 0, 0.1)} h3 = {(1, 0, 0, 0.1)}

are heaps, and we have, e.g., h0(0) = (0, 1, 0.1) (meaning that the location 0 is
allocated and refers to (0, 1), with permission 0.1), h1 ≤l h0, h2 ≤p h0, h3 ≤l h2,
and h3 ≤ h0. Moreover, h0 ∼ h2.

Heaps can be composed using the following partial operator. If h1, h2 are
heaps, then h1 ⊔ h2 is defined iff for all ℓ ∈ dom(h1) ∩ dom(h2), we have hi(ℓ) =
(ℓi1, . . . , ℓ

i
ki
, πi) (for all i = 1, 2) where k1 = k2, ℓ

1
j = ℓ2j for all j ∈ {1, . . . , k1} and

π1 ⊕P π2 is defined. Then h1 ⊔ h2 is defined as follows: if ℓ ∈ dom(hi) \ dom(hj)

with (i, j) ∈ {(1, 2), (2, 1)} then (h1⊔h2)(ℓ)
def
= hi(ℓ), and if ℓ ∈ dom(h1)∩dom(h2)

then (h1 ⊔ h2)(ℓ)
def
= (ℓ11, . . . , ℓ

1
k1
, π1 ⊕P π2).

Example 4. Consider the permission model f defined in Example 2, with L = N
and the following heaps:

h0 = {(0, 0, 0.5), (1, 0, 0.6)} h1 = {(0, 0, 0.5), (1, 0, 0.2), (2, 0.1)}
h2 = {(0, 0, 0.5), (1, 0, 0.6)} h3 = {(0, 0, 0.1), (1, 0.1)}

Then h0 ⊔ h1 is defined, and we have: h0 ⊔ h1 = {(0, 0, 1), (1, 0, 0.8), (2, 0.1)}.
However, neither h0⊔h2 nor h0⊔h3 is defined (in the former case the permissions
of location 1 cannot be combined (as 0.6 + 0.6 > 1) and in the latter case the
location 1 is associated with distinct tuples, (0) and (), respectively.

A structure (for a given permission model P) is a pair (s, h) where s is a store
and h is a heap for P. It is injective if s is injective. A location ℓ is allocated in
a structure (s, h) or in a heap h if ℓ ∈ dom(h), and a variable x is allocated in
(s, h) if s(x) ∈ dom(h).

The semantics of spatial predicate is defined by inductive rules. A set of in-
ductive definitions (SID) is a set of rules of the form P (x1, . . . , xn, y1, . . . , ym)⇐
ϕ where n = #l(P ), n+m = #(P ), x1, . . . , xn are pairwise distinct variables in
Vl, y1, . . . , ym are pairwise distinct variables in Vp, and ϕ is a formula such that
fv(ϕ) ⊆ {x1, . . . , xn, y1, . . . , ym}. We write P (z1, . . . , zn, p1, . . . , pm)⇐R ψ iff R
contains a rule P (x1, . . . , xn, y1, . . . , ym)⇐ ϕ with ψ = ϕ{xi ← zi, yj ← pj | i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}}.



Definition 5. (Semantics) For every permission model P and SID R, the sat-

isfiability relation |=P
R is the smallest relation between structures (for P) and

formulas such that:

1. (s, h) |=P
R emp iff h = ∅.

2. (s, h) |=P
R x

p7→ (y1, . . . , yk) if s(p) is defined and h = {(s(x), s(y1), . . . , s(yk),
s(p))}. Note that this entails that dom(h) = {s(x)}.

3. (s, h) |=P
R x ≃ y (resp. (s, h) |=P

R x ̸≃ y) if h = ∅, s(x) and s(y) are defined
and s(x) = s(y) (resp. s(x) ̸= s(y)).

4. (s, h) |=P
R P̂ (p1, . . . , pn) with P̂ ∈ Pp if s(pi) is defined for all i ∈ {1, . . . , n},

(s(p1), . . . , s(pn)) ∈ P̂P and h = ∅.
5. (s, h) |=P

R P (x1, . . . , xn, π1, . . . , πm) with P ∈ P if there exists ϕ such that

P (x1, . . . , xn, π1, . . . , πm)⇐R ϕ and (s, h) |=P
R ϕ.

6. (s, h) |=P
R ϕ1 ∗ ϕ2 if there exist heaps h1, h2 such that h1 ⊔ h2 is defined,

h = h1 ⊔ h2 and (s, hi) |=P
R ϕi for all i = 1, 2.

7. (s, h) |=P
R ϕ1 ◦ϕ2 if there exists heaps h1, h2 such that dom(h1)∩dom(h2) = ∅,

h = h1 ⊔ h2 and (s, hi) |=P
R ϕi for all i = 1, 2.

8. (s, h) |=P
R ∃xϕ if (s{x← ℓ}, h) |=P

R ϕ for some ℓ ∈ L.

A structure (s, h) such that (s, h) |=P
R ϕ is an (R,P)-model of ϕ. A formula

admitting an (R,P)-model is (R,P)-satisfiable. Two formulas are sat-equivalent
(w.r.t. R, P) if they are both (R,P)-satisfiable or both (R,P)-unsatisfiable.

Example 6. The formula x
u7→ (y, z) ◦x u′

7→ (y′, z′) is (R,P)-unsatisfiable, as x

cannot be allocated in disjoint parts of the heap. x
u7→ (y) ∗ x u′

7→ (y′) ∗ y ̸≃ y′

is also (R,P)-unsatisfiable, as x cannot refer to two distinct records, but x
u7→

(y, z) ∗ x u′

7→ (y′, z′) admits the model (on the permission model f) (s, h) with
s(x) = 0, s(y) = s(y′) = 1, s(z) = s(z′) = 2, s(u) = 0.5, s(u′) = 0.2 and
h = {(0, 1, 2, 0.7)}.

Note that there is no logical constant ⊤ (true): no formula can be satisfied
on all heaps. The constant emp is similar to ⊤ but it states that the heap is
empty. For all formulas ϕ, ψ, we write ϕ |=P

R ψ iff the implication (s, h) |=P
R

ϕ =⇒ (s, h) |=P
R ψ holds for all structures (s, h), and ϕ ≡P

R ψ iff we have

both ϕ |=P
R ψ and ψ |=P

R ϕ. If ϕ contains no predicate symbols in P, then the
truth value of ϕ in (s, h) does not depend on R. We thus may write (s, h) |=P ϕ

instead of (s, h) |=P
R ϕ. If, moreover, ϕ is pure, then (s, h) |=P ϕ holds only if h

is empty. We will write s |=P ϕ to state that (s, ∅) |=P ϕ. Finally, if ϕ contains
only equalities between variables then its semantics does not depend on R and
P thus we write s |= ϕ to state that (s, ∅) |=P

R ϕ. Note that the semantics of
ϕ1 ◦ϕ2 and ϕ1 ∗ ϕ2 coincide if ϕ1 or ϕ2 is pure, and also coincide with that of
the usual standard conjunction if both ϕ1 and ϕ2 are pure.



Shorthands. If xxx = (x1, . . . , xn) and yyy = (y1, . . . , ym) are sequences of variables
in Vl then xxx ≃ yyy denotes the formula ⊥ if n ̸= m and (x1 ≃ y1) ◦ . . . ◦(xn ≃ yn)
otherwise. For every permission term p, we denote by def (p) the atom p ≃ p.

By definition, (s, h) |=P
R def (p) iff s(p) is defined and h = ∅.

3 h-Regular Systems

We focus on SIDs of some particular form, defined below.

Definition 7. A rule is h-regular if it is of the following form:

P (x,yyy)⇐ ∃u1, . . . , un (x
p7→ (v1, . . . , vk) ◦Q1(u1, yyy1) . . . ◦Qn(un, yyyn) ◦ϕ)

where {u1, . . . , un} ⊆ {v1, . . . , vk}, yyyi is a vector of variables3, Qi ∈ P and ϕ is
pure. We assume by α-renaming that x,yyy do not occur in {u1, . . . , un}. A SID
R is h-regular if all the rules in R are h-regular.

Note that the right-hand side formula contains only the disjoint separation
connective ◦ and not the usual separating conjunction ∗. As we will see (Theorem
33) this is crucial for the decidability of the satisfiability problem. However, as al-
ready observed in [5], this is also justified from a practical point of view. Assume
for instance that we want to define the predicate lseg introduced in [10], denot-
ing a list segment from x to y with some permission z. The following rules can
be used4: lseg(x, y, z)⇐ x

z7→ (y) lseg(x, y, z)⇐ ∃u (x
z7→ (u) ◦ lseg(u, y, z)).

A structure (s, h) satisfies lseg(x, y, z) if h = {(ℓi, ℓi+1, s(z)) | i = 1, . . . , n} with
n > 0, s(x) = ℓ1, s(y) = ℓn+1 and ℓi ̸= ℓj if i ̸= j and i, j ∈ {1, . . . , n}. This fits
in with the definition in [10] (except that n > 0). In contrast, if one uses instead

the connective ∗: lseg(x, y, z) ⇐ ∃u (x
z7→ (u) ∗ lseg(u, y, z)), then one could

obtain models where the list “loops” on itself an arbitrary number of times, such
as, for instance (s, {(s(x), s(x), p))}), with s(y) = s(x) and p = s(z)n, for any
n > 0 such that s(z)n is defined. In the former definition, s(y) possibly occurs
in {ℓ1, . . . , ℓn}, but each location can only be allocated once.

Intuitively, h-regular sets of inductive rules generate heaps with a regular
structure (in the sense that it may be represented by a tree automaton [9]),
enriched with some additional edges (referring to the nodes corresponding to
the variables passed as parameters to the spatial predicates at some recursive
calls). These additional edges may refer to locations corresponding to free vari-
ables (e.g. the root of the structure) but also to existential variables (for instance
they may refer to the parent node in the tree). h-Regular SID are related to the
Pce systems introduced in [13] (for progressing, connected and established),
extended to formulas with permissions, but our conditions are slightly stronger,
because we require that every existential variable be allocated at the next recur-
sive call. Note that structures with mixed permissions are allowed, for instance

3 i.e., compound permission terms are not allowed in predicate atoms.
4 As h-regular rules allocate exactly one location, we assume that the segment is non
empty, the case of an empty segment must be considered apart.



the rules P (x, z1, z2) ⇐ x
z17→ () and P (x, z1, z2) ⇐ ∃u (x

z17→ (u) ◦P (u, z2, z1))
defines a list with permissions alternating between z1 and z2. Rules with com-
pound permission terms in points-to or permission atoms are allowed (such as

P (x, y1, y2) ⇐ x
y1⊕y27→ () ◦ def (y1 ⊕ y1)), but not those with compound permis-

sion terms in spatial predicate atoms5 (e.g., P (x, y1, y2)⇐ x
y17→ () ◦Q(x, y1⊕y2)

is not h-regular).

For every quantifier-free formula ϕ, we denote by roots(ϕ) the set of variables

x (called the roots of ϕ) inductively defined as follows: roots(x
p7→ (y1, . . . , yk))

def
=

{x}, roots(P (x, y1, . . . , yk))
def
= {x}, roots(∃y ϕ) = roots(ϕ)\{y}, roots(ϕ) = ∅ if ϕ

is pure and roots(ϕ1 ∗ϕ2) = roots(ϕ1 ◦ϕ2) = roots(ϕ1)∪ roots(ϕ2). By Definition
7, roots are always allocated:

Proposition 8. Let R be a h-regular SID. If (s, h) |=P
R ϕ and x ∈ roots(ϕ) then

s(x) ∈ dom(h). Consequently, every formula of the form ϕ1 ◦ϕ2 with roots(ϕ1)∩
roots(ϕ2) ̸= ∅ is (R,P)-unsatisfiable.

The conditions in Definition 7 are actually not sufficient to ensure that the
satisfiability problem is decidable:

Theorem 9. If there exist (not necessary distinct) permissions π1, π2 ∈ PP

such that π1⊕Pπ2 is defined, then the (R,P)-satisfiability problem is undecidable
for h-regular SID R.

To ensure decidability, we need to further restrict the way existential variables
are passed as parameters during recursive calls. This is the goal of the next
definition.

Definition 10. Assume that R is h-regular. Given two spatial predicates P and
Q, of arities n and m respectively, we write P ▷◁R Q if P (x, x1, . . . , xn−1) ∗
Q(x, y1, . . . , ym−1) is (R,P)-unsatisfiable6 (where x1, . . . , xn−1, y1, . . . , ym−1 de-
note pairwise distinct variables of the appropriate sorts). We denote by γR
the function associating every predicate symbol P of spatial arity n to a sub-
set of {2, . . . , n} inductively defined as follows: for every rule P (x1, . . . , xn,uuu)⇐
∃y1, . . . , ym ϕ in R, for every predicate atom Q(z1, . . . , zk,uuuk) in ϕ with #l(Q) =
k and for all i ∈ {2, . . . , k}:

1. zi ∈ {y1, . . . , ym} ⇒ i ∈ γR(Q).

2. zi ∈ {xj | j ∈ γR(P )} =⇒ i ∈ γR(Q).

5 Otherwise the unfolding of spatial predicates could yield terms of arbitrary depth.
6 In practice, as this condition is hard to test, some stronger syntactic condition can
be tested instead, for instance one can check that all the formulas ϕ and ϕ′ such
that P (x, x1, . . . , xn−1) ⇐R ϕ and Q(x, y1, . . . , ym−1) ⇐R ϕ′ are of the form ϕ =
(x 7→ (uuu) ◦ψ) and ϕ′ = (x 7→ (uuu′) ◦ψ′) with |uuu| ̸= |uuu′| (this condition is used in
Theorem 33 and for the Exptime-hardness proof in Theorem 32.). More generally,
it is sufficient to test that the “shape” of the structures generated by P and Q, up
to a certain fixed unfolding depth, are incompatible.



Let P⋆ be a subset of P, such that: (3) P ∈ P⋆ =⇒ γR(P ) = ∅; and (4) P ∈
P⋆ ∧Q ∈ P \ P⋆ =⇒ P ▷◁R Q. A h-regular rule is ∃-restricted (w.r.t. R and
P⋆) if it satisfies the following condition (using the notations of Definition 7):

5. ∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} (ui ∈ yyyj =⇒ Qi ∈ P⋆).

A SID R is ∃-restricted if all the rules in R are ∃-restricted.

Conditions 1 and 2 in Definition 10 are meant to ensure that γR(P ) denotes the
indices of the parameters of P that may (but do not have to) be instantiated by
some existential variable introduced during the unfolding of the inductive rules
in R (the other parameters may only be instantiated by variables occurring in
the initial formula). Condition 1 corresponds to a base case, where an existen-
tial variable is passed as a parameter to a predicate symbol, and Condition 2
handles the inductive case, when the variable is carried through recursive calls7.
Then, Condition 5 ensures that an existential variable may only be passed as a
parameter to a predicate symbol if it is the root of a structure defined by an
atom Qi(yyyi) containing no variables introduced by unfolding (by Condition 3).

Example 11. The rules of the predicate lseg are ∃-restricted (with P⋆ = ∅).
Indeed, they contain only one existential variable u, which occurs only as the
first argument of a predicate. Hence Condition 5 in Definition 10 trivially holds.
If R contains no other rule then γR(lseg) = ∅. Note that γR(lseg) depends

on the entire set R. For instance, if R contains a rule P (x, y) ⇐ ∃u (x y7→
(u) ◦ lseg(u, u, y)) then the second argument of lseg may be instantiated by an
existential variable hence γR(lseg) = {2}, and the latter rule is not ∃-restricted.
On the other hand, if P⋆ = {Q}, then the rules Q(x, y) ⇐ x

y7→ (), R(x, y) ⇐
∃u, v (x y7→ (u, v) ◦ lseg(u, v, y) ◦Q(v, y)) are ∃-restricted, with P⋆ = {Q}. In-
deed, the variable u occurs only at the root of a predicate, and the variable v
is the root of Q(v, y). Note that lseg(x, y, z) ∗Q(x, u) and R(x, y) ∗Q(x, u) are
(R,P)-unsatisfiable, thus lseg ▷◁R Q and R ▷◁R Q.

Intuitively, the structures generated by ∃-restricted rules are regular tree-shaped
structures, enriched with two kinds of additional edges: (i) a bounded number of
arbitrary edges (corresponding to free variables, which may be freely passed as
arguments to any predicate, thus may be referred to in an arbitrary way); (ii) an
unbounded number of other edges (corresponding to existential variables) which
are only allowed to point to structures that contain no edge of type (ii). Condi-
tion 4 ensures that the structures containing only edges of type (i) do not overlap
with those containing both kinds of edges. Note that the conditions of Definition
10 always hold if the existential variables occur only as roots (with P⋆ = P or
P⋆ = ∅). In this case there is no edge of type (ii), i.e., the obtained structures
are regular sets of trees with a bounded number of additional edges (for instance

7 For generality, one could assume that all the equalities occurring in the rules are
propagated before γR is computed (so that existential variables are eliminated if
they are equal to a free variable), but this is not essential for our purposes hence the
corresponding formal definitions are omitted.



trees with pointers to the root, or cyclic lists). Note that doubly linked lists
cannot be captured (as they contain an unbounded number of additional edges
from every node to the previous one). In the following we devise an algorithm
to test the (R,P)-satisfiability of symbolic heaps when R is ∃-restricted.

4 A Decision Procedure For Testing Satisfiability

Before entering into technical details we start with a general overview of the
procedure for testing satisfiability (assuming the considered SID is ∃-restricted).

1. Starting with a formula of the form δ1 ∗ · · · ∗ δn where the δi’s are atoms,
we first reduce every spatial atom δi into an equivalent disjunction of ◦-
conjunctions δi1 ◦ . . . ◦ δimi

such that the only free variables allocated by an
atom δij are its roots roots(δij) (as δ

i
j is an atom, card(roots(δij)) ≤ 1). Due

to the particular properties of the h-regular rules (more precisely, due to
the fact that the rules satisfy the “establishment” property of [13], i.e.,
every existential variable is allocated), this entails that, for all structures
(s, hi,j) satisfying δij , the domains of hi,j and hi′,j′ are either equal (if δij
and δi

′

j′ have the same roots) or disjoint (otherwise). Indeed, the establish-
ment property ensures that the considered heaps have no “pending edges”
(i.e., no location that is referred to but not allocated), other than those
denoted by free variables. This step can be considered as the key part of
the procedure. It requires to (automatically) enrich the language with addi-
tional predicates and rules, and the termination of the transformation cru-
cially depends on the conditions on ∃-restricted rules. For instance, an atom
lseg(x, x) occurring in a formula with free variables x, y could be written
(x ≃ y ◦ lseg(x, x)) ∨ lseg′(x, x, y) ∨ (lseg′(x, y, y) ◦ lseg′(y, x, x)) where
lseg′(u, v, w) denotes a list segment from u to v not allocating w. The pre-
vious decomposition depends on whether y is equal to x and whether y occurs
in the list segment from x to x.

2. By distributivity, we get at this point ∗-conjunctions of ◦-conjunctions of
atoms. Taking advantage of the previous property, we then reduce these
formulas into ◦-conjunctions of ∗-conjunctions of atoms, by regrouping the
atoms with the same roots, e.g., (P (x, y) ◦Q(y, x))∗(P ′(x, y) ◦Q′(y, x)) may
be written (P (x, y) ∗ P ′(x, y)) ◦(Q(y, x) ∗Q′(y, x)).

3. Next, we show that a ∗-conjunction of atoms sharing the same root (such as
P (x, y) ∗P ′(x, y) or Q(y, x) ∗Q′(y, x)) can be denoted by a single atom, the
rules of which are obtained by “merging” the rules of the initial atoms.

4. At this point we get a ◦-conjunction of atoms. To ensure that the formula
is satisfiable it suffices to test that all these atoms have a model and that
all these models are compatible, w.r.t. the equality constraints, allocated
locations and permission constraints. To this aim, we construct finite ab-
stractions of the models of the considered atoms using a bottom-up fixpoint
algorithm.

In the next subsections, each of these steps is explained in details.



4.1 Normalization

We first show that every formula can be transformed into an equivalent formula
(that we call normalized) in which every allocated variable occurs as a root:

Definition 12. A formula ϕ is normalized if it is of the form ∃xxxψ where ψ is
quantifier-free and for all spatial atoms δ in ψ, for all (R,P)-models (s, h) of δ
and for all variables y ∈ fv(ψ): s(y) ∈ dom(h) ⇐⇒ y ∈ roots(ψ).

For instance, lseg(x, y) is not normalized, because y may be allocated (e.g., if
s(x) = s(y)) and does not occur in roots(lseg(x, y)) = {x}. To enforce this con-
dition, we introduce new predicate symbols (called derived predicates), the rules
of which can be automatically computed from those of the predicates already
occurring in this formula. We first define predicate symbols that ensure that
some given variable is not allocated.

Definition 13. For all predicate atoms P (xxx,ppp) (where xxx and ppp are vectors of
location variables and permission terms, respectively) and for all location vari-
ables v, we denote by P (xxx,ppp)[v]− any atom of the form Q(xxx, v,ppp), where Q is a
fresh predicate symbol, associated with the rules:

Q(yyy, w,zzz)⇐ ∃uuu (Q1(yyy1, ppp1)[w]
− ◦ . . . ◦Qm(yyym, pppm)[w]− ◦ϕ ◦yyy|1 ̸≃ w)

for all rules P (yyy,zzz) ⇐ ∃uuu (Q1(yyy1, ppp1) ◦ . . . ◦Qm(yyym, pppm) ◦ϕ) in R (up to AC),
where yyy,yyyi are vectors of location variables, zzz, pppi are vectors of permission vari-
ables, and ϕ contains no predicate atom.

For instance lseg(x, y, z)[u]− is a predicate atom Q(x, y, u, z) defined by the fol-

lowing rules: {Q(x, y, u, z)⇐ ∃x′(x z7→ (x′) ◦Q(x′, y, u, z) ◦x ̸≃ u), Q(x, y, u, z)⇐
x

z7→ (y) ◦x ̸≃ u}. It denotes a list segment from x to y not allocating u. The
following result is straightforward to prove:

Proposition 14. For every ∃-restricted SID R, the set R enriched with the
rules associated with the predicate Q corresponding to P (xxx, p)[v]− in Definition
13 is ∃-restricted, with γR(Q) = γR(P ) and Q ∈ P⋆ ⇐⇒ P ∈ P⋆.

Intuitively the structures that satisfy P (xxx,ppp)[v]− are exactly those that satisfy
P (xxx,ppp) and do not allocate v:

Lemma 15. For all h-regular SID R, (s, h) |=P
R P (xxx, p)[v]− iff (s, h) |=P

R P (xxx, p)
and s(v) ̸∈ dom(h).

The operator δ 7→ δ[x]− can be applied recursively, e.g., one can consider atoms
of the form δ[x]−[y]−, etc. For all predicate atoms δ, we denote by unalloc(δ) the

set of variables inductively defined as follows: unalloc(δ[x]−)
def
= {x}∪unalloc(δ),

and unalloc(δ)
def
= ∅ if δ is not of the form δ′[x]−. The following proposition is an

immediate consequence of Lemma 15:

Proposition 16. If (s, h) |=P
R δ then s(x) ̸∈ dom(h), for all x ∈ unalloc(δ).



Next, we define predicate symbols allowing one to remove some part of a
structure. Intuitively, the expression (ϕ −−• ψ) will hold exactly in the struc-
tures that satisfy ψ when a disjoint structure satisfying ϕ is added. For instance

given the rules tree(x, y)⇐ ∃x1, x2 x
y7→ (x1, x2) ◦ tree(x1, y) ◦ tree(x2, y) and

tree(x, y) ⇐ x
y7→ (), tree(z, y) and tree(x, y) denote binary trees with roots

z and x, respectively, and tree(z, y) −−• tree(x, y) denotes a tree of root x with
a “hole” at z (the structures satisfying tree(z, y) −−• tree(x, y) are obtained
from models of tree(x, y) by removing the part of the heap that corresponds
to tree(z, y)). The formula ϕ −−• ψ is similar to the strong magic wand intro-
duced in [17] and to the context predicates in [12] and also close in spirit to the
separating implication of SL although the semantics are slightly different.

Definition 17. For all finite sequences of predicate atoms Pi(xxxi, pppi) (with i =
0, . . . , n), where xxxi and pppi are vectors of location variables and permission terms,
respectively, we denote by (P1(xxx1, ppp1) ◦ . . . ◦ P̂n(xxxn, pppn)) −−• P0(xxx0, ppp0) any atom
P (xxx,ppp) with xxx = xxx0. . . . .xxxn, ppp = ppp0. . . . .pppn, and such that P = P0 if n = 0 and
otherwise P is a fresh symbol associated with rules of the form

P (yyy,zzz)⇐ ∃www (ψ1 ◦ . . . ◦ψm ◦ϕ)

for all rules

P0(yyy0, zzz0)⇐ ∃www (Q1(uuu1, qqq1) ◦ . . . ◦Qm(uuum, qqqm) ◦ϕ)

in R and for all decompositions α1 ◦ . . . ◦αm = P1(yyy1, zzz1) ◦ . . . ◦Pn(yyyn, zzzn) (up
to AC, where the αi’s may be empty), where:

– yyyi and zzzi are sequences of pairwise distinct location and permission variables,
respectively, with |yyyi| = |xxxi| and |zzzi| = |pppi|;

– yyy = yyy0. . . . .yyyn, zzz = zzz1. . . . .zzzn;
– ψi is of one of the following forms:
• either αi −−• Qi(uuui, qqqi);
• or yyyj ≃ uuui ◦zzzj ≃ qqqi, if αi = Pj(yyyj , zzzj) and Pj = Qi.

For instance tree(z, y) −−• tree(x, y) denotes an atom P (x, z, y, y) with the
rules:

P (x, z, y1, y2)⇐ ∃x1, x2 (x
y17→ (x1, x2) ◦P (x1, z, y1, y2) ◦ tree(x2, z, y1))

P (x, z, y1, y2)⇐ ∃x1, x2 (x
y17→ (x1, x2) ◦ tree(x1, z, y1) ◦P (x2, z, y1, y2))

P (x, z, y1, y2)⇐ ∃x1, x2 (x
y17→ (x1, x2) ◦x1 ≃ z ◦ y1 ≃ y2 ◦ tree(x2, z, y1))

P (x, z, y1, y2)⇐ ∃x1, x2 (x
y17→ (x1, x2) ◦ tree(x1, z, y1) ◦x2 ≃ z ◦ y1 ≃ y2)

For readability, all the expressions of the form emp −−• tree(x2, z, y1) have been
replaced by tree(x2, z, y1). Note that the rules are not h-regular, as x1 and x2 do
not occur as roots in every rule, but they can easily be transformed into h-regular
rules by replacing x1 and x2 by z in the third and fourth rule, respectively (using
the equations x1 ≃ z and x2 ≃ z). The definition can be applied recursively (i.e.,
P0, . . . , Pn may be derived predicates). The next proposition is an immediate
consequence of Definition 17:



Proposition 18. Let R be a h-regular SID. The rules associated with any pred-
icate P corresponding to an expression α −−• δ (Definition 17) are h-regular, up

to the following equivalence: ∃x (x ≃ y ◦ϕ) ≡P
R ϕ{x ← y}. Moreover, the rules

are also ∃-restricted, with γR(P ) = γR(P0) and P ∈ P⋆ ⇐⇒ P0 ∈ P⋆. Finally
if α = emp then (α −−• δ) = δ.

Note that, however, the implication P ∈ P⋆ ∧ Q ∈ P \ P⋆ =⇒ P ▷◁R Q
(Condition 4 in Definition 10) does not necessarily hold for derived predicates
P,Q. The following lemma states a form of modus ponens, relating the connective
◦ with −−•:

Lemma 19. If R is h-regular then P (xxx,ppp) ◦((P (xxx,ppp) ◦α) −−• Q(yyy,qqq)) |=P
R α −−•

Q(yyy,qqq).

The next lemma states that every predicate atom allocating x can be written as
a ◦-formula in which x occurs as a root.

Lemma 20. Assume that R is ∃-restricted. Let yyy,ppp be vectors of location vari-
ables and permission terms, respectively. If (s, h) |=P

R Q(yyy,ppp), s(x) ̸= s(yyy|1)
and s(x) ∈ dom(h), then there exist atoms of the form P (x,zzz,qqq), Pi(xi, yyyi, qqqi)
(with i ∈ {1, . . . , n}), where zzz ⊆ yyy ∪ {x1, . . . , xn}, yyyi ⊆ {yyy|j | j ̸∈ γR(Q)},
qqq ⊆ ppp and qqqi ⊆ ppp, such that: (s, h) |=P

R ∃x1, . . . , xn (β ◦(β −−• Q(yyy,ppp))), with β =
P (x,zzz,qqq) ◦⃝m

i=1Pi(xi, yyyi, qqqi). Moreover, Pi ∈ P⋆, {x1, . . . , xn} ⊆ (x,zzz)|γR(P )

and y ∈ yyy ∩ zzz ∧ y ̸∈ {yyy|j | j ̸∈ γR(Q)} =⇒ y ∈ (x,zzz)|γR(P ).

Intuitively, since x is allocated and the rules are h-regular, then necessarily some
predicate atom of the form P (x,zzz,qqq) must be called at some point during the
unfolding of the rules. Using −−•, this predicate can be removed from the call
tree of Q(yyy,ppp) and lifted at the root level in the formula. The atom P (x,zzz,qqq)
may contain variables not occurring in Q(yyy,ppp) corresponding to existential vari-
ables introduced by unfolding. As the rules are ∃-restricted, all such variables xi
must themselves appear as the root of some predicate atom Pi(xi, yyyi, qqqi) which
contains (beside xi) only variables occurring in Q(yyy,ppp) (since γR(Pi) = ∅, due
to Condition 5 in Definition 10). Again, these atoms can be moved at the root
level. See Appendix E for details.

Definition 21. For all atoms Q(yyy,ppp) we denote by δ[x]+ the set of formulas of
the form ∃x1, . . . , xn (β ◦(β −−• Q(yyy,ppp))) as defined in Lemma 20. We also denote
by δ[x]= the formula: δ ◦(x ≃ yyy|1).

For every model of δ, δ[x]− holds if x is not allocated in δ, δ[x]= holds if x is
equal to the root of δ and δ[x]+ holds if x is allocated but is not the root of δ.
The following result follows immediately from Lemmata 19 and 20:

Lemma 22. Assume that R is ∃-restricted. Let x ∈ Vl. For every predicate
atom δ such that x ̸∈ roots(δ), and for all structures (s, h): (s, h) |=P

R δ iff there

exists ψ ∈ {δ[x]−, δ[x]=} ∪ δ[x]+ such that (s, h) |=P
R ψ.



For instance the atom lseg(x, y, z) holds iff one of the formulas lseg(x, y, z) ◦x ≃
y, lseg(x, y, z)[y]− or lseg(y, y, z) ◦(lseg(y, y, z) −−• lseg(x, y, z)) holds. The
second formula corresponds to the case where y is not allocated, and the first
and third ones correspond to the case where there is a loop on y. By applying
repeatedly Lemma 22 on every variable x and atom δ we eventually obtain a
disjunction of normalized formulas:

Lemma 23. Let R be a ∃-restricted SID. There exists an algorithm transform-
ing any symbolic heap ϕ containing no points-to atom into a set of normalized
formulas Ψ such that for all structures (s, h): (s, h) |=P

R ϕ iff there exists ψ ∈ Ψ
such that (s, h) |=P

R ψ. Furthermore, every formula in Ψ is a (quantified) sepa-
rating conjunction of ◦-formulas.

4.2 Commuting Separating and Disjoint Connections

The next step consists in showing that – under some particular conditions en-
forced by the previous transformation – the operator ∗ can be pushed innermost
in the formula (below the operator ◦). To this aim, we exploit an essential prop-
erty of h-regular SIDs, namely that all the locations that occur in the heap of
some model of a formula ϕ but are not allocated correspond to a variable in
fv(ϕ). We shall denote by cut(L,L′, h) the set of locations reachable from L in
h, from a path not crossing L′:

Definition 24. Let h be a heap, let L,L′ ⊆ L. We denote by cut(L,L′, h)
the set of locations inductively defined as follows: L ⊆ cut(L,L′, h), and if
ℓ′ ∈ cut(L,L′, h), h(ℓ′) = (ℓ1, . . . , ℓk, π), i ∈ {1, . . . , k} and ℓi ̸∈ L′ then
ℓi ∈ cut(L,L′, h).

The following lemma characterizes the domain of the part of the heap satisfying
some formula ϕ:

Lemma 25. Let R be a h-regular SID and let ϕ be a ◦-formula containing no
quantifier. Let s be a store and let h, h′ be heaps, with h′ ≤ h . Let V be a set
of variables, with fv(ϕ) ⊆ V ∪ roots(ϕ) and s(V ) ∩ dom(h′) = ∅. If (s, h′) |=P

R ϕ
then dom(h′) = cut(s(roots(ϕ)), s(V ), h).

The commutation property, pushing ∗ below ◦, is given by Lemma 26:

Lemma 26. Let R be a h-regular SID. Let V ⊆ Vl and let ϕ be a normalized
formula, of the form ϕ = ϕ′ ◦(∗n

i=1(ϕi ◦ψi) ∗ ψ′), where, for all i ∈ {1, . . . , n},
roots(ϕi) = V and (roots(ψi) ∪ roots(ψ′)) ∩ V = ∅. Then ϕ is (R,P)-satisfiable
iff (ϕ′ ◦∗n

i=1ϕi) ◦((∗n
i=1ψi) ∗ ψ′) is (R,P)-satisfiable.

Roughly speaking, as roots(ϕi) = V and ϕi is normalized, it is possible to prove,
using the characterization given in Lemma 25, that the parts of the heap that
correspond to the formulas ϕi have all the same domain. This entails that the
heaps corresponding to the formulas ψi and ϕi′ are disjoint, which permits to
prove that∗n

i=1(ϕi ◦ψi) can be written (∗n
i=1ϕi) ◦(∗n

i=1ψi), yielding the result.
The detailed proof is given in Appendix H.



4.3 Merging of Spatial Predicates

We show that, under some particular conditions, it is possible to replace the
separating conjunction of two spatial atoms having the same root by a single
spatial atom. The rules defining this atom are obtained by combining the rules
of the two initial atoms. More precisely, consider any h-regular SID R and two
spatial atoms P (x,yyy,ppp) and P ′(x,yyy′, ppp′) sharing the same root x, where yyy,yyy′ are
vectors of location variables and ppp and ppp′ are vectors of permission terms. We
denote by P (x,yyy,ppp)▽P ′(x,yyy′, ppp′) any atom Q(x,yyy,yyy′, ppp,ppp′) where Q is associated
with rules of the form:

Q(v,www,www′, zzz,zzz′)⇐ ∃u1, . . . , un v
q7→ (v1, . . . , vk)

◦⃝n
i=1(Qi(ui, yyyi, qqqi)▽Q

′
i(ui, yyy

′
i, qiqiqi

′)) ◦ϕ ◦ϕ′ ◦ψ

with q
def
= p ⊕ p′, for all pairs of rules of the following forms in R (with the

same numbers k and n, and up to α-renaming, so that the rules share the same
existential variables):

P (v,www,zzz) ⇐ ∃u1, . . . , un v
p7→ (v1, . . . , vk) ◦⃝n

i=1Qi(ui, yyyi, qqqi) ◦ϕ
P ′(v,www′, zzz′)⇐ ∃u1, . . . , un v

p′

7→ (v′1, . . . , v
′
k) ◦⃝n

i=1Q
′
i(ui, yyy

′
i, qqq

′
i) ◦ϕ′

where ψ =⃝k
i=1(vi ≃ v′i). Note that all the produced rules are h-regular8.

Lemma 27. Let R be a h-regular SID. Let x ∈ Vl and let (s, h) be a structure
such that s(y) ̸∈ dom(h) holds for all variables y such that s(x) ̸= s(y). Then

(s, h) |=P
R P (x,yyy,ppp)▽P ′(x,yyy′, ppp′) ⇐⇒ (s, h) |=P

R P (x,yyy,ppp) ∗ P ′(x,yyy′, ppp′).

The result crucially depends on the fact that the parts of the heap that corre-
spond to P (x,yyy,ppp) and P ′(x,yyy′, ppp′) respectively must share the same domain,
since otherwise, as R is h-regular, a free variable would be allocated, contradict-
ing the hypothesis. This ensures that the heap can be generated by the above
rules(see Appendix I for details).

4.4 Heap Abstractions and Main Result

As we shall see later, the previous transformations can be used to transform any
symbolic heap into a ◦-formula (while preserving satisfiability). The final step
is to devise an algorithm to test the satisfiability of ◦-formulas. As it is done
in [6] for standard heap models, the algorithm works by constructing relevant
abstractions of the models of the predicate atoms. It suffices to keep track of
the truth value of the equational atoms, of the allocated variables and of the
permission atoms satisfied by the structure.

8 However ∃-restrictedness is not necessarily preserved.



Definition 28. A heap abstraction is a tuple a = (Va,∼a, Aa, ρa) where Va is
a finite set of variables, ∼a is an equivalence relation on the variables of sort l
occurring in Va, Aa is a subset of Va∩Vl, closed under ∼a (i.e., for all x, y ∈ Vl:
x ∈ Aa ∧ x ∼a y =⇒ y ∈ Aa), and ρa is a permission formula (with variables
in Va).

Definition 29. Let (s, h) be a structure and let a = (Va,∼a, Aa, ρa) be a heap
abstraction. We write (s, h) |=P a if all the following conditions are satisfied:
(i) For all variables x, y ∈ Va ∩ Vl: x ∼a y ⇐⇒ s(x) = s(y); (ii) for all
x ∈ Va ∩Vl, x ∈ Aa ⇐⇒ s(x) ∈ dom(h); and (iii) s |=P ρa. A heap abstraction
is P-satisfiable if there exists a structure (s, h) such that (s, h) |=P a.

Proposition 30. A heap abstraction a is P-satisfiable iff ρa is P-satisfiable.

For all ◦-formulas ϕ, we define a set of heap abstractions A(ϕ) by mutual in-
duction as follows. The sets A(ϕ) are the least sets of heap abstractions sat-
isfying the following properties, for all finite sets of variables9 V ⊇ fv(ϕ) and

for all equivalence relations ∼ on V ∩ Vl: (i) if ϕ = x
p7→ (y1, . . . , yn) then

(V,∼, {y | y | y ∼ x}, def (p)) ∈ A(ϕ). (ii) if ϕ = x ≃ y (resp. x ̸≃ y) with
x, y ∈ Vl and x ∼ y (resp. x ̸∼ y) then (V,∼, ∅, emp) ∈ A(ϕ); (iii) if ϕ is a
permission formula then (V,∼, ∅, ϕ) ∈ A(ϕ); (iv) if ϕ = ∃xψ, (V,∼, A, ρ) ∈ A(ψ)
then (V \ {x},∼′, A \ {x}, ρ) ∈ A(ϕ), where ∼′ denotes the restriction of ∼ to

the variables distinct from x, i.e., ∼′def= {(u, v) | u ∼ v ∧ u, v ̸= x} (note that x
cannot occur in ρ, since quantification over permission variables is not allowed);
(v) if ϕ = ϕ1 ◦ϕ2, (V,∼, Ai, ρi) ∈ A(ϕi) (for all i = 1, 2) with A1 ∩A2 = ∅, then
(V,∼, A1∪A2, ρ1 ◦ ρ2) ∈ A(ϕ); (vi) if ϕ = P (xxx,ppp) and ϕ⇐R ξ then A(ξ) ⊆ A(ϕ).

Lemma 31. A ◦-formula ϕ is (R,P)-satisfiable iff at least one of the abstrac-
tions in A(ϕ) is P-satisfiable.

Putting things together we get the following result:

Theorem 32. If P-satisfiability is decidable for permission formulas, then there
exists an algorithm that, for every ∃-restricted SID, decides whether a given for-
mula ϕ is (R,P)-satisfiable. If, moreover, P-satisfiability is in Exptime, then
(R,P)-satisfiability is also in Exptime (for ∃-restricted SID). Finally, for ev-
ery permission model P, (R,P)-satisfiability is Exptime-hard (for ∃-restricted
SID).

5 Using Separating Conjunctions Inside Rules

To end the paper, we wish to point out that the satisfiability problem is undecid-
able from ∃-restricted SID if the disjoint separation ◦ is replaced by the standard

9 For technical convenience we do not impose any bound on the cardinality of V , hence
the set A(ϕ) is infinite. This simplifies the theoretical definition of the abstraction
for disjoint conjunctions. In practice only variables occurring in the initial formula
or in the rules need to be considered.



separating connective ∗ in the inductive definitions (see Definition 7). We think
that the result is of some theoretical interest, although, as explained above, rules
using ◦ are actually more convenient for describing data structures. The notions
of ∗-h-regular and ∗-∃-restricted SID are defined exactly as h-regular SID and
∃-restricted SID (Definitions 7 and 10) except that the symbol ◦ is replaced by
∗ everywhere (for conciseness the formal definitions are omitted).

Theorem 33. Let P be any permission model and assume that for every n ∈ N,
there exists π ∈ PP such that πn is defined. The (R,P)-satisfiability problem is
undecidable for ∗-∃-restricted SID.

6 Conclusion and Future Work

An algorithm was devised to test the satisfiability of symbolic heaps in Sepa-
ration Logic with inductively defined predicates and permissions, under some
(syntactic) conditions on the inductive rules giving the semantics of the spatial
predicates. The algorithm runs in exponential time, provided the satisfiability
of permission formulas is in Exptime. In addition, we showed that some nat-
ural relaxings of these conditions make the problem undecidable (under some
minimal assumptions on the permission model). The next step is to investigate
the entailment problem for the considered fragment. The techniques devised in
the present paper for transforming symbolic heaps into disjoint conjunctions of
atoms should serve as a basis for this purpose, but the extension is not straight-
forward. Another (much easier) extension that could be of practical relevance is
to consider formulas with labels (in the sense of [5]) which allow one to express
additional equality conditions on some parts of the structures. In our context,
labels would simply yield additional conditions on the decomposition generated
during the normalization step: two formulas sharing the same label should be
decomposed into formulas with the same set of roots. It could also be interesting
to relax some of the conditions on the rules, for instance to allow for existential
variables not occurring as roots in the rules. This is required to encode data
structures with forward pointers, such as skip lists. It is also unclear whether
Condition 4 in Definition 10 is required for decidability. Finally, the decision al-
gorithm could probably be extended to handle arbitrary combinations of disjoint
and separating conjunctions.

Acknowledgments. This work has been partially funded by the the French Na-
tional Research Agency (ANR-21-CE48-0011)

References

1. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic asser-
tion checking with separation logic. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W. P. de Roever, editors, Formal Methods for Components and Objects, 4th
International Symposium, FMCO 2005, Amsterdam, The Netherlands, November
1-4, 2005, Revised Lectures, volume 4111 of Lecture Notes in Computer Science,
pages 115–137. Springer, 2005.



2. J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for systems-level code.
In G. G. andShaz Qadeer, editor, Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume
6806 of LNCS, pages 178–183. Springer, 2011.

3. R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission ac-
counting in separation logic. In J. Palsberg and M. Abadi, editors, Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages
259–270. ACM, 2005.

4. J. Boyland. Fractional permissions. In D. Clarke, J. Noble, and T. Wrigstad, ed-
itors, Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
volume 7850 of Lecture Notes in Computer Science, pages 270–288. Springer, 2013.

5. J. Brotherston, D. Costa, A. Hobor, and J. Wickerson. Reasoning over permissions
regions in concurrent separation logic. In S. K. Lahiri and C. Wang, editors, Com-
puter Aided Verification - 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture Notes
in Computer Science, pages 203–224. Springer.

6. J. Brotherston, C. Fuhs, J. A. N. Pérez, and N. Gorogiannis. A decision procedure
for satisfiability in separation logic with inductive predicates. In T. A. Henzinger
and D. Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Confer-
ence on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Aus-
tria, July 14 - 18, 2014, pages 25:1–25:10. ACM, 2014.

7. C. Calcagno and D. Distefano. Infer: An automatic program verifier for mem-
ory safety of C programs. In M. G. Bobaru, K. Havelund, G. J. Holzmann, and
R. Joshi, editors, NASA Formal Methods - Third International Symposium, NFM
2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, volume 6617 of Lecture
Notes in Computer Science, pages 459–465. Springer, 2011.

8. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12
July 2007, Wroclaw, Poland, Proceedings, pages 366–378. IEEE Computer Society,
2007.

9. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

10. S. Demri, É. Lozes, and D. Lugiez. On symbolic heaps modulo permission theories.
In S. V. Lokam and R. Ramanujam, editors, 37th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2017, December 11-15, 2017, Kanpur, India, volume 93 of LIPIcs, pages 25:1–25:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

11. M. Echenim, R. Iosif, and N. Peltier. Entailment checking in separation logic
with inductive definitions is 2-exptime hard. In E. Albert and L. Kovács, editors,
LPAR 2020: 23rd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020, volume 73 of EPiC
Series in Computing, pages 191–211. EasyChair, 2020.

12. M. Echenim, R. Iosif, and N. Peltier. Decidable entailments in separation logic
with inductive definitions: Beyond establishment. In CSL 2021: 29th International
Conference on Computer Science Logic, EPiC Series in Computing. EasyChair,
2021.

13. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation logic with
recursive definitions. In Proc. of CADE-24, volume 7898 of LNCS, 2013.



14. S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable data
structures. In ACM SIGPLAN Notices, volume 36, pages 14–26, 2001.

15. J. Katelaan and F. Zuleger. Beyond symbolic heaps: Deciding separation logic with
inductive definitions. In E. Albert and L. Kovács, editors, LPAR 2020: 23rd Inter-
national Conference on Logic for Programming, Artificial Intelligence and Reason-
ing, Alicante, Spain, May 22-27, 2020, volume 73 of EPiC Series in Computing,
pages 390–408. EasyChair, 2020.

16. Q. L. Le. Compositional satisfiability solving in separation logic. In F. Henglein,
S. Shoham, and Y. Vizel, editors, Verification, Model Checking, and Abstract Inter-
pretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark,
January 17-19, 2021, Proceedings, volume 12597 of Lecture Notes in Computer
Science, pages 578–602. Springer, 2021.

17. K. Nakazawa, M. Tatsuta, D. Kimura, and M. Yamamura. Cyclic Theorem Prover
for Separation Logic by Magic Wand. In ADSL 18 (First Workshop on Automated
Deduction for Separation Logics), July 2018. Oxford, United Kingdom.

18. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bull. Symb.
Log., 5(2):215–244, 1999.

19. J. A. N. Pérez and A. Rybalchenko. Separation logic modulo theories. In C. Shan,
editor, Programming Languages and Systems - 11th Asian Symposium, APLAS
2013, Melbourne, VIC, Australia, December 9-11, 2013. Proceedings, volume 8301
of LNCS, pages 90–106. Springer, 2013.

20. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using SMT.
In N. Sharygina and H. Veith, editors, Computer Aided Verification - 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of LNCS, pages 773–789. Springer, 2013.

21. X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural proofs for structure,
data, and separation. In H. Boehm and C. Flanagan, editors, ACM SIGPLAN
PLDI ’13, pages 231–242. ACM, 2013.

22. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proc. of LICS’02, 2002.

23. Z. Xu, T. Chen, and Z. Wu. Satisfiability of compositional separation logic with
tree predicates and data constraints. In L. de Moura, editor, CADE 26, volume
10395 of LNCS, pages 509–527. Springer, 2017.



A Proof of Proposition 8

The proof is by induction on the satisfiability relation. ϕ cannot be purely-spatial
as roots(ϕ) would be empty, contradicting the hypothesis of the proposition. If
ϕ is a points-to atom then by definition of roots(ϕ) if must be of the form

ϕ = x
p7→ (y1, . . . , yk), so that dom(h) = {s(x)} by definition of the semantics

of points-to atoms. If ϕ is a spatial predicate atom then by definition if must
be of the form P (x, y1, . . . , yk), and by definition of the semantics of predicate

atoms we have ϕ⇐R ψ with (s, h) |=P
R ψ. Since R is h-regular, ψ is of the form

∃uuu(x p7→ (y′1, . . . , y
′
k) ◦ψ′), with x ̸∈ uuu, so that x ∈ roots(ψ), and we get s(x) ∈

dom(h) by the induction hypothesis. If ϕ = ∃y ψ then by definition x ∈ roots(ψ)

and x ̸= y, moreover, there exists a location ℓ such that s{y ← ℓ} |=P
R ψ. By

the induction hypothesis we get s{y ← ℓ}(x) ∈ dom(h), thus s(x) ∈ dom(h)
as x ̸= y. If ϕ = ϕ1 ◦ϕ2 or ϕ = ϕ1 ∗ ϕ2 then there exists i ∈ {1, 2} such that
x ∈ roots(ϕi). Moreover, there exist heaps hi (for i = 1, 2) with h = h1 ⊔ h2
and (s, hi) |=P

R ϕi. By the induction hypothesis we get s(x) ∈ dom(hi), thus
s(x) ∈ dom(h), as dom(h) = dom(h1) ∪ dom(h2).

B Proof of Theorem 9

The proof is by reduction from the Post Correspondence Problem (PCP), that is
well-known to be undecidable. Consider a natural number n and two sequences of
words µ1, . . . , µn and ν1, . . . , νn. A potential witness is a word ω such that for all
λ ∈ {µ, ν}, there exists a sequence Iλ(1), . . . , Iλ(κλ) with ω = λIλ(1) . . . λIλ(κλ)

and κλ > 0. It is a witness if, moreover, κµ = κν = κ and Iµ(i) = Iν(i) for all
i ∈ {1, . . . , κ}. The PCP consists in determining whether a witness exists for two
given sequences of words. We assume, to ease the encoding, that the solution
sequence Iλ(1), . . . , Iλ(κλ) ends with a dummy index 0, with µ0 = ν0 = # (this
entails that we must have κλ > 1). For every potential witness w, for every
λ ∈ {µ, ν} and for every i ∈ {1, . . . , κλ}, we denote by ζλ(i) the position of the

word λIλ(i) inside w, formally defined as follows: ζλ(i)
def
= |λIλ(1). . . . .λIλ(i−1)|+1.

For every j ∈ {1, . . . , |w|}, we also denote by ηλ(j) the element i ∈ {1, . . . , κλ}
such that ω|j occurs in λIλ(i), formally defined as follows: ηλ(j) = i if ζλ(i) ≤
j < ζλ(i+ 1).

For simplicity, we assume that all the natural numbers in {1, . . . , n} are
taken as variables of sort l. Under this assumption, a potential witness ω may
be represented by a structure (s, h) defined as follows: h = hµ ⊔ hν ⊔ h′, with

h′
def
= {(ℓ′j , ℓµηµ(j), ℓ

ν
ην(j), ℓ

′
j+1, π1) | 1 ≤ j ≤ |ω|} and for all λ ∈ {µ, ν}: hλ def

=

{(ℓλi+1, s(I
λ(i)), ℓλi, π1) | 1 ≤ i ≤ κ}. Intuitively, every heap hλ encodes the

sequence Iλ(κλ), . . . , Iλ(1) as a linked list in which the i-th element refers to
(the image of) Iλ(i) (note that the list is reversed, the reason will become clear
later). Then h′ encodes the word ω as a list where the j-nth element of the list
refers to the cells ℓµηµ(j) and ℓνην(j) in the lists hµ and hν that correspond to
the words in which ω|j occurs.



Let vvv be a sequence of variables containing all numbers of {1, . . . , n}, as
well as a special variable nil (marking the end of the lists), and variables uµ
and uν denoting the first cell in the list hλ and hν . It is straightforward to
check that the following rules generate structures of the above form (for all
iµ, iν , i

′
µ, i

′
ν ∈ {1, . . . , n} and for all jµ, jν ∈ {1, . . . ,M + 1}, where M denotes

the maximal length of the word in the sequences µ or ν).
Intuitively, P allocates the first element of the potential witness, by guessing

the first element i in the solution sequence10, then call P2,2,i,i. The predicate
Pjµ,jν ,iµ,iν allocates the next elements, starting from a character occurring si-
multaneously at position jµ in the word iµ in the sequence µ and at position jν
in the word iν in the sequence ν (thus initially iµ = iν = i and jµ = jν = 2,
as the first character of the first word has already been allocated by the pred-
icate P ). Conditions are added on the rules to ensure that the two characters
are identical in both sequences. Each time one reaches the start of a new word
Iλ(i) in the witness, Q(y, y′, i, z) is called to allocate the elements of the list
hλ, where y′ is a pointer to the previous element in the list Iλ(1), . . . , Iλ(κλ)
(thus initially y′ = nil). If the two words end on the same character then this
means that we have reached the end of the potential witness11, and we only have
to allocate the locations corresponding to the dummy index 0 and the dummy
character #. Note that the locations corresponding to 0 are associated with the
variables uµ and uν . The list must be constructed in reverse order to ensure that
the obtained rules are h-regular (if the lists were constructed in the usual order,
then the pointer to the next cell could not be allocated before one gets to the
next word, hence the corresponding rule would not be h-regular, as one would
need to introduce an existential variable without immediately allocating it).

P (x,vvv, z)⇐ ∃x′, yµ, yν x
z7→ (yµ, yν , x

′)

◦Q(yµ, nil, i, z) ◦Q(yν , nil, i, z) ◦P2,2,i,i(x
′, yµ, yν , vvv, z)

if µi|1 = νi|1 (1)

Q(y, y′, i, z)⇐ y
z7→ (i, y′) (2)

Pjµ,jν ,iµ,iν (x, yµ, yν , vvv, z)⇐ ∃x′ x→ (yµ, yν , x
′, z)

◦Pjµ+1,jν+1,iµ,iν (x
′, yµ, yν , vvv, z)

if jµ ≤ |µiµ |, jν ≤ |νiν | and µiµ |jµ = νiν |jν (3)

Pjµ,jν ,iµ,iν (x, yµ, yν , vvv, z)⇐ ∃x, y′µ x→ (y′µ, yν , x
′, z)

◦Q(y′µ, i
′
µ, yµ, z) ◦P2,jν+1,i′µ,iν

(x′, y′µ, yν , vvv, z)

if jµ = |µiµ |+ 1, jν ≤ |νiν | and µi′µ
|1 = νiν |jν (4)

10 For simplicity we only encode potential witnesses where the two sequences of indices
start with the same index, i.e., Iµ(1) = Iν(1). It is clear that this is not restrictive
as we eventually want to encode witnesses.

11 We assume, w.l.o.g., that only witnesses of minimal length are considered.



Pjµ,jν ,iµ,iν (x, yµ, yν , vvv, z)⇐ ∃x, y′ν x→ (yµ, y
′
ν , x

′, z)

◦Q(y′ν , i
′
ν , yν , z) ◦Pjµ+1,2,iµ,i′ν

(x′, yµ, y
′
ν , vvv, z)

if jµ ≤ |µiµ |, jν = |νiν |+ 1 and and µiµ |jµ = νi′ν |1 (5)

Pjµ,jν ,iµ,iν (x, yµ, yν , vvv, z)⇐ ∃u′, u′′ x→ (u′, u′′, nil, z) ◦Q(u′, yµ, 0, z)

◦Q(u′′, yν , 0, z) ◦u′ ≃ uµ ◦u′′ ≃ uν if jµ = |µiµ |+ 1 and jν = |νiν |+ 1 (6)

To ensure that the considered potential witness is indeed a witness, it only
remains to check that the sequences Qµ and Qν are identical. To this aim, we
introduce a predicate that generates structures of the form h′′ ⊔ hµ ⊔ hν with

h′′
def
= {(ℓ′′i , ℓµi, ℓ

ν
i, ℓ

′′
i+1, π2) | i ∈ {1, . . . , κ}}, hλ

′ def
= {(ℓλi+1, s(I

λ(i)), ℓλi, π2) |
1 ≤ i ≤ κ} (hλ′ is identical to hλ, except for the permissions) and s(Iλ) = s(Iν),
for all i ∈ {1, . . . , κ}.

R(x, yµ, yν , vvv, z)⇐ ∃x′, y′µ, y′ν x
z7→ (y′µ, y

′
ν , x

′) ◦R(x′, y′µ, y′ν , z)
◦Q(y′µ, yµ, i, z) ◦Q(y′ν , yν , i, z) (7)

R(x, yµ, yν , vvv, z)⇐ ∃u′, u′′x
z7→ (u′, u′′, nil) ◦Q(u′, yµ, i, z) ◦Q(u′′, yν , i, z)

◦u′ ≃ uµ ◦u′′ ≃ uν (8)

It is clear that the formula P (x1, vvv, z1) ◦R(x2, nil, nil, vvv, z2) is (R,P)-satisfiable
iff the considered instance of the PCP admits a solution.

C Proof of Lemma 15

The proof is by induction on |h|.

– Assume that (s, h) |=P
R P (xxx,ppp)[v]−. By definition of the semantics of pred-

icate atoms, there exists a formula ψ such that P (xxx, p)[v]− ⇐R ψ and

(s, h) |=P
R ψ. By definition of the rules defining P (xxx, p)[v]− and of the relation

⇐R, this entails thatR contains a rule P (yyy,zzz)⇐ ∃uuu (⃝m
i=1Qi(yyyi, pppi) ◦ϕ) and

we have:
ψ = ∃uuu (⃝m

i=1Qi(yyyi, pppi)[w]
− ◦ϕ ◦yyy|1 ̸≃ w)σ

with σ = {yyy ← xxx,w ← v,zzz ← ppp}. Again by definition of the semantics,
there exist a sequence of locations ℓℓℓ and disjoint heaps h0, . . . , hm such
that h = h0 ⊔ . . . ⊔ hm, (s′, h0) |=P

R ϕσ, s′(yyy|1σ) ̸= s′(wσ) and (s′, hi) |=P
R

Qi(yyyi, ppp)[w]
−σ = Qi(yyyiσ,pppσ)[v]

− (for all i ∈ {1, . . . ,m}), with s′ = s{uuu ←
ℓℓℓ}. Since R is h-regular, ϕ contains exactly one points-to atom with left-hand
side yyy|1, hence dom(h0) = {s′(yyy|1σ)} = {s(xxx|1)}. Thus h0 ̸= ∅ and |hi| <
|h| (for all i ∈ {1, . . . ,m}). By the induction hypothesis this entails that

(s′, hi) |=P
R Qi(yyyiσ,pppσ) and s(v) = s′(v) ̸∈ dom(hi). As s′(yyy|1σ) ̸= s′(wσ), we

have s(xxx|1) ̸= s(v) i.e. s(v) ̸∈ dom(h0), hence s(v) ̸∈ dom(h) =
⋃m

i=0 dom(hi).

Furthermore, (s′, h) |=P
R ⃝n

i=1Qi(yyyiσ,pppσ) ◦ϕσ = (⃝n
i=1Qi(yyyi, p) ◦ϕ)σ and

P (xxx,ppp)⇐R ∃uuu (⃝m
i=1Qi(yyyi, ppp) ◦ϕ)σ, consequently (s, h) |=P

R P (xxx,ppp).



– Conversely, assume that (s, h) |=P
R P (xxx,ppp) and that s(v) ̸∈ dom(h). By defi-

nition of the semantics, this entails that R contains a rule P (yyy,zzz)⇐ ψ with

(s, h) |=P
R ψσ and σ = {yyy ← xxx,zzz ← ppp}. As R is h-regular, ψ is necessarily

of the form ∃uuu (⃝m
i=1Qi(yyyi, pppi) ◦ϕ), where ϕ contains no predicate atom and

exactly one points-to atom with left-hand side y|1. Moreover, there exist a

vector of locations ℓℓℓ and disjoint heaps h0, . . . , hm such that (s′, h0) |=P
R ϕσ,

(s′, hi) |=P
R Qi(yyyi, pppi)σ and s′ = s{uuu ← ℓℓℓ}. Since s′(v) = s(v) ̸∈ dom(h), we

get s′(v) ̸∈ dom(h) thus s′(v) ̸∈ dom(hi). Moreover, dom(h0) = {s′(yyy|1σ)},
hence s′(v) ̸= s′(yyy|1σ} and |hi| < |h| (for all i ∈ {1, . . . ,m}). By the induction

hypothesis, this entails that (s′, hi) |=P
R Qi(yyyiσ,pppσ)[v]

−. By definition of the
rules defining P (xxx,ppp)[v]−, P (xxx,ppp)[v]− ⇐R ∃uuu (⃝m

i=1Qi(yyyi, ppp)[w]
− ◦ϕ ◦ y|1 ̸≃

w)σ′, with σ′ = σ{w ← v}. We get (s′, hi) |=P
R Qi(yyyi, ppp)[w]

−σ′ (for all

i ∈ {1, . . . ,m}), (s′, h0) |=P
R ϕσ = ϕσ′ and s′(y|1σ) ̸= s′(wσ′) = s′(v). Thus

(s, h) |=P
R P (xxx,ppp)[v]−.

D Proof of Lemma 19

Assume that (s, h) |=P
R P (xxx,ppp) ◦((P (xxx,ppp) ◦α) −−• Q(yyy,qqq)). By definition, there

exist disjoint heaps h1, h2 such that h = h1⊔h2, (s, h1) |=P
R P (xxx,ppp) and (s, h2) |=P

R
(P (xxx,ppp) ◦α) −−• Q(yyy,qqq). We show, by induction on |h2|, that (s, h) |=P

R α −−•
Q(yyy,qqq). By definition of the rules defining (P (xxx,ppp) ◦α) −−• Q(yyy,qqq), necessarily

(s, h2) |=P
R ∃www (ψ1 ◦ . . . ◦ψm ◦ϕ), with P (xxx,ppp)⇐R ⃝m

i=1Qi(uuui, pppi) ◦ϕ, α1 ◦ . . . ◦αm

is a decomposition of P (xxx,ppp) ◦α (up to AC and neutrality of emp), and for every
i ∈ {1, . . . ,m}, either ψi = αi −−• Qi(uuui, qqqi) or ψi = (yyyj ≃ uuui ◦pppj ≃ qqqi) with
αi = Pj(yyyj , pppj) and Pj = Qi. Thus there exist locations ℓℓℓ and disjoint heaps

h02, . . . , h
m
2 such that (s′, h02) |=

P
R ϕ, (s′, hi2) |=

P
R ψi (for all i ∈ {1, . . . ,m}) and

s′ = s{www ← ℓℓℓ}. By definition, there exists i ∈ {1, . . . ,m} such that P (xxx,ppp) oc-
curs in αi, we assume by symmetry that i = 1, with α1 = P (xxx,ppp) ◦α′

1. As R is
h-regular, ϕ contains exactly one points-to atom, thus h0 ̸= ∅ and |hi| < |h| (for
all i ∈ {1, . . . ,m}). We distinguish two cases.

– Assume that ψ1 is of the first form above. We have (s′, h1⊔h12) |=
P
R P (xxx,ppp) ◦

((P (xxx,ppp) ◦α′
1) −−• Q1(yyy1, qqq1)). By the induction hypothesis, we get (s′, h1 ⊔

h12) |=
P
R α′

1 −−• Q1(yyy1, qqq1). This entails that (s, h) |=P
R ∃www (α′

1 −−• Q1(yyy1, qqq1) ◦
⃝m

i=2ψm ◦ϕ), hence (s, h) |=P
R α −−• Q(yyy,qqq1), by definition of the rules defin-

ing α −−• Q(yyy,qqq1) (since α = α′
1 ◦⃝m

i=2αi).

– Assume that ψ1 is of the second form above. Then s′(xxx) = s′(yyy1), s
′(ppp) =

s′(qqq1), and Q1 = P (with α′ = emp), so that (s′, h1) |=P
R Q1(yyy1, qqq) = emp −−•

Q1(yyy1, p). Therefore (s, h) |=P
R ∃www (emp −−• Q1(yyy1, qqq1) ◦⃝m

i=2ψm ◦ϕ), with
α = emp ◦⃝m

i=2αi. This entails the result, by definition of the rules defining
α −−• Q(yyy,qqq1).



E Proof of Lemma 20

The proof is by induction on |h|. Assume that (s, h) |=P
R Q(yyy,ppp), s(x) ̸= yyy|1 and

s(x) ∈ dom(h). By definition of the semantics, there exists a formula ψ such

that Q(yyy,ppp) ⇐R ψ and (s, h) |=P
R ψ, and, since R is h-regular, ψ is of the form

∃www (⃝n
i=1Qi(uuui, pppi) ◦ϕ), where ϕ contains exactly one points-to atom (which

left-hand side is necessarily yyy|1) and pppi ⊆ ppp (for all i = 1, . . . , n). Therefore
there exist a sequence of locations ℓℓℓ and disjoint heaps h0, . . . , hn such that
h = h0 ⊔ . . . ⊔ hn, (s

′, h0) |=P
R ϕ and (s′, hi) |=P

R Qi(uuui, pppi), for all i ∈ {1, . . . , n},
with s′ = s{www ← ℓℓℓ}. Furthermore, we have dom(h0) = {s′(yyy|1)} ̸= ∅, and thus
|hi| < |h|, for all i ∈ {1, . . . , n}. Since s(x) ̸= s(yyy|1) we have s(x) ̸∈ dom(h0),
and, as s(x) ∈ dom(h), this entails that s(x) ∈ dom(hi), for some i ∈ {1, . . . , n}.
Assume by symmetry that s(x) ∈ dom(h1). We distinguish two cases:

– If s′(uuu1|1) ̸= s′(x), then, by the induction hypothesis, we deduce that there
exist atoms P (x,zzz,qqq) and Pi(x,yyyi, qqqi) (for i ∈ {1, . . . ,m}) such that

(s′, h1) |=P
R ∃xxx (β ◦(β −−• Q1(uuu1, ppp1)))

with xxx = (x1, . . . , xn), β = P (x,zzz,qqq) ◦⃝m
i=1Pi(xi, yyyi, qqqi), zzz ⊆ u1u1u1∪xxx, qqq∪qiqiqi ⊆

p1p1p1 ⊆ ppp, yyyi ⊆ {u1u1u1|j | j ̸∈ γR(Q1)} (for all i ∈ {1, . . . ,m}), Pi ∈ P⋆, xxx ⊆
(x,zzz)|γR(P ) and y ∈ uuu1 ∩ zzz ∧ y ̸∈ {uuu1|j | j ̸∈ γR(Q1)} =⇒ y ∈ (x,zzz)|γR(P ).
By α-renaming, we assume that xxx ∩ yyy = ∅. Thus there exist a store s′′

coinciding with s′ on all variables not occurring in xxx, and disjoint heaps h′1, h
′′
1

such that h1 = h′1 ∪ h′′1 , (s
′′, h′1) |=

P
R β and (s′′, h′′1) |=

P
R (β −−• Q1(uuu1, ppp1)).

We show that y ∈ yyy ∩ zzz ∧ y ̸∈ {yyy|j | j ̸∈ γR(Q)} =⇒ y ∈ (x,zzz)|γR(P ).
Assume that z ∈ yyy∩zzz, with z ̸∈ {yyy|j | j ̸∈ γR(Q)}. As zzz ⊆ xxx∪uuu1, necessarily
z = uuu1|j′ for some j′ ∈ {1, . . . ,#l(Q1)}. Assume that j′ ̸∈ γR(Q1). By
Condition 2 in Definition 10 we deduce that there exists j ̸∈ γR(Q) such
that z = yyy|j , which contradicts the above assumption. Otherwise (i.e., if
z = uuu1|j′ ⇒ j′ ∈ γR(Q1), for all j′) then y ̸∈ {uuu1|j | j ̸∈ γR(Q1)} and the
proof follows from the induction hypothesis above.
We show that yyyi ⊆ {yyy|j′ | j′ ̸∈ γR(Q)}, for all i ∈ {1, . . . ,m}. Let v ∈ yyyi.
Since yyyi ⊆ {u1u1u1|j | j ̸∈ γR(Q1)}, we get v = u1u1u1|j , for some j ̸∈ γR(Q1). By
definition of γR(Q1) (see Conditions 1 and 2 in Definition 10), this entails
that v = yyy|j′ , for some j′ ̸∈ γR(Q).
We show that zzz ⊆ yyy ∪xxx ∪ {uuui|1 | i = 2, . . . , n}. Let V be the set of variables
occurring in zzz, but not in yyy ∪ xxx. Consider any variable v ∈ V . Necessarily,
v ∈ uuu1 (as zzz ⊆ u1u1u1 ∪ xxx), and v ∈ www (as uuu1 ⊆ yyy ∪ www, by definition of the
unfolding). Note that, by Condition 1 in Definition 10, this entails that
v ∈ uuu1 with v = uuu1|j =⇒ j ∈ γR(Q1), so that v ∈ (x,zzz)|γR(P ). As R is h-
regular and v ∈ www, necessarily there exists k ∈ {2, . . . ,m} such that v = uuuk|1.
We assume, by symmetry, that the set of indices k such that uuuk|1 ∈ V is
of the form {2, . . . , n′} (with possibly n′ = 1, as V may be empty), so that
zzz ⊆ yyy ∪ xxx ∪ {uuui|1 | i = 2, . . . , n′}.
Since R is ∃-restricted (see Condition 5 in Definition 10) we get γR(Qk) = ∅,
for all k ∈ {2, . . . , n′}, so that {uuuk|j | j ̸= 1} ⊆ {yyy|j | j ̸∈ γR(Q)}.



Let h′
def
= h0 ⊔ h1 ⊔ hn′+1 ⊔ . . . ⊔ hn and h′′

def
= h2 ⊔ . . . ⊔ hn′ . Observe

that h′ and h′′ are disjoint and that h = h′ ⊔ h′′, We get: (s′′, h′) |=P
R

(β −−• Q(yyy,ppp)) ◦⃝n
i=n′+1Qi(yyyi, qqqi) ◦ϕ. By definition of the rules defining β −−•

Q(yyy, p), this entails that (s′′, h′) |=P
R β′ −−• Q(yyy,ppp) with β′ def

= β ◦⃝n′

i=2Qi(uuui, pppi).

Moreover, (s′′, h′′) |=P
R P (x,zzz,qqq) ◦⃝m

i=1Pi(xi, yyyi, qqqi) ◦⃝n′

i=2Qi(uuui, qqqi). Thus:

(s′′, h) |=P
R P (x,zzz,qqq) ◦⃝m

i=1Pi(xi, yyyi, qqqi) ◦⃝n′

i=2Qi(uuui, qqqi) ◦(β′ −−• Q(yyy, p))

with β′ = P (x,zzz,qqq) ◦⃝m
i=1Pi(xi, yyyi, qqqi) ◦⃝n′

i=2Qi(uuui, pppi). Consequently,

(s, h) |=P
R ∃vvv(P (x,zzz,qqq) ◦⃝

m
i=1Pi(xi, yyyi, qqqi) ◦⃝n′

i=2Qi(uuui, qqqi) ◦(β′ −−• Q(yyy, p)))

with vvv = xxx∪V = xxx∪{uuui|1 | i = 2, . . . , n′}, which completes the proof, as we
have proven that zzz ⊆ yyy∪xxx∪{uuui|1 | i = 2, . . . , n′}, yyyi∪{uuuk|j | j ̸= 1} ⊆ {yyy|j′ |
j′ ̸∈ γR(Q)}, qqq∪qiqiqi∪pipipi ⊆ ppp, Pi ∈ P⋆ and xxx∪V ∪ (yyy|γR(Q)∩zzz) ⊆ (x,zzz)|γR(P ).

– If s′(uuu1|1) = s′(x), i.e., s′(uuu1|1) = s(x), then we let P = Q1, ppp = ppp1, and
uuu1|1.zzz = uuu1. As in the previous case, the variables vvv occurring in zzz but not in
yyy must occur in www, thus must be the root of some atom Qi(uuui, pppi), for some
i ∈ {2, . . . , n′} with n′ ∈ {1, . . . , n}, Qi ∈ P⋆ and {uuui|j | j ̸= 1} ⊆ {yyy|j | j ̸∈
γR(Q)}. By definition of −−•, we have (s′′, h) |=P

R P (x,zzz,qqq) ◦⃝n′

i=2Qi(uuui, qqqi)

◦(β −−• Q(yyy, p)) with β = P (x,zzz,qqq) ◦⃝n′

i=2Qi(uuui, pppi), zzz ⊆ yyy ∪ {uuui|1 | i =

2, . . . , n′}, uuui ⊆ {yyy|j′ | j′ ̸∈ γR(Q)} and qqq ∪ pipipi ⊆ ppp, so that (s, h) |=P
R

∃vvv(P (x,zzz,qqq) ◦⃝n′

i=2Qi(uuui, qqqi) ◦(β −−• Q(yyy, p))). By definition of γR, we have
vvv ⊆ uuu1|γR(P ) and y ∈ yyy ∩ zzz ∧ y ̸∈ {yyy|j | j ̸∈ γR(Q)} =⇒ y ∈ (x,zzz)|γR(P ).
Again, the proof is completed.

F Proof of Lemma 23

We need the following:

Proposition 34. Let δ be a predicate atom and let ϕ be a formula. If x ∈
roots(ϕ) then δ ◦ϕ ≡P

R δ[x]− ◦ϕ.

Proof. The result is an immediate consequence of Lemma 15 and Proposition
8 (using the fact that x cannot be allocated in both parts of the heaps that
correspond to roots(ϕ) and ϕ, respectively).

We apply the following (non deterministic) transformation, for all variables
x ∈ fv(ϕ). We replace every atom δ occurring in ϕ such that x ̸∈ roots(δ) ∪
unalloc(δ) by some (indeterministically chosen) formula in {δ[x]=, δ[x]−}∪δ[x]+,
yielding a set of formulas Φ(x). In the case where δ is replaced by δ[x]=, since
by definition δ[x]= = δ ◦(x ≃ y) with {y} = roots(δ), the variable y may be
replaced by x in the entire formula, so that we get an atom with root x. By
Lemma 22, for all structures (s, h), (s, h) |=P

R ϕ iff (s, h) |=P
R ψ, for some formula

ψ ∈ Φ(x), thus satisfiability is preserved. Observe that, for all formulas ψ ∈ Φ
and for all atoms δ′ in ψ, either x occurs at the root of some predicate atom



occurring in the same ◦-formula as δ′ in ψ, or x ∈ unalloc(δ′). The former case
occurs when δ′ occurs in δ[x]= (after the replacement of y by x) or in some
formula in δ[x]+, as, by definition, x occurs as a root in all formulas in δ[x]+,
and all such formulas are ◦-formulas. The latter case occurs when δ′ is of the
form δ[x]−, as x ∈ unalloc(δ[x]−), by definition of δ[x]−. Since the same variable
x cannot be allocated in distinct parts of the heaps, this entails, by Lemma 15,
that any atom δ′ in ϕ with x ̸∈ roots(δ) ∪ unalloc(δ) can be replaced by δ[x]−

without affecting the semantics of the formula. We then get a formula ϕ′ such
that x ∈ roots(δ′)∪unalloc(δ′) holds for all atom δ′ in ϕ′, so that the implication

(s, h) |=P
R δ′∧ s(x) ∈ dom(h) =⇒ x ∈ roots(δ′) holds, by Propositions 8 and 34.

This process is applied on every variable x, which eventually yield a set of
normalized formulas Ψ . Note that new variables may be introduced into the
formula, as δ[x]+ may contain variables (namely the variables x1, . . . , xn in Defi-
nition 21) not occurring in δ. The above transformation must be applied also on
such variables, which, in principle, could lead to non termination. We prove that
the algorithm terminates, by showing that no new variables are added when x
does not occur in the initial formula ϕ (more precisely, we prove that the ob-
tained formula is always (R,P)-unsatisfiable in this case, hence can be removed
from the set of formulas at hand). By Lemma 20, as x is necessarily added by
some replacement δ → δ[y]+, we observe the variable x necessarily occurs as the
root of some atom Qi(x,yyy), with Qi ∈ P⋆. We denote by ξ1 the ◦-formula con-
taining Qi(x,yyy). Assume that the transformation above is in turn applied on the
variable x, yielding a formula ψ. By definition of δ[x]+, this entails that x occurs
as the root of some atom P (x,zzz). Moreover, if new variables are added, then, by
Lemma 20, we must have γR(P ) ̸= ∅, thus P ∈ P \P⋆ (by Condition 3 in Defini-
tion 10). We denote by ξ2 the ◦-formula of ψ containing P (x,zzz). The case where
ξ1 = ξ2 can be dismissed, as x would occur twice as a root in the same ◦-formula,
which would then be unsatisfiable. Therefore, for every model (s, h) of ψ, there

exist heaps h1, h2 such that (s, hi) |=P
R ξi and h1⊔h2 ≤ h. Observe that each time

an atom of the form α −−• P ′(x,uuu) is introduced in the formula, the ◦-formula
α is simultaneously added in the same ◦-formula, and we have (by Lemma 19)

α ◦(α −−• P ′(x,uuu)) |=P
R P ′(x,uuu). Moreover, for every atom P ′(x,uuu) and variable

y, we have (by Lemma 15) P ′(x,uuu)[y]− |=P
R P ′(x,uuu). By an easy induction on

the structure of derived predicates, we deduce that for every atom Q(x,uuu′) oc-
curring in some ◦-formula ξ in ψ, and every model (s, h) of ξ, there exist an atom

Q′(x,uuu) and a heap h′ such that (s, h′) |=P
R Q′(x,uuu) and h′ ≤ h, Q is either equal

to Q′ or derived from Q′, and Q′ is not a derived predicate, i.e., occurs in the ini-
tial SID. Moreover, by Propositions 14 and 18, we have Q′ ∈ P⋆ ⇐⇒ Q ∈ P⋆.
Consequently, for all heaps h1, h2 such that (s, hi) |=P

R ξi there exist heaps h
′
1, h

′
2

such that (s, h′1) |=
P
R Q′

i(xi, yyy
′), (s, h′2) |=

P
R P ′(xi, yyy

′′), h′i ≤l hi with Q′
i ∈ P⋆,

P ′ ∈ P \ P⋆ and Q′
i, P

′ are not derived predicates. However, by Condition 4
in Definition 10, Q′

i(xi, yyy
′) ∗ P ′(xi, yyy

′′) is (R,P)-unsatisfiable. This entails that
ξ1 ∗ ξ2 (hence ψ) is also (R,P)-unsatisfiable.



G Proof of Lemma 25

We use the following result, that is an easy consequence of Definition 24:

Proposition 35. cut(L1 ∪ L2, L
′, h) = cut(L1, L

′ ∪ L′
1, h) ∪ cut(L2, L

′ ∪ L′
2, h),

if L1 ∩ L2 = ∅ and L′
i ⊆ L3−i.

The proof of Lemma 25 is by induction on the satisfiability relation:

– If ϕ is pure then roots(ϕ) = dom(h′) = ∅ and the proof is immediate.

– If ϕ is a points-to atom x
p7→ (y1, . . . , yk) then by definition of the seman-

tics h′ = {(s(x), s(y1), . . . , s(yn), s(p))}, hence, by definition of ≤, h is nec-
essarily of the form {(s(x), s(y1), . . . , s(yn), π)}, where either π = s(p) or
π = (s(p) ⊕P π′), for some π′ ∈ PP. In both cases, we get dom(h′) =
{s(x)}, moreover, by Definition 24, {s(x)} = cut(s(roots(ϕ)), s(V ), h) since
{x} = roots(ϕ) and for all i ∈ {1, . . . , n} such that s(yi) ̸= s(x), we have
yi ∈ fv(ϕ) \ {x}, hence yi ∈ V .

– If ϕ is of the form ϕ1 ◦ϕ2, then there exist heaps h′1, h
′
2 such that dom(h′1)∩

dom(h′2) = ∅, h′1 ⊔ h′2 = h′ and (s, h′i) |=
P
R ϕi, for all i = 1, 2. Let Vi =

V ∪ roots(ϕ3−i). Note that s(Vi)∩ dom(h′i) = ∅ (indeed dom(h′i) ⊆ dom(h′),
hence s(V )∩dom(h′i) = ∅, and by Proposition 8 s(roots(ϕ3−i)) ⊆ dom(h′3−i),
thus s(roots(ϕ3−i))∩dom(h′i) = ∅, as dom(h′1)∩dom(h′2) = ∅). Furthermore,
fv(ϕi) ⊆ fv(ϕ) ⊆ V ∪ roots(ϕ) = V ∪ roots(ϕi)∪ roots(ϕ3−i) = Vi ∪ roots(ϕi).
By definition of ≤, we have h′i ≤ h for all i = 1, 2, thus, by the induction
hypothesis, dom(h′i) = cut(s(roots(ϕi)), s(Vi), h). Consequently dom(h′) =
dom(h′1)∪dom(h′2) = cut(s(roots(ϕ1)), s(V1), h)∪ cut(s(roots(ϕ2)), s(V2), h),
and by Proposition 35 (applied with Li = L′

3−i = roots(h′i) and L′ = V ),
dom(h′) = cut(s(roots(ϕ1))∪s(roots(ϕ2)), s(V ), h). Since we have s(roots(ϕ1))∪
s(roots(ϕ2)) = s(roots(ϕ1) ∪ roots(ϕ2)) = s(roots(ϕ)), we get the result.

– If ϕ is a predicate atom P (x,yyy, z), then roots(ϕ) = {x} and ϕ ⇐R ϕ′,

with (s, h) |=P
R ϕ′. Since R is h-regular, ϕ′ is of the form ∃u1, . . . , un (x

p7→
(v1, . . . , vk) ◦ψ ◦ψ′), where ψ′ is pure, roots(ψ) = {u1, . . . , un} and {u1, . . . , un} ⊆
{v1, . . . , vk}. Consequently, there exists a store s′ coinciding with s on all vari-

ables not occurrence in {u1, . . . , un} such that (s′, h′) |=P
R x

p7→ (v1, . . . , vk) ◦ψ ◦ψ′.

Since ψ′ is pure, we also have (s′, h′) |=P
R x

p7→ (v1, . . . , vk) ◦ψ. As fv(x
p7→

(v1, . . . , vk) ◦ψ) ⊆ fv(ϕ) ∪ {u1, . . . , un} ⊆ V ∪ roots(x
p7→ (v1, . . . , vk) ◦ψ)),

we get by the induction hypothesis:

dom(h′) = cut(s′(roots(x
p7→ (v1, . . . , vk) ◦ψ)), s′(V ), h)

i.e. dom(h′) = cut({s(x)} ∪ s′({u1, . . . , un}), s′(V ), h)

We assume by α-renaming that {u1, . . . , un}∩V = ∅ so that s′(V ) = s(V ). By
definition of the semantics we must have h′(s(x)) = (s(v1), . . . , s(vk), s(p)).
Since h′ ≤ h, we get h(s(x)) = (s′(v1), . . . , s

′(vk), π) for some π ∈ PP. By
Proposition 8, necessarily {s′(u1), . . . , s′(un)} ⊆ dom(h′), since roots(ψ) =
{u1, . . . , un}. As s(V )∩ dom(h′) = ∅, we get {s′(u1), . . . , s′(un)} ∩ s(V ) = ∅.
Since h(s(x)) = (s′(v1), . . . , s

′(vk), π) and {u1, . . . , un} ⊆ {v1, . . . , vk}, this



entails, by Definition 24, that {s′(u1), . . . , s′(un)} ⊆ cut(s({x}), s(V ), h).
Thus cut({s(x)} ∪ s′({x, u1, . . . , un}), s(V ), h) = cut(s({x}), s(V ), h), hence
dom(h′) = cut(s(roots(ϕ)), s(V ), h).

H Proof of Lemma 26

Let λ be a bijective mapping from L to L. For any tuple (ℓ1, . . . , ℓn, π) with ℓi ∈ L
and π ∈ PP, λ((ℓ1, . . . , ℓn, π)) denotes the tuple (λ(ℓ1), . . . , λ(ℓn), π). For every

heap h we denote by λ(h) the heap defined as follows: dom(λ(h))
def
= λ(dom(h))

and for all ℓ ∈ dom(h), λ(h)(ℓ)
def
= λ(h(ℓ)). The following proposition, showing

that the truth value of a formula in a structure does not depend on the name of
locations, can be established by an immediate induction on formulas:

Proposition 36. Let λ be a bijective mapping from L to L. If (s, h) |=P
R ϕ then

(λ ◦ s, λ(h)) |=P
R ϕ.

Now, assume that (s, h) |=P
R ϕ. Then there exist heaps hi, ĥi, h

′ and ĥ′ (for

i ∈ {1, . . . , n}) such that h = h′ ⊔
⊔n

i=1(hi ⊔ ĥi)⊔ ĥ′, (s, h′) |=
P
R ϕ′, (s, hi) |=P

R ϕi,

(s, ĥi) |=P
R ψi, (s, ĥ

′) |=P
R ψ′, dom(hi) ∩ dom(ĥi) = ∅ (for all i ∈ {1, . . . , n})

and dom(h′) ∩ dom(
⊔n

i=1(hi ⊔ ĥi) ⊔ ĥ′) = ∅. Let V ′ = fv(ϕ) \ V . By the hy-
pothesis of the lemma roots(ϕi) = V (for all i ∈ {1, . . . , n}), thus fv(ϕi) ⊆
V ′ ∪ roots(ϕi). Since ϕ is normalized and (s, hi) |=P

R ϕi, we have ∀x ∈ fv(ϕi) :
s(x) ∈ dom(hi) =⇒ x ∈ roots(ϕi), hence s(V

′)∩dom(hi) = ∅. Moreover, hi ≤ h,
and by Lemma 25 (applied on ϕi, s(V

′) and hi), we deduce that dom(hi) =
cut(s(roots(ϕi)), s(V

′), h) = cut(s(V ), s(V ′), h). Therefore, dom(hi) = dom(hj),

for all i, j ∈ {1, . . . , n}, which entails that dom(hi)∩ dom(ĥj) = ∅ (as dom(hj)∩
dom(ĥj) = ∅). Let L be any infinite subset of L containing no locations occurring
in s(fv(ϕ)) or loc(h) (such a set always exists as fv(ϕ) and h are both finite and
L is infinite). Let λ be any injective mapping from L to L ∪ s(fv(ϕ)) such that

λ(s(x)) = s(x) for all x ∈ fv(ϕ). By Proposition 36, we have (λ◦s, λ(hi)) |=P
R ϕi,

so that (s,
⊔n

i=1 λ(hi)) |=
P
R ∗n

i=1ϕi (as λ ◦ s coincides with s on all variables in
fv(ϕ) and

⊔n
i=1 λ(hi) is defined, as

⊔n
i=1 hi is defined)).

We show that
⊔n

i=1 λ(hi) and h′ are disjoint. Assume, for the sake of contra-
diction, that ℓ ∈ dom(λ(hi)) ∩ dom(h′). This entails that ℓ ∈ (L ∪ s(fv(ϕ))) ∩
dom(h′) ⊆ (L ∪ s(fv(ϕ))) ∩ loc(h). Since by definition of L, L ∩ loc(h) = ∅
we deduce that ℓ = s(x), for some x ∈ fv(ϕ). By definition of λ, this en-
tails that λ(ℓ) = ℓ, i.e., λ−1(ℓ) = ℓ, so that ℓ ∈ dom(hi). This entails that
ℓ ∈ dom(hi) ∩ dom(h′), which contradicts the fact that hi and h′ are disjoint.

Therefore, h′ ⊔
⊔n

i=1 λ(hi) is defined and we get (s, h′ ⊔
⊔n

i=1 λ(hi)) |=
P
R

ϕ′ ◦∗n
i=1ϕi. As (s, ĥi) |=P

R ψi (for all i ∈ {1, . . . , n}) and (s, ĥ′) |=P
R ψ′, we also

have (s, (
⊔n

i=1 ĥi) ⊔ ĥ′) |=P
R ∗n

i=1ψi ∗ ψ′, thus it only remains to prove that h′ ⊔⊔n
i=1 λ(hi) and (

⊔n
i=1 ĥi)⊔ĥ′ are disjoint to prove that (ϕ′ ◦∗n

i=1ϕi) ◦((∗n
i=1ψi)∗

ψ′) is (R,P)-satisfiable. We know that dom(h′)∩ (
⋃n

i=1 dom(ĥi)∪dom(ĥ′)) = ∅,



thus it suffices to show that dom(λ(hi)) ∩ dom(ĥj) = ∅ (for all i, j ∈ {1, . . . , n})
and that dom(λ(hi)) ∩ dom(ĥ′) = ∅ (for all i ∈ {1, . . . , n}).

– Let ℓ ∈ dom(λ(hi))∩ dom(ĥj). By definition ℓ ∈ L∪ s(fv(ϕ)) and ℓ ∈ loc(h),
thus ℓ ∈ s(fv(ϕ)). By definition of λ, this entails that λ−1(ℓ) = ℓ, so that ℓ ∈
dom(hi), which contradicts the fact that hi and ĥj are disjoint, as previously
shown.

– Let ℓ ∈ dom(λ(hi))∩ dom(ĥ′). By definition ℓ ∈ L∪ s(fv(ϕ)) and ℓ ∈ loc(h),

thus there exists x ∈ fv(ϕ) such that ℓ = s(x). As ϕ is normalized, (s, ĥ′) |=P
R

ψ′ and ℓ ∈ dom(ĥ′) we get x ∈ roots(ψ′). Similarly, since (s, λ(hi)) |=P
R ϕi

and ℓ ∈ dom(λ(hi)) we get x ∈ roots(ϕi), thus roots(ϕi) ∩ roots(ψ′) ̸= ∅,
which contradicts the hypothesis of the lemma.

Conversely, assume that (s, h) |=P
R (ϕ′ ◦∗n

i=1ϕi) ◦((∗n
i=1ψi)∗ψ′). Then there

exist heaps hi, ĥi, h
′ and ĥ′ (for i ∈ {1, . . . , n}) such that h = h′ ⊔

⊔n
i=1 hi ⊔⊔n

i=1 ĥi ⊔ ĥ′, (s, h′) |=
P
R ϕ′, (s, hi) |=P

R ϕi, (s, ĥi) |=P
R ψi, (s, ĥ

′) |=P
R ψ′, dom(h′)∩

dom(
⊔n

i=1 hi) = ∅ and dom(h′⊔
⊔n

i=1 hi)∩dom(
⊔n

i=1 ĥi⊔ĥ′) = ∅. This entails that
dom(hi)∩dom(ĥi) = ∅ (for all i ∈ {1, . . . , n}), so that (s, hi⊔ĥi) |=P

R ϕi ◦ψi. Thus

(s,
⊔n

i=1(hi⊔ĥi)) |=
P
R ∗n

i=1(ϕi ◦ψi) and (s,
⊔n

i=1(hi⊔ĥi)⊔ĥ′) |=
P
R ∗n

i=1(ϕi ◦ψi)∗
ψ′. Moreover, we also have dom(h′)∩ (

⋃n
i=1(dom(hi)∪dom(ĥi))∪dom(ĥ′)) = ∅,

hence (s, ĥ ⊔
⊔n

i=1(hi ⊔ ĥi) ⊔ ĥ′) |=P
R ϕ′ ◦∗n

i=1(ϕi ◦ψi) ∗ ψ′, i.e., (s, h) |=P
R ϕ.

I Proof of Lemma 27

We prove the two implications separately by induction on |h|. For the first im-
plication, we show for technical convenience that the entailment is valid also in
the case where the hypothesis s(x) ̸= s(y) =⇒ s(y) ̸∈ dom(h) is not satisfied.

⇒ Assume that (s, h) |=P
R P (x,yyy,ppp)▽P ′(yyy′, ppp′). Then there exists a formula ξ

such that P (x,yyy,ppp)▽P ′(yyy′, ppp) ⇐R ξ and (s, h) |=P
R ξ. By definition of the

rules defining ▽, ξ is of the form:

∃uuux q7→ (vvv) ◦⃝n
i=1(Qi(ui, yyyi, qqqi)▽Q

′
i(ui, yyy

′
i, qqq

′
i)) ◦ϕ ◦ϕ′ ◦ψ

with q = p ⊕ q, uuu = (u1, . . . , un), vvv = (v1, . . . , vk), ϕ and ϕ′ are pure,
ψ = vvv ≃ vvv′ and:

P (x,yyy,ppp) ⇐R ∃uuu x
p7→ (vvv) ◦⃝n

i=1Qi(ui, yyyi, qqqi) ◦ϕ
P (x,yyy′, ppp′)⇐R ∃uuu x

p′

7→ (vvv) ◦⃝n
i=1Q

′
i(ui, yyy

′
i, qqq

′
i) ◦ϕ′

By definition of the semantics, there exist locations ℓℓℓ and disjoints heaps

h0, . . . , hn such that (s′, h0) |=P
R x

q7→ (vvv) and (s′, hi) |=P
R Qi(ui, yyyi, qqqi)▽Q′

i(ui, yyy
′
i, qqq

′
i),

for all i ∈ {1, . . . , n}. This entails that |h0| = 1, so that |hi| < |h| (for all
i ∈ {1, . . . , n}) and by the induction hypothesis, we deduce that there ex-
ist heaps h′i and h′′i such that: dom(h′i) ⊆ dom(hi), dom(h′′i ) ⊆ dom(hi),



h′i ⊔ h′′i = hi, (s
′, h′i) |=

P
R Qi(ui, yyyi, qqqi) and (s′, h′′i ) |=

P
R Qi(ui, yyy

′
i, qqq

′
i), with

s′
def
= s{uuu ← ℓℓℓ}. As s′(q) is defined, necessarily s′(p) and s′(p′) are both de-

fined and s′(q) = s′(p)⊕Ps′(p′). Consider the heaps h′0
def
= {(s(x), s′(vvv), s(p))}

and h′′0
def
= {(s(x), s′(vvv), s(p′))}. By definition, we have dom(h′0) = dom(h′′0) =

dom(h0) and h′0 ⊔ h′′0 = h0 (since s′(vvv) = s′(vvv′) as s′ |=P
R ψ). It is clear that

the heaps h′0, . . . , h
′
n are pairwise disjoint (as h0, . . . , hn are disjoint) thus

h′
def
= h′0 ⊔ . . . ⊔ h′n is defined. Moreover, as s′ |=P ϕ, we get (s′, h′) |=P

R
x

p7→ (vvv) ◦⃝n
i=1Qi(ui, yyyi, qqqi) ◦ϕ, hence (s, h′) |=P

R P (x,yyy,ppp). By symmetry,

we also have (s′, h′′) |=P
R P ′(x,yyy′, ppp′) with h′′

def
= h′′0 ⊔ . . . ⊔ h′′n. Furthermore,

h′ ⊔ h′′ = (h′0 ⊔ . . . ⊔ h′n) ⊔ (h′′0 ⊔ . . . ⊔ h′′n) = (h′0 ⊔ h′′0) ⊔ . . . ⊔ (h′n ⊔ h′′n) =

(h0 ⊔ . . . ⊔ hn) = h. Thus (s, h) |=P
R P (x,yyy,ppp) ∗ P ′(x,yyy′, ppp′).

⇐ Let h′, h′′ be heaps such that h′⊔h′′ = h, (s, h′) |=P
R P (x,yyy,ppp) and (s, h′′) |=P

R
P ′(x,yyy′, ppp′). By definition, we have P (x,yyy,ppp) ⇐R ξ and P (x,yyy′, ppp′) ⇐R ξ′,

with (s, h′) |=P
R ξ and (s, h′′) |=P

R ξ′. Since R is h-regular, ξ and ξ′ are of the

form ∃uuu (x p7→ (vvv) ◦⃝n
i=1Qi(ui, yyyi, qqqi) ◦ϕ) and ∃uuu′ (x

p′

7→ (vvv′) ◦⃝n′

i=1Qi(u
′
i, yyyi, qqq

′
i) ◦ϕ′,

respectively, with uuu ⊆ vvv, uuu′ ⊆ vvv′, uuu = (u1, . . . , un), uuu
′ = (u′1, . . . , u

′
n′),

vvv = (v1, . . . , vk), vvv
′ = (v′1, . . . , v

′
k′), and ϕ, ϕ′ are pure. Then there exist stores

s′, s′′, coinciding with s on all variables not occurring in uuu,uuu′, respectively, as
well as sequences of pariwise disjoint heaps h′0, . . . , h

′
n and h′′0 , . . . , h

′′
n′ such

that (s′, h′0) |=
P
R x

p7→ (vvv), (s′′, h′′0) |=
P
R x

p′

7→ (vvv′), (s′, h′i) |=
P
R Qi(ui, yyyi, qqqi) (for

all i ∈ {1, . . . , n}), (s′′, h′′i ) |=
P
R Q′

i(u
′
i, yyy

′
i, qqqi) (for all i ∈ {1, . . . , n′}), s′ |=P ϕ

and s′′ |=P ϕ′. Thus (s(x), s′(vvv), s(p)) ∈ h′ and (s(x), s′′(vvv′), s(p′)) ∈ h′′. As
h′ ⊔ h′′ = h, we deduce that k = k′, s′(vvv) = s′′(vvv′) and s(p)⊕ s(p′) is defined,

so that h0
def
= {(s(x), s′(vvv), s(p)⊕ s(p′))} = h′0 ⊔ h′′0 ≤ h.

Now assume (for the sake of contradiction) that there exists i ∈ {1, . . . , n}
such that vi ̸∈ uuu and v′i ∈ uuu′. Then v′i ∈ roots(ξ′), we get s′′(v′i) ∈ dom(h′′).
As s′(vvv) = s′′(vvv′) and dom(h′′) ⊆ dom(h) we deduce that s′(vi) ∈ dom(h)
hence s(vi) ∈ dom(h) (since vi ̸∈ uuu), thus s(vi) = s(x), by the hypothesis
of the lemma. But then s(x) ∈ dom(h′′0) ∩ dom(h′′i ), which contradicts the
fact that h′′0 and h′′i are disjoint. Similarly, there is no i ∈ {1, . . . , n′} such
that v′i ̸∈ uuu′ and vi ∈ uuu. This entails that {i ∈ {1, . . . , k} | vi ∈ uuu} =
{i ∈ {1, . . . , k} | v′i ∈ uuu′} and, as uuu ⊆ vvv and uuu′ ⊆ vvv′, we deduce that n = n′

(since s′(vvv) = s′′(vvv′) and s′ and s′′ are injective on u1, . . . , un and u′1, . . . , u
′
n′ ,

respectively). By α-renaming, we may then assume that uuu = uuu′ and s′ = s′′,

thus s′ |=P
R vvv ≃ vvv′. We have h′⊔h′′ = h, i.e., (h′0⊔. . .⊔h′n)⊔(h′′0⊔. . .⊔h′′n) = h,

and h = (h′0 ⊔ h′′0) ⊔ . . . ⊔ (h′n ⊔ h′′n). Let hi
def
= h′i ⊔ h′′i for all i ∈ {0, . . . , n},

so that h = h0 ⊔ . . . ⊔ hn. Note that s′(ui) ∈ dom(h′i) (by Proposition 8),
and s(x) ∈ dom(h′0) which entails, as h′0, . . . , h

′
n are disjoint and dom(h′i) ⊆

dom(h), that the entailment s′(y) ∈ dom(h′i) =⇒ s′(y) = s′(ui) holds for
all i ∈ {1, . . . , n}. By symmetry, s′(y) ∈ dom(h′′i ) =⇒ s′(y) = s′(ui) also
holds for all i ∈ {1, . . . , n}, hence s′(y) ∈ dom(hi) =⇒ s′(y) = s′(ui).
Since |h0| = 1, necessarily |hi| < |h|, for all i ∈ {1, . . . , n}. By the induction

hypothesis, we deduce that (s′, hi) |=P
R Qi(ui, yyyi, ppp)▽Q′

i(ui, yyy
′
i, ppp

′′), so that



(s′, h) |=P
R x

q7→ (vvv) ◦⃝n
i=1Qi(ui, yyyi, ppp)▽Q′

i(ui, yyy
′
i, ppp

′′) ◦ϕ ◦ϕ′ ◦(vvv ≃ vvv′). By

definition of the rules of P (x,yyy,ppp)▽P ′(x,yyy′, ppp′), this entails that (s, h) |=P
R

P (x,yyy,ppp)▽P ′(x,yyy′, ppp′).

J Proof of Proposition 30

The direct implication is immediate to prove. We now establish the converse. If ρa
is P-satisfiable then there exists a store s such that s |=P ρa (i.e., (s, ∅) |=P ρa).
Since ∼a is an equivalence relation on Va ∩ Vl, it is clear that there exists a
store ŝ such that ŝ(x) = s(x) holds for all x ∈ Vp, and for all y, z ∈ Va ∩ Vl:
ŝ(y) = ŝ(z) ⇐⇒ y ∼a z (it suffices to associates all equivalence classes of ∼a

with pairwise distinct arbitrarily chosen locations). As Va is finite, there exists

a heap ĥ such that dom(h) = ŝ(Va) (e.g., ĥ = {(ℓ, π) | ℓ ∈ dom(h)} where π is
some arbitrary permission in PP). As the truth value of a only depends on the

interpretation of variables of sort p, we have ŝ |=P a, so that (ŝ, ĥ) |=P a.

K Proof of Lemma 31

We need to establish a slightly more general property: Let ϕ be a ◦-formula, let
(s, h) be a structure and let V ⊇ fv(ϕ). We show that the two following assertions

hold: (i) If (s, h) |=P
R ϕ then there exists a heap abstraction (V,∼, A, ρ) ∈ A(ϕ)

such that (s, h) |=P (V,∼, A, ρ). (ii) If (V,∼, A, ρ) ∈ A(ϕ), ∼= {(u, v) ∈ (V ∩
Vl)2 | s(u) = s(v)} and s |=P ρ, then for every store ŝ such that ŝ(x) = s(x)

for all x ∈ Vp and ˆs(x) = ŝ(y) ⇐⇒ s(x) = s(y) for all x, y ∈ V ∩ Vl, and for

every infinite subset L of L, there exists a heap ĥ such that (ŝ, ĥ) |=P
R ϕ, with

dom(ĥ) ⊆ L ∪ ŝ(A).

1. The proof is by induction on the satisfiability relation. Let ∼= {(x, y) ∈
(V ∩ Vl)2 | s(x) = s(y)}.
– If ϕ = x

p7→ (y1, . . . , yk) then necessarily dom(h) = {s(x)} and s(p) is
defined, so that s |=P def (p). Moreover (V,∼, {y ∈ V | y ∼ x}, def (p)) ∈
A(ϕ), by definition of A(ϕ). By definition of ∼, we have ∀x, y ∈ Va ∩ Vl:
x ∼ y ⇐⇒ s(x) = s(y) and {y ∈ V | y ∼ x} = {y ∈ V | s(y) = s(x)} =
{y ∈ V | s(y) ∈ dom(h)}, thus (s, h) |=P (V,∼, {y ∈ V | y ∼ x}, def (p)).

– If ϕ = x ≃ y (resp. x ̸≃ y) with x, y ∈ Vl, then h = ∅. Moreover s(x) =
s(y) (resp. s(x) ̸= s(y)) so that x ∼ y (resp. x ̸∼ y) and (V,∼, ∅, emp) ∈
A(ϕ), by definition of A(ϕ). As ∼= {(x, y) ∈ (V ∩ Vl)2 | s(x) = s(y)},
dom(h) = ∅, and s |=P emp we have (s, h) |=P (V,∼, ∅, emp).

– If ϕ is a permission formula then h = ∅, and (V,∼, ∅, ϕ) ∈ A(ϕ) (by
definition of A(ϕ)). As ∼= {(x, y) ∈ (V ∩Vl)2 | s(x) = s(y)}, dom(h) = ∅
and (s, ∅) |=P

R ϕ, we get (s, h) |=P (V,∼, ∅, ϕ).
– Assume that ϕ = ∃xψ. By α-renaming, we assume that x ̸∈ V . There

exists a store s′ coinciding with s on all the variables distinct from x
such that (s′, h) |=P

R ψ. Let V ′ = V ∪ {x}, so that fv(ψ) ⊆ V ′. By



the induction hypothesis, A(ψ) contains a tuple (V ′,∼′, A′, ρ) such that
(s′, h) |=P (V ′,∼′, A′, ρ). Then ∼′= {(y, z) ∈ (V ′ ∩ Vl) | s′(y) = s′(z)},
A′ = {y ∈ V ′ | s′(y) ∈ dom(h)} and s′ |=P ρ. By definition of A(ϕ), we

deduce that the heap abstraction a
def
= (V ′ \ {x}, {(y, z) ∈ V ′ | y ∼′ z ∧

y, z ̸= x}, A′\{x}, ρ) is in A(ψ). By definition of V ′, we have V ′\{x} = V ,
{(y, z) ∈ (V ′ ∩ Vl)2 | y ∼′ z ∧ y ̸= x ∧ z ̸= x} = {(y, z) ∈ (V ∩ Vl)2 |
s′(y) = s′(z)} and A′ \ {x} = {y ∈ V | s′(y) ∈ dom(h)}, so that a =
(V, {(y, z) ∈ (V ∩ Vl)2 | s′(y) = s′(z)}, {y ∈ V | s′(y) ∈ dom(h), ρ}. As s′

and s coincides on all variables y ̸= x (hence on all variables in V ), and
since ρ does not contain x (since existential variables are of sort l) we
get (s, h) |=P a.

– Assume that ϕ = ϕ1 ◦ϕ2. Then there exist disjoint heaps h1, h2 with
(s, hi) |=P

R ϕi and h = h1 ⊔ h2. Let Ai = {x ∈ V | s(x) ∈ dom(hi)}.
We have fv(ϕi) ⊆ fv(ϕ) ⊆ V , thus, by the induction hypothesis, there
exist (V,∼i, Ai, ρi) ∈ A(ϕi) such that (s, hi) |=P (V,∼i, Ai, ρi), so that
∼1=∼2= {(x, y) ∈ (V ∩ Vl)2 | s(x) = s(y)}, Ai = {x ∈ V | s(x) ∈
dom(hi)} and s |=P ρi. As dom(h1)∩dom(h2) = ∅ necessarily A1∩A2 =
∅ thus (V,∼1, A1 ∪ A2, ρ1 ◦ ρ2) ∈ A(ϕ). Then s |=P ρ1 ◦ ρ2, and since
dom(h) = dom(h1) ∪ dom(h2), we get {x | s(x) ∈ dom(h)} = {x | s(x) ∈
dom(h1)} ∪ {x | s(x) ∈ dom(h2)} = A1 ∪ A2, thus (s, h) |=P (V,∼1

, A1 ∪A2, ρ1 ◦ ρ2).
– Assume that ϕ is a predicate atom. Then there exists ψ such that ϕ⇐R
ψ and (s, h) |=P

R ψ. We have fv(ψ) ⊆ fv(ϕ) ⊆ V . By the induction
hypothesis, there exists a heap abstraction (V,∼, A, ρ) ∈ A(ϕ) such that
(s, h) |=P (V,∼, A, ρ). By definition of A(ϕ), (V,∼, A, ρ) is in A(ϕ).

2. The proof is by induction on A(ϕ).

– Assume that ϕ = x
p7→ (y1, . . . , yk). Since (V,∼, A, ρ) ∈ A(ϕ), we must

have A = {y ∈ (V ∩ Vl) | y ∼ x} (thus x ∈ A) and ρ = def (p),
by definition of A(ϕ). Since s |=P ρ necessarily ŝ |=P ρ, as ŝ and s
coincide on all variables of sort p. Consequently, ŝ(p) must be defined.

Consider the heap ĥ
def
= {(ŝ(x), ŝ(y1), . . . , ŝ(yk), ŝ(p))}. By definition of

the semantics, (ŝ, ĥ) |=P
R ϕ, moreover dom(h) = {ŝ(x)} ⊆ ŝ(A), since

x ∈ A.
– Assume that ϕ = x ≃ y. As (V,∼, A, ρ) ∈ A(ϕ), we must have x ∼ y,

by definition of A(ϕ). Since ∼= {(u, v) ∈ (V ∩ Vl)2 | s(u) = s(v)}, this
entails that s(x) = s(y), so that ŝ(x) = ŝ(y), and by letting ĥ = ∅, we
get (ŝ, ĥ) |=P

R ϕ.
– The proof is similar if ϕ = x ̸≃ y.
– Assume that ϕ is a permission formula. In this case, we must have ρ = ϕ,

hence s |=P ϕ. Since ŝ coincides with s on all variables of sort p, this

entails that ŝ |=P ϕ , so that (ŝ, ∅) |=P
R ϕ.

– Assume that ϕ = ∃xψ. As (V,∼, A, ρ) ∈ A(ϕ), we deduce, by definition
of A(ϕ), that (V ′,∼′, A′, ρ′) ∈ A(ψ) with V = V ′ \ {x}, ∼= {(u, v) |
u ∼′ v ∧ u ̸= x ∧ v ̸= x} A = A′ \ {x} and ρ = ρ′. Moreover, since
(s, h) |=P (V,∼, A, ρ), we deduce that y ∼ z =⇒ s(y) = s(z), for



all y, z ∈ (V ∩ Vl). By the hypothesis of the lemma, this entails that
the implication ∀y, z ∈ (V ∩ Vl) (y ∼ z =⇒ ŝ(y) = ŝ(z)) also holds.
Consider any stores s′ and ŝ′ coinciding with s and ŝ (respectively) on
all variables distinct from x and such that:
• If x ∼′ y for some variable y ∈ V then s′(x)

def
= s(y) and ŝ′(x)

def
= ŝ(y)

(note that s(y) and ŝ(y) does not depend on the choice of y ∈ V in
the same equivalence class for ∼).

• Otherwise, we let s′(x) = ŝ′(x) = ℓ, where ℓ is an arbitrarily chosen
location in L\ŝ(V ). Note that such a location exists since L is infinite.

By construction, it is clear that the equivalence s′(y) = s′(z) ⇐⇒ y ∼′

z ⇐⇒ ŝ′(y) = ŝ′(z) holds for all y, z ∈ V ′ ∩ Vl. Moreover, s′ coincides
with s on all permission variables (as x is of sort l, since quantification
over permission variables is not allowed), thus s′ |=P ρ′ = ρ. Let L′ =
L \ {ŝ′(x)}. By the induction hypothesis, applied on (V ′,∼′, A′, ρ′), ψ,

s′, ŝ′ and L′, there exists a heap ĥ such that (ŝ′, ĥ) |=P
R ψ and dom(ĥ) ⊆

L′∪ ŝ′(A′). This entails that (ŝ, ĥ) |=P
R ∃xψ. It only remains to show that

dom(ĥ) ⊆ L ∪ ŝ(A). Assume, for the sake of contradiction, that dom(ĥ)
contains a location ℓ not occurring in L ∪ ŝ(A). As ℓ ∈ L′ ∪ ŝ′(A′), with
L′ = L\{ŝ′(x)} and A = A′ \{x}, this entails that ℓ = ŝ′(x) with x ∈ A′

and ŝ′(x) ̸∈ L. By definition of ŝ′, the latter assertion entails that there
exists a variable y ∈ Vl ∩ V such that x ∼ y and ŝ′(x) = ŝ(y). We must
have y ∈ A′ (since x ∈ A′ and A′ is closed under ∼) thus y ∈ A (as x ̸= y,
since x ̸∈ V ), hence ŝ(y) = ℓ ∈ ŝ(A), which contradicts our assumption.

– Assume that ϕ = ϕ1 ◦ϕ2. As (V,∼, A, ρ) ∈ A(ϕ), we deduce, by definition
of A(ϕ), that for all i = 1, 2, A(ϕi) contains a heap abstraction (V,∼
, Ai, ρi) with A = A1 ∪A2, ρ = ρ1 ◦ ρ2 and A1 ∩A2 = ∅. As s |=P ρ, we
get s |=P ρi. Moreover, s(A1) ∩ s(A2) = ∅. Indeed, if s(xi) ∈ s(Ai) with
xi ∈ Ai, then x1 ∼ x2 (as ∼= {(u, v) ∈ (V ∩ Vl)2 | s(u) = s(v)}) which
entails (by Definition 28) that x2 ∈ A1 and x1 ∈ A2, contradicting the
fact that A1 ∩ A2 = ∅. Let L1, L2 be disjoint infinite subsets of L also
disjoint from ŝ(V ) (such sets exist since L is infinite). By the induction

hypothesis, there exist heaps ĥi such that (ŝ, ĥi) |=P
R ϕi and dom(ĥi) ⊆

Li ∪ ŝ(Ai). As L1 ∩L2 = ∅, s(A1)∩ s(A2) = ∅ and (L1 ∪L2)∩ ŝ(V ) = ∅,
we have dom(ĥ1) ∩ dom(ĥ2) = ∅, so that ĥ1 and ĥ2 are disjoint and

(ŝ, ĥ1 ⊔ ĥ2) |=P
R ϕ1 ◦ϕ2 = ϕ. Moreover, dom(ĥ1 ⊔ ĥ2) ⊆ L ∪ ŝ(A).

– Assume that ϕ is a predicate atom. Since (V,∼, A, ρ) ∈ A(ϕ), necessarily
(V,∼, A, ρ) ∈ A(ξ) with ϕ⇐R ξ. By the induction hypothesis there ex-

ists a heap ŝ such that (ŝ, ĥ) |=P
R ξ and dom(h) ⊆ L∪ ŝ(A). By definition

of the semantics, we also have (ŝ, ĥ) |=P
R ϕ.

L Proof of Theorem 32

We assume for simplicity that ϕ contains no quantifier and no points-to atom12.

12 It is clear that this is not restrictive: any existential variable may be replaced by
a fresh free variable, and any points-to atom x

z7→ (y1, . . . , yk) may be replaced



Step 1 (Normalization). Using Lemma 23, one first compute a set of normalized
formulas Φ2 such that ϕ is (R,P)-satisfiable iff there exists ϕ2 ∈ Φ2 such that
ϕ2 is (R,P)-satisfiable, and all formulas in Φ2 are separating conjunctions of
◦-formulas (all the existential variables occurring in formulas in Φ2 are replaced
by fresh free variables).

Step 2 (Elimination of ∗). By definition, every formula ϕ2 ∈ Φ2 may be writ-
ten on the form ϕ′ ◦(∗n

i=1χi) (†), where ϕ′, χ1, . . . , χn are ◦-formulas (with
initially ϕ′ = emp). We show that, if n > 1, then the above formula can be
reduced into a strictly smaller sat-equivalent formula that is still of the form
(†). Let x be any variable occurring in roots(χi), for some i ∈ {1, . . . , n} (if
no such x exists then ∗n

i=1χi is pure and the symbol ∗ may be replaced by
◦, yielding a formula of the form (†) with n = 1). Let I be the set of in-
dices in {1, . . . , n} such that x ∈ roots(χi). By symmetry, we assume that
I = {1, . . . ,m} for some m ∈ {1, . . . , n}. Every formula χi must be of the
form δi ∗ χ′

i, where δi is a predicate atom, roots(δi) = {x} and x ̸∈ roots(χ′
i) (if

χi contains two distinct atoms with the same root x then by Proposition 8, χi

is (R,P)-unsatisfiable and the entire formula can be dismissed). By Lemma
26, applied with ϕi = δi, ψi = χ′

i and ψ′ = ∗n
i=m+1χi, we deduce that

ϕ′ ◦(∗n
i=1χi) is sat-equivalent to (ϕ′ ◦∗m

i=1δi) ◦(∗m
i=1χ

′
i ∗∗n

i=m+1χi). Let ϕ
′
2 =

ϕ′ ◦(δ1▽ . . .▽δm) ◦(∗m
i=1χ

′
i∗∗n

i=m+1χi). By Lemma 27,∗m
i=1δi ≡

P
R δ1▽ . . .▽δm

(the hypothesis of the lemma is satisfied since all formulas are normalized), thus
ϕ′2 and ϕ′ ◦(∗n

i=1χi) are sat-equivalent. As the weight of the symbol ∗ is strictly
greater than that of ◦, it is clear that |ϕ′2| < |ϕ′ ◦(∗n

i=1χi)|. Moreover, ϕ′2 is
also of form (†). By repeating the above transformation, we eventually obtain
a formula ϕ3 of the form (†) above, with n = 1, i.e., a ◦-formula. We thus get
a set of ◦-formulas Φ3 such that ϕ is (R,P)-satisfiable iff there exists ϕ3 ∈ Φ3

such that ϕ3 is (R,P)-satisfiable.

Step 3 (Abstractions). It only remains to check that one of ◦-formulas ϕ3 ∈ Φ3

is (R,P)-satisfiable. By Lemma 31, it is sufficient to compute the set A(ϕ3) and
test whether it contains a heap abstraction (V,∼, A, ρ) that is P-satisfiable. By
Proposition 30, we only have to check that ρ is P-satisfiable, which is decidable
by the hypothesis of the lemma.

We now analyze the complexity of the algorithm and we show that it runs
in exponential time.

1. At Step 1, one replacement is performed for each atom δ and for each vari-
able. Moreover, each replacement may in turn introduce new atoms and
new variables in the formula (however, as shown above, the application
of the replacement operation on these new variables do not add further
variables). Note that the replacement does not increase the number of ◦-
formulas occurring as operands of ∗: only the number of atoms inside ◦-
formulas may increase. Thus the number of ◦-formulas is at most |ϕ|, as

by a predicate atom P (x, y1, . . . , yk, z), with the rule P (u, v1, . . . , vk, w) ⇐ u
w7→

(v1, . . . , vk).



initially ϕ contains at most |ϕ| spatial predicate atoms and no occurrence of
◦. Moreover, the replacement cannot be applied twice with the same vari-
able and the same ◦-formula. We denote by N be the maximal number of
variables introduced by one single replacement. We get a total of at most
fv(ϕ)+ (N × fv(ϕ)× |ϕ|) ≤ (N +1)× |ϕ|2 variables. As all the spatial atoms
occurring in the same ◦-formula must have distinct roots (otherwise the for-
mula is (R,P)-unsatisfiable by Proposition 8 and can be dismissed), this
yields a total of at most (N + 1) × |ϕ|2 atoms in each ◦-formula, hence of
at most (N + 1) × |ϕ|3 atoms in every formula ϕ2 ∈ Φ2. Each replacement
may produce a new derived predicate, which may be of the form δ[x]− or
(P (x,zzz, p) ◦⃝n

i=1Pi(xi, yyyi, p)) −−• Q(yyy, p) (with δ = Q(yyy, p)). In the former
case, no new variable is introduced and the maximal arity increases by at
most 1, whereas in the latter case, new variables x1, . . . , xn (with n ≤ N) are
added into the formula and the maximal arity of the predicates occurring in
the formula is increased by at most n (see Definition 17). By Lemma 20, we
have {x1, . . . , xn} ⊆ (x,zzz)|γR(P ), thus n ≤ card(γR(P )). By Propositions 14
and 18, the computation of derived predicates cannot increase the maximal
value of card(γR(P )), so that N ≤ |R| and card(γR(P )) ≤ |R|, for every
derived predicate P . Thus, in every formula ϕ2 ∈ Φ2, the number of variables
added in the formula, the number of atoms and the number of derived pred-
icates and their maximal arity are all polynomial w.r.t. |ϕ|+ |R|, so that |ϕ2|
is polynomial w.r.t. |ϕ|. Moreover, the total number of derived predicates
is at most exponential w.r.t. |ϕ| + |R|. Indeed, it is easy to see that these
derived predicates may be uniquely determined by choosing the initial atom
δ in ϕ from which the derived predicate is computed and the sets of atoms
that are removed from the call tree of δ (inside the initial set of predicates).
At most N + 1 such atoms are introduced at each replacement, and there
are at most (N +1)× fv(ϕ) replacements, yielding at most 2|R|×(N+1)2×fv(ϕ)

possible choices. Therefore, the total number of formulas in Φ2 is at most
exponential w.r.t. |ϕ|+ |R|. It is clear that each formula ϕ2 can be computed
in polynomial time.

2. It is straightforward to check that for each formula ϕ2 ∈ Φ2, the correspond-
ing ◦-formula ϕ3 ∈ Φ3 can be computed in polynomial time w.r.t. |ϕ2| (each
step of the transformation strictly decreases the size of the formula). Hence
Step 2 can be performed in exponential time w.r.t. |ϕ|.

3. At Step 3, for each formula ϕ3 ∈ Φ3, the test A(ϕ3) may be computed by us-
ing a standard fixpoint computation algorithm, following the inductive rules
in Definition 28. Observe that we only need to compute A(ψ) for formulas
ψ that occur in either ϕ3 or in R (up to a renaming of variables), as other
formulas does not interfere with the computation of A(ϕ3). Moreover, we
only need to consider heap abstractions (V,∼, A, ρ) such that V contains
only variables in fv(ψ) and existential variables in R, and ρ contains only
permission terms and permission predicates in ψ. It is clear that the num-
ber of such heap abstractions is simply exponential w.r.t. |ϕ3|, hence the
computation can be performed in exponential time.



The Exptime-hardness proof goes by an easy reduction from the halting
problem for alternating Turing machines (ATM) running in polynomial space.
As APSpace (the class of languages decidable in polynomial space by alter-
nating Turing machines) is identical to Exptime, we get the result. Let M =
(Q,Γ, δ, q0, g) be an ATM, where Q is a finite set of states, Γ is a finite tape
alphabet, δ ⊆ (Q× Γ ×Q× Γ × {←,→}) is a transition relation, q0 ∈ Q is the
initial state and g : Q → {∨,∧} specifies the type of each state. We assume,
w.l.o.g., that Γ ⊆ Vl, and we denote by γγγ any sequence containing all the ele-
ments of Γ . For every move µ ∈ {←,→}, µ(i) is defined as i − 1 if µ =← and
i + 1 otherwise. Assume that the considered ATM runs in time at most n ∈ N
on some word w (where n is polynomial w.r.t. |w|.) Let wi (1 ≤ i ≤ n) be the
i-th character in w, where wi is a blank symbol if i > |w|. For every natural
number i with 1 ≤ i ≤ n and every q ∈ Q, we consider the predicate qi of arity
2 + n+ |γγγ| associated with the rules:

qi(x, y1, . . . , yn, γγγ, z)⇐ ∃x′ x
z7→ (x′)

◦ qµ(i)(x′, y1, . . . , yi−1, b, yi+1, . . . , yn, γ, z) ◦ yi ≃ a (9)

if g(q) = ∨, for all transitions (q, a, q′, b, µ) ∈ δ such that 1 ≤ µ(i) ≤ n.

qi(x, y1, . . . , yn, γγγ, z)⇐ ∃x′1, . . . , x′k x
z7→ (x′1, . . . , x

′
k)

◦⃝k
j=1q

µj(i)(x′j , y1, . . . , yi−1, bj , yi+1, . . . , yn, γ, z) ◦ yi ≃ a (10)

if g(q) = ∧, for all a ∈ Γ , where (q, a, q′j , bj , µj) (for j ∈ {1, . . . , k}) is the set
of transitions of the form (q, a, q′, b, µ) ∈ δ with 1 ≤ µ(i) ≤ n.

It is clear that p1(x,w1, . . . , wn, γ, z) is (R,P)-satisfiable iff the considered
ATM terminates on the word w and accepts w (every model of p1(x,w1, . . . , wn, γ, z)
encodes an accepting derivation from the initial state p and the tape w1, . . . , wn,
where the head is at position 1). Moreover, the rules are ∃-restricted, with
γR(qi) = ∅ and P⋆ = ∅.

M Proof of Theorem 33

As for Theorem 9, the proof is by reduction from the PCP (the same notations
are used). Potential witnesses ω are encoded in a similar way than in the proof
of Theorem 9, except that the use of the heaps hµ and hν is avoided, instead
the indices Iµ(ηµ(j)) and Iν(ην(j)) are stored directly in the list h′. Moreover,
an additional location ℓ′j , called a mark, is added in each tuple, that is allocated
and always refers to (). Finally, each cell has a double link to the next one (this
will be useful so that the tail can be generated twice in the body of the rule).
We get a heap of the following form:

h′ = {(ℓj , s(Iµ(ηµ(j))), s(Iν(ην(j))), ℓ′j , ℓj+1, ℓj+1, π
′), (ℓ′j , π

′) | 1 ≤ j ≤ |ω|}



Moreover, the list is cyclic, i.e., we assume that ℓ|ω|+1 = ℓ1. The rules defining
the predicate generating the lists h′ corresponding to potential witnesses are very
similar to those given in the proof of Theorem 9, except that Q is not used (a
predicate D is used instead to allocate marks). We assume that vvv contains all
natural numbers in {1, . . . , n} and a variable u, denoting the first cell in the list.
The predicate P ′(x′′, y,vvv, z) is called (taking advantage of the double link to the
next element and from the fact that ∗ is used instead of ◦) to ensure that all
the marks are pairwise distinct (it allocates a list in which all marks are distinct
from y). This ensures that the mapping ℓj 7→ ℓ′j is bijective, so that the cells can
be unambiguously denoted by their marks.

P (x,vvv, z)⇐ ∃x′, x′′, y x
z7→ (i, i, y, x′, x′′)

∗ P ′(x′′, y, vvv, z) ∗ x′′ ≃ x′ ∗ P2,2,i,i(x
′, vvv, z) ∗D(y, z)

if µi|1 = νi|1 (11)

D(x, z) ⇐ x
z7→ () (12)

Pjµ,jν ,iµ,iν (x,vvv, z)⇐ ∃x′, x′′, y x
z7→ (iµ, iν , y, x

′, x′′) ∗ P ′(x′′, y) ∗ x′′ ≃ x′∗
∗D(y, z) ∗ Pjµ+1,jν+1,iµ,iν (x

′, vvv, z)

if jµ ≤ |µiµ |, jν ≤ |νiν | and µiµ |jµ = νiν |jν (13)

Pjµ,jν ,iµ,iν (x,vvv, z)⇐ ∃x′, x′′, y x
z7→ (i′µ, iν , y, x

′, x′′) ∗ P ′(x′′, y) ∗ x′′ ≃ x′∗
∗D(y, z) ∗ P2,jν+1,i′µ,iν (x

′, vvv, z)

if jµ = |µiµ |+ 1, jν ≤ |νiν | and µi′µ
|1 = νiν |jν (14)

Pjµ,jν ,iµ,iν (x,vvv, z)⇐ ∃x′, x′′, y x
z7→ (iµ, i

′
ν , y, x

′, x′′) ∗ P ′(x′′, y) ∗ x′′ ≃ x′∗
∗D(y, z) ∗ Pjµ+1,2,iµ,i′ν

(x′, vvv, z)

if jµ ≤ |µiµ |, jν = |νiν |+ 1 and and µiµ |jµ = νi′ν |1 (15)

Pjµ,jν ,iµ,iν (x,vvv, z)⇐ ∃y x
z7→ (0, 0, y, u, u) ∗D(y, z)

if jµ = |µiµ | and jν = |νiν | (16)

P ′(x, y′, vvv, z)⇐ ∃x′, y x
z7→ (iµ, iν , y, x

′, x′)∗y ̸≃ y′∗P ′(x′, y′, vvv, z)∗D(y, z)
(17)

P ′(x, y′, vvv, z) ⇐ ∃y x
z7→ (iµ, iν , y, u, u) ∗ y ̸≃ y′ ∗ D(y, z) (18)



To check that the sequences Iµ and Iν are identical, we proceed as follows,
exploiting the fact that h is cyclic and can be generated an unbounded number
of times (since by hypothesis, for all n ∈ N, there is a permission π such that
πn is defined). By construction, we already know that Iµ(1) = Iν(1), we need
to check that Iµ(i) = Iν(i) holds for all i ∈ {2, . . . , κ}. We first guess an index
ι (which is intended to denote the value of Iµ and Iν) and we keep track of the
mark of the first cell by storing it into parameters yµ and yν . These parameters
are intended to denote the mark of the start of the current word in the witness
(note that it would be much simpler to keep track of the cells themselves, instead
of their marks, but this would make the rules non ∗-∃-restricted). At this point
we have yµ = yν as the words µIµ(1) and νIν(1) always start at the same cell u,
later yµ and yν will take different values. Then we check that Iµ(2) = Iν(2) = ι.
This is done by skipping the word µIµ(1) to find the start of the word µIµ(2).

To this aim, we define a predicate Rλ
ι,i,j skipping the characters j, . . . , |λi| in

the word λi (rule 23). Once this is done, we check (rule 24) that Iµ(2) = ι.
Simultaneously, we keep track of the mark of the cell that corresponds to the
start of µIµ(2) by storing it into yµ. Then, we call a predicate Rν

ι which performs
the same operation for the sequence ν. To this aim, we must go through the
entire list (rule 20) to go back to the cell marked with yν (rule 21). Note that
this is feasible as the list is cyclic. Afterwards, we may call the predicate Rν

ι,i,2

to check that Iν(2) = ι (rule 25) and find the start of the word νIν(2) as done
for µ. We also keep track of the mark of the cell that correspond to the start of
µIν(2) by storing it into yν . We then guess a new index ι′′ and call the predicate
Rµ

ι that performs exactly the same operations, but starting at cells marked yµ
and yν , respectively. This will check that the indices of the next words after the
ones marked with yµ and yν are identical, i.e., that Iµ(3) = Iν(3). We repeat
this operation until yµ and yν are equal (rule 22). In the rules below, λ ranges
over the set {µ, ν} and i, i′, ι range over {1, . . . , n}:

R(x,vvv, z) ⇐ ∃x′, y x
z7→ (i, i′, y, x′, x′) ∗ D(y, z) ∗ Rµ

ι,i,2(x
′, y, y,vvv, z) (19)

Rλ
ι (x, yµ, yν , vvv, z)⇐ ∃x′, y x

z7→ (i, i′, y, x′, x′)∗y ̸≃ yλ∗D(y, z)∗Rλ
ι (x

′, yµ, yν , vvv, z)
(20)

Rλ
ι (x, yµ, yν , vvv, z)⇐ ∃x′, y x

z7→ (i, i′, y, x′, x′)∗y ≃ yλ∗D(y, z)∗Rλ
ι,i,2(x

′, yµ, yν , vvv, z)

(21)

Rµ
ι (x, yµ, yν , vvv, z) ⇐ ∃x′, y x

z7→ (0, 0, y, u, u) ∗ yµ ≃ yν ∗ D(y, z) (22)

Rλ
ι,i,j(x, yµ, yν , vvv, z)⇐ ∃x′, y x

z7→ (i, i′, y, x′, x′)∗D(y, z)∗Rλ
ι,i,j+1(x

′, yµ, yν , vvv, z)

if j ≤ |λi| (23)



Rµ
ι,i,j(x, yµ, yν , vvv, z)⇐ ∃x

′, y x
z7→ (ι, i′, y, x′, x′) ∗D(y, z) ∗Rν

ι (x
′, y, yν , vvv, z)

if j = |µi|+ 1 (24)

Rν
ι,i,j(x, yµ, yν , vvv, z)⇐ ∃x′, y x

z7→ (i′, ι, y, x′, x′) ∗D(y, z) ∗Rµ
ι′′(x

′, yµ, y, vvv, z)

if j = |νi|+ 1 (25)

It is easy to see that the formula P (x,vvv, z) ∗ R(x,vvv, z) is (R,P)-satisfiable iff
the corresponding instance of the PCP admits a solution. Moreover, the rules
are ∗-∃-restricted, with P⋆ = {D}, γR(R) = γR(P ) = γR(Pjµ,jν ,iµ,iν ) = ∅,
γR(P ′) = {2} and γR(Rλ

ι ) = γR(Rλ
ι,i,j) = {2, 3}.


