
HAL Id: hal-04163836
https://hal.science/hal-04163836v3

Submitted on 29 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dependent Ghosts Have a Reflection for Free
Théo Winterhalter

To cite this version:
Théo Winterhalter. Dependent Ghosts Have a Reflection for Free. Proceedings of the ACM on
Programming Languages, 2024, 258. �hal-04163836v3�

https://hal.science/hal-04163836v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Dependent Ghosts Have a Reflection for Free

THÉO WINTERHALTER, Inria Saclay, France

We introduce ghost type theory (GTT) a dependent type theory extended with a new universe for ghost data
that can safely be erased when running a program but which is not proof irrelevant like with a universe of
(strict) propositions. Instead, ghost data carry information that can be used in proofs or to discard impossible
cases in relevant computations. Casts can be used to replace ghost values by others that are propositionally
equal, but crucially these casts can be ignored for conversion without compromising soundness. We provide a
type-preserving erasure procedure which gets rid of all ghost data and proofs, a step which may be used as a
first step to program extraction. We give a syntactical model of GTT using a program translation akin to the
parametricity translation and thus show consistency of the theory. Because it is a parametricity model, it can
also be used to derive free theorems about programs using ghost code. We further extend GTT to support
equality reflection and show that we can eliminate its use without the need for the usual extra axioms of
function extensionality and uniqueness of identity proofs. In particular we validate the intuition that indices
of inductive types—such as the length index of vectors—do not matter for computation and can safely be
considered modulo theory. The results of the paper have been formalised in Coq.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: dependent types, termination, consistency, extensionality

ACM Reference Format:

Théo Winterhalter. 2024. Dependent Ghosts Have a Reflection for Free. Proc. ACM Program. Lang. 8, ICFP,
Article 258 (August 2024), 29 pages. https://doi.org/10.1145/3674647

1 Introduction

Dependent type theory—the underlying theory of numerous proof assistants such as Agda [Norell
2007] or Coq [Coq development team 2023]—typically feature two notions of equality: definitional
equality that is external and determines which types are the same; and propositional equality which
is internal and which allows the user to perform equational reasoning.
Definitional equality is crucial in practice as it makes the life of the user easier by identifying

objects on the nose. For instance, it allows one to consider the type of lists of length 3 + 2—usually
written vec � (3 + 2)—as being the same as the type of those of length 5, i.e. vec � 5. This in
turn makes it possible to state and prove a propositional equality between [1; 2; 3; 4; 5] and the
concatenation of [1; 2; 3] and [4; 5].1 That said, be it in Agda or in Coq, this notion of definitional
equality is limited in order to remain decidable. A typical instance is that while 0 + = and = are
identified, it is not the case in general for = + 0 to be equal to =. This can be somewhat alleviated by
extending the proof assistant with rewrite rules [Cockx and Abel 2016; Cockx et al. 2021] but then
we are still stuck when comparing = +< and< + =. A remedy was once proposed in the form of
Coq modulo theory (CoqMT) by Strub [2010] but this process cannot be complete while remaining
decidable. As such, other proof assistants such as F* [Swamy et al. 2016], Andromeda 1 [Bauer et al.

1These two lists are in fact definitionally equal themselves.

Author’s Contact Information: Théo Winterhalter, theo.winterhalter@inria.fr, Inria Saclay, Palaiseau, France.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART258

https://doi.org/10.1145/3674647

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-9881-3696
https://doi.org/10.1145/3674647
https://orcid.org/0000-0002-9881-3696
https://doi.org/10.1145/3674647

258:2 Théo Winterhalter

2016] or NuPRL [Constable and Bates 2014] embrace undecidability and implement extensional
type theories which make propositional and definitional equalities coincide, a phenomenon called
equality reflection.
Extensional type theory (ETT) has been well studied and Hofmann [1995] showed it was con-

servative over intensional type theory (ITT, i.e. without equality reflection) extended with two
equality principles: uniqueness of identity proofs (UIP), which equates any two proofs of the same
propositional equality; and function extensionality (funext) which allows one to equate two func-
tions as long as they are pointwise equal. This conservativity result was later made constructive
and turned into an effective translation [Oury 2005; Winterhalter et al. 2019]. The need for the UIP
axiom is at odds with homotopy type theory and in particular the univalence axiom as they are
inconsistent together. The two can still be made to coexist in a single type theory using so-called
two-level type theories as proposed by Altenkirch et al. [2016]. Thankfully, the translation proposed
by Winterhalter et al. [2019] is general enough to apply to a two-level setting. Still it would be
interesting to delineate a subsystem of ETT that does not require the use of funext and UIP so as to
remain as agnostic as possible.
Furthermore, even though the lack of decidable type checking does not prevent systems such

as F* to be usable in practice—through the use of SMT automation in the case of F*—the equality
reflection rule has many drawbacks. First, in an inconsistent context, anything goes: since all
equalities are provable, then all terms have all types; for instance, assuming � = � → � is enough
to encode untyped _-calculus and thus non-terminating functions. Second, even under consistent
contexts one can construct nonsensical terms; for instance, assuming nat → nat = nat → bool
(validated by the cardinal model proposed by Bauer and Winterhalter [2020]), one can write the
identity function for natural numbers _G.G and give it type nat → bool so that (_G .G) 0 is of
type bool when it should be equal to 0. The solution to this problem is to annotate both function
abstraction and application by their domain and codomain and restrict V-reduction to the cases
where they match individually, essentially bypassing the lack of injectivity of Π-types (which would
in particular say that nat = bool follows from nat → nat = nat → bool, a fact that usually holds
in ITT) but as a result terms become much bigger compared to their ITT counterparts. Third, for
similar reasons, ETT has no power to discriminate between different type formers, there is no way
for the type checker to conclude that a definitional equality between e.g. nat and nat → nat is
not possible and as such it cannot terminate early and report an error. All these points show the
difficulty for a checker to give useful feedback and error messages to the user. Another problem is
giving semantics to ETT without the heavy annotations on application and abstraction.

We propose a restriction of ETT that remedies several2 of these drawbacks by allowing equality
reflection for ghost values, i.e. those that can be erased at extraction. This extends the definitional
proof irrelevance of Prop, introduced by Gilbert et al. [2019], which identifies all proofs of the same
proposition. Let us illustrate this intuition by looking at the example of vectors—or length-indexed
lists—introduced above. In order to write the reversal of vectors using an accumulator (to obtain a
tail-recursive version) we have to consider both the length of the list to be reversed and that of the
accumulator to express the length of the result. As such one would write the following:

rev : ∀ = <. vec � = → vec �< → vec � (= +<)
rev 0 < vnil 022 := 022

rev (S :) < (vcons 0 : E) 022 := rev : (S <) E (vcons 0 < 022)

2We in fact conjecture that all of these drawbacks are remedied by our proposal but leave the question of evaluation to

future work.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:3

type 'a vec =

| Vnil

| Vcons of 'a ∗ nat ∗ 'a vec

let rec rev _ m v acc =

match v with

| Vnil→ acc

| Vcons (a, n, v0)→

Obj.magic (rev n (S m) v0 (Vcons (a, m, acc)))

Fig. 1. Extraction of vector reversal from Coq to OCaml

While this definition is perfectly fine for regular lists, it suffers from two issues:

(1) The second clause of the pattern matching is not well typed in ITT as the recursive call is of
type vec � (: + S <) instead of the expected vec � (S : +<) which is only propositionally
equal to it. In ITT one would need to use a transport along said equality to make the term type
check, at the cost of polluting the produced term. In ETT the definition would be accepted as
is by reflecting that same equality, but running the translation of Winterhalter et al. [2019]
on it would also result in a transport.

(2) = and< appear in the function definition and will thus remain in the extracted program, even
if they are essentially there for typing purposes and do not intervene in the computation.
One could argue that extraction should figure it out, but bear in mind that there is nothing
preventing the user from using = and< in a meaningful way. The same goes for the natural
numbers contained in the vector (: in vcons0 : E). We show how extraction of vectors and
rev extract from the current Coq to OCaml in Figure 1. Not only are some useless natural
stored, they are also passed around. Notice also how Obj.magic is used to perform an unsafe
cast, it comes from the equality rewrite, even though it is no longer necessary.

We thus argue that instead of taking = and < to be of type nat, they should instead be of
type erased nat. The erased modality indicates that its values should be considered ghost and
cannot therefore be used in a way that is relevant for computation. It is nevertheless different
from the squash ∥nat∥ which identifies all its elements (meaning ∥nat∥ is equivalent to ⊤, the true
proposition type with exactly one inhabitant). In particular, we are still able to distinguish different
erased values such as hide 0 and hide (S 0); which is needed to write the function that takes the
head of a vector whose length it not hide 0.

To define rev we can then exploit a property of ghost types we establish that lets us safely coerce
from % D to % E as long as D and E are propositionally equal ghost values. What’s new is that this
operation is essentially invisible: it doesn’t get in the way of computation (unlike usual rewriting
with propositional equality) and it disappears at extraction, leaving us with the desired lists together
with their usual reversal. Some of this can already be achieved in F* which does support ghost
computations but to the best of our knowledge, there is no formal justification for them. This work
can be seen as the presentation of a well-behaved subset of what F* offers.3

We in fact take inspiration from this intuition coming from erasure and extraction to build the
model of our ghost type theory by adapting a translation of Pédrot and Tabareau [2018] that handles
exceptions in dependent type theory: all ghost and proof informations are erased and inaccessible
branches locally correspond to raised exceptions; then a parametricity translation ensures that
these exceptions are never actually raised.

Outline of the paper. In Section 2 we introduce GTT, a dependent type theory with a universe of
ghost types along with ghost casts. Then in Section 3 we give a model of GTT by means of three
translations accounting for the three levels of relevance (for propositions, ghost types and regular

3We include as supplementary material a file showing the vector example written in F*.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:4 Théo Winterhalter

types). We derive consistency and type former discrimination from it in Section 4. We then show
how to extend both GTT and its model with inductive types such as vectors in Section 5, allowing
us to show some concrete examples and to illustrate how one can leverage parametricity to get free
theorems. Finally we give in Section 6 a definition of GRTT, a version of GTT with ghost reflection
instead of casts and show how we can adapt (and simplify!) the proof of Oury [2005]; Winterhalter
et al. [2019] to translate GRTT to GTT.

Formalisation. Most of our results have been formalised in Coq,4 we will provide pointers next
to definitions and theorems to their counterpart in the Coq development. These pointers will
be indicated as [Module_name.def_name] to refer to def_name in the file Module_name.v. Our Coq
development relies on the Autosubst 2 library to deal with binders [Dapprich and Dudenhefner
2021; Stark et al. 2019].

2 Ghost Type Theory

Ghost type theory (GTT) is essentially a version of Martin-Löf type theory (MLTT) with a universe
of definitional proof-irrelevant propositions Prop [Gilbert et al. 2019] to which we add a hierarchy
of universes of ghost types written Ghost8 . The only way to construct a ghost type is through the
erased type former and the inhabitants of erased � are obtained from values E of type �, written
hide E . One can also eliminate erased values thanks to the eliminator reveal; of course erased
values may not be used to produce relevant information, only ghost or propositional. The names
erased, hide and reveal are taken from F* convention [Swamy et al. 2016]5 for those. Equality of
ghost expressions D, E : � is a proposition written D ≈� E , which is reflexive (thanks to its only
constructor gh-refl) and which is eliminated through the cast operator.

2.1 Syntax of GTT [GAST.term]

The syntax of GTT is mostly standard and described below. We put implicit arguments in subscript
so we can omit them easily.

Γ,Δ ::= • | Γ, Gs : �
C,D,�, � ::= G | Kind8 | Type8 | Ghost8 | Prop (8 ∈ N)

| ∀r8, 9 (G
s : �).� | _(Gs : �).C | C D

| erased � | hide C | reveal C % ?

| Reveal C ? | toRevC,? D | fromRevC,? D

| D ≈� E | gh-refl� D | cast�,D,E 4 % C

| ⊥ | exfalsos � ?

r, s ::= K | T | G | P

Several things might appear surprising so we explain them one by one.
First, notice how, beyond Ghost and Prop, we have two other universe hierarchies, Kind and

Type. The main reason for this is that for our model, we need the parametricity translation to
produce propositions, even on Type, which would be ill typed if we had Type8 : Type8+1. We thus
implement the solution of Keller and Lasson [2012]6 of separating regular types from universes
and thus having Type8 : Kind8+1 but also Prop : Kind0 and Ghost8 : Kind8+1.
A related observation is that we also have extra annotations on binders as well as on variables

and on the eliminator for the empty type ⊥. These modes have to be K,T,G or P and respectively
correspond to Kind,Type,Ghost and Prop without the universe levels. We will omit them when

4Publicly available at https://doi.org/10.5281/zenodo.11500966
5Our reveal is an eliminator rather than a projection however.
6In their paper, they call Set what we call Type, and Type what we call Kind. We believe ours is the most natural choice.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

https://doi.org/10.5281/zenodo.11500966

Dependent Ghosts Have a Reflection for Free 258:5

they are not important and can be inferred from the context in order to improve readability. As we
will see, they can indeed be inferred from typing alone (Lemma 4.4).

Finally, one might notice how we both have reveal as the eliminator for erased and Reveal. The
idea is that reveal can only be used in mode P or G since it reveals relevant content that is supposed
to be erased. There is however the need to be able to construct propositions from erased values in
order to be able to discriminate e.g. hide 0 and hide 1. As such, Reveal C ? is a proposition obtained
by eliminating C such that Reveal (hide C) ? is logically equivalent to ? C , logical equivalence that
is materialised with the pair (toRev, fromRev).
As usual, we write � → � for ∀r (Gs : �).� when � does not depend on � and when the modes

are inferable from the context. ∀ is also annotated with universe levels, we will omit them when
irrelevant or obvious from the context.Wewill also omit universe levels from universes and write e.g.
Type. We will write Sorts8 with the convention that SortK8 = Kind8 , Sort

T

8 = Type8 , Sort
G

8 = Ghost8
and SortP8 = Prop.

We write C [G := D] for the substitution of G by D in term C .

2.2 Cast-free Syntax [CastRemoval.castrm]

We want to ensure that ghost casts do not get in the way of equality. Consider for instance the
expression cast 4 (_G. nat) 0 which is to be understood as taking some ghost equality 4 : D ≈ E

to be able to cast 0 of type (_G . nat) D to type (_G . nat) E . As both sides are in fact nat, we would
like to be able to state that this is equal to 0. Even more so, we would like to conclude that
(cast 4 (_G. nat) 0) += is equal to =. The problem is not limited to cases where the cast is essentially
doing nothing, consider the cast of a _-abstraction: cast 4 (_G.� G → � G) (_(~ : � D). C), where
4 : D ≈ E , thus mapping the function of type � D → � D to � E → � E . We would like to apply this
function and have it compute, in other words we would like it be a _-abstraction itself, typically by
casting inside the body of the function to move the argument from � E to � D and the result from
� D to � E :

_(I : � E). cast 4 � C [~ := cast 4−1 � I]

where 4−1 : E ≈ D is just symmetry applied to 4 .
To achieve this we introduce an operator | − | that removes all casts from a term (or a context).

Our conversion rule is then going to compare terms for which we removed all casts, giving us the
desired equalities we mentioned above. The model is going to justify this approach. The definition
of | − | is straightforward so we only show a few examples.

| cast 4 % C | := |C | |C D | := |C | |D | |∀r8, 9 (G
s : �).� | := ∀r8, 9 (G

s : |�|).|� |

2.3 Mode of a Term [TermMode.md, Scoping.scoping]

Similarly to Gilbert et al. [2019, Section 4.5] we want to distinguish relevant and irrelevant com-
putations syntactically, and the same goes for ghost computations. Like for them, it allows us to
define conversion syntactically, while handling a priori semantic rules like proof irrelevance. For us
it also fills another role as the definition of the translations of Section 3 uses this information. This
information is essentially recorded in the context Γ as it consists of type and mode declarations
(Gs : �). We thus define a scoping judgement Γ ⊢ C :: s which says that C has mode s. The idea
is that whenever C : � : Sorts8 then C :: s. This fact will be established after we give the model
(Lemma 4.4). We additionally define a function which determines the mode of a term, syntactically.
Note that the two agree on well-scoped terms so we omit the definition of scoping altogether and
opt for the more concise md definition. We leave the context Γ implicit and instead allow ourselves
to write Gs to mean (Gs : �) ∈ Γ for some �.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:6 Théo Winterhalter

md(Gs) := s md(Sorts8) := K md(∀r8, 9 (G
s : �).�) := K md(_(Gs : �).C) := md(C)

md(C D) := md(C) md(erased �) := K md(hide C) := G

md(reveal C % ?) := if md(?) = G thenG elseP md(Reveal C ?) := K

md(toRevC,? D) := P md(fromRevC,? D) := P md(D ≈� E) := K md(gh-refl� D) := P

md(cast�,D,E 4 % C) := md(C) md(⊥) := K md(exfalsos � ?) := s

2.4 Typing Rules of GTT [Typing.typing, Typing.conversion, Typing.wf]

GTT features three kinds of judgements: ⊢ Γ (context formation), Γ ⊢ C : � (typing), and Γ ⊢ D ≡ E

(definitional equality, or conversion). Context formation and typing rules are given in Figure 2,
while an excerpt of definitional equality rules is given in Figure 3. We omit the structural and
congruence rules and instead focus on computation rules and proof irrelevance, the remaining rules
are found in the formalisation. We do not include [-rules or cumulativity for now as we believe
them to be mostly orthogonal to the problem at hand.

Universes. In order to factorise the different rules involving universes we define umax to compute
the universe level umax s r 8 9 of ∀r8, 9 (G

s : �) .� and usup for the universe of a sort. [Univ.usup,

Univ.umax]

usup P 8 := 0 usup s 8 := 8 + 1 (otherwise)

umax s P 8 9 := 0 umax P r 8 9 := 9 umax s r 8 9 := max(8, 9) (otherwise)

Ghost-specific rules. You can see how reveal is used to produce proofs (of a proposition) or
ghost values (Rule Reveal), but also how Reveal extends this to producing propositions directly
(Rule RevealP). We shall see in Section 5.2 how Reveal is useful to discriminate constructors of an
erased inductive type which is a specificity of ghost types. We highlight the rules regarding casts in
blue. Note how we cannot use cast in sort Kind as our model does not support it. The conversion
rule completely removes casts before comparing terms which subsumes any computation rule for
casts.

Scoping premises. You may have noticed that some rules feature scoping conditions. This is very
important in Rule Proof irrelevance, where we require both sides to be proofs without worrying
about their type, following what Gilbert et al. [2019, Section 4.5] do for the implementation of proof
irrelevance in Coq. What may appear more surprising is that other rules feature scoping premises.
The conversion rule (Rule Conv) essentially requires the new type to be compatible with the mode
of the term being converted. We conjecture that this extra requirement is not necessary and it
was proven formally in Coq for strict propositions [Leray 2022]. Computation rules (Rules Beta
and RevealHide) also require terms to be well scoped. This is a limitation due to the way we build
our model as we need to know that conversion preserves scoping (Lemma 2.4). They should not
be necessary for an implementation as reduction, contrarily to conversion, does preserve scoping.
Finally, note that the rules we consider in the formalisation actually feature many more such
premises that we only show later are admissible (in the Admissible module, Lemmas 2.6 and 4.4)
after having built the model and assuming injectivity of ∀ holds for our conversion. We chose to
present the simpler rules for the sake of clarity.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:7

WfNil

⊢ •

WfCons

⊢ Γ Γ ⊢ � : Sorts

⊢ Γ, Gs : �

Var

(Gs : �) ∈ Γ

Γ ⊢ G : �

Conv

Γ ⊢ C :: s Γ ⊢ C : � Γ ⊢ |�| ≡ |� | Γ ⊢ � : Sorts

Γ ⊢ C : �

Sort

Γ ⊢ Sorts8 : Kindusup s 8

Pi

Γ ⊢ � : Sorts8 Γ, Gs : � ⊢ � : Sortr9

Γ ⊢ ∀r8, 9 (G
s : �).� : Sortrumax s r 8 9

Lam

Γ ⊢ � : Sorts8 Γ, Gs : � ⊢ � : Sortr9 Γ, Gs : � ⊢ C : �

Γ ⊢ _(Gs : �).C : ∀r8, 9 (G
s : �).�

App

Γ ⊢ C : ∀r (Gs : �).� Γ ⊢ D : �

Γ ⊢ C D : � [G := D]

Bot

Γ ⊢ ⊥ : Prop

Exfalso

Γ ⊢ � : Sorts Γ ⊢ ? : ⊥

Γ ⊢ exfalsos � ? : �

Erased

Γ ⊢ � : Type8

Γ ⊢ erased � : Ghost8

Hide

Γ ⊢ � : Type Γ ⊢ C : �

Γ ⊢ hide C : erased �

Reveal

Γ ⊢ C : erased � Γ ⊢ % : erased � → Sorts Γ ⊢ ? : ∀sGT. % (hide G) s ∈ {P,G}

Γ ⊢ reveal C % ? : % C

RevealP

Γ ⊢ C : erased � Γ ⊢ ? : � → Prop

Γ ⊢ Reveal C ? : Prop

ToRev

Γ ⊢ C : � Γ ⊢ ? : � → Prop Γ ⊢ D : ? C

Γ ⊢ toRevC,? D : Reveal (hide C) ?

FromRev

Γ ⊢ C : � Γ ⊢ ? : � → Prop Γ ⊢ D : Reveal (hide C) ?

Γ ⊢ fromRevC,? D : ? C

GhEq

Γ ⊢ � : Ghost Γ ⊢ D : � Γ ⊢ E : �

Γ ⊢ D ≈� E : Prop

GhRefl

Γ ⊢ � : Ghost Γ ⊢ D : �

Γ ⊢ gh-refl� D : D ≈� D

Cast

Γ ⊢ 4 : D ≈� E Γ ⊢ % : � → Sorts Γ ⊢ C : % D s ≠ K

Γ ⊢ cast�,D,E 4 % C : % E

Fig. 2. Typing rules of GTT

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:8 Théo Winterhalter

Proof irrelevance

Γ ⊢ ? :: P Γ ⊢ @ :: P

Γ ⊢ ? ≡ @

Beta

Γ ⊢ � :: K Γ ⊢ C :: r Γ ⊢ D :: s

Γ ⊢ (_(Gs : �).C) D ≡ C [G := D]

RevealHide

Γ ⊢ C :: T Γ ⊢ % :: K Γ ⊢ ? :: s s ∈ {P,G}

Γ ⊢ reveal(hide C, %, ?) ≡ ? C

Fig. 3. Conversion for GTT (excerpt)

2.5 Preliminary Results

Without the model we can already establish various lemmas, in particular lemmas that connect
semantic information (typing and conversion) and syntactic information (modes).

Lemma 2.1. [BasicMetaTheory.scoping_subst] Substitution preserves scoping.

If Γ, Gs : � ⊢ C :: r and Γ ⊢ D :: s then Γ ⊢ C [G := D] : r.

Lemma 2.2. [BasicMetaTheory.scoping_castrm] Cast removal preserves scoping.

If Γ ⊢ C : s then Γ ⊢ |C | : s.

Lemma 2.3. [BasicMetaTheory.castrm_subst] Cast removal commutes with substitution.

|C [G := D] | =U |C | [G := |D |].

Lemma 2.4. [BasicMetaTheory.conv_md] Conversion entails mode equality.

If Γ ⊢ D ≡ E then mdΓ (D) = mdΓ (E).

Lemma 2.5 (Substitution). [BasicMetaTheory.typing_subst] If Γ, Gs : � ⊢ C : � and Γ ⊢ D : �
with Γ ⊢ D :: s then we have Γ ⊢ C [G := D] : �[G := D].

We also show a variant of validity (sometimes called presupposition) that states that types are
themselves well typed. We additionally conclude that the term is well scoped. Note how this lemma
requires the context to be well formed as well since GTT typing derivations do not contain context
formation assumptions.

Lemma 2.6 (Validity). [BasicMetaTheory.validity] If ⊢ Γ and Γ ⊢ C : � then there exists a level 8

and mode s such that Γ ⊢ � : Sorts8 and Γ ⊢ C :: s.

3 Model of GTT

The intuition behind ghost data is that it can be safely erased from programs without affecting
the outcome of computation. We make this intuition formal by defining an erasure procedure that
removes all ghost data, as well as proofs. There is but one caveat: ghost information (or proofs) can
be used to discard inaccessible execution branches by means of exfalso. In programming languages
such as OCaml this is often handled using exceptions or the assert false idiom.
We thus build a syntactical model [Boulier et al. 2017] of GTT by adapting the proof of Pédrot

and Tabareau [2018] giving a model to a type theory with exceptions. Pédrot and Tabareau perform
two translations: one that maps all types to pointed types (to interpret the exceptions); together
with a parametricity translation that shows the first translation produces reasonable terms, i.e.
terms that do not raise exceptions at top-level. We follow them, introducing erasure (Section 3.1)
and parametricity (Section 3.3) but also a third translation in-between to deal with ghost values we
call revival (Section 3.2).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:9

Target. [CCAST.cterm, CTyping.ctyping] The target of these translations is a now standard variant
of MLTT with a universe of definitional proof-irrelevant propositions and inductive types. We take
the presentation of Section 4.5 of the theory presented by Gilbert et al. [2019], meaning one can
think of the target either as Coq or as Agda with cumulativity. Essentially, it is a variant of GTT
presented in Section 2 with a few differences: (1) Kind and Type are collapsed and there is neither
a Ghost universe nor the associated constructions; (2) annotations are limited to P and T and they
correspond to the Relevant and Irrelevant annotations of Gilbert et al. [2019]; (3) extra inductive
types are defined, we will detail them as we need them.

3.1 Erasure [Erasure.erase_term]

Erasure removes all proofs (of propositions) and ghost values from terms while preserving typing.
Essentially a term C : � is erased to [C]Y : ⟦�⟧Y and we have a distinguished inhabitant for each
translated type [�]∅ : ⟦�⟧Y corresponding to the exception.
To perform the translation, we require two inductive types in the target: the unit type with

inhabitant () : unit; and a data type for representing universes ty8 for each 8 . ty has one constructor
to embed pointed types tyval : ∀(� : Type8) (0 : �). ty8 , and an error constructor ty∅ : ty8 to
make ty8 itself a pointed type. Using its eliminator we can define two projections El : ty8 → Type8
and Err : ∀() : ty8). El8) such that we have the following computation rules (following the
construction of Pédrot and Tabareau):

El (tyval � 0) ≡ � Err (tyval � 0) ≡ 0 El ty∅ ≡ unit Err ty∅ ≡ ()

In Figure 4, we syntactically define erasure with the idea that it should only operate on relevant
terms (whose mode is T or K). In order to handle partiality of the function we return a dummy
term ■ in the cases we wish to discard.7 Herein we write K/T to mean T or K, similarly for G/P
and so on. We also write Cs to mean that we match on C such that md(C) = s to avoid cluttering the
definition. Note that erasure actually depends on the context, but we omit it for conciseness.
Note that the universe of propositions and ghost types as well as propositions and ghost types

themselves are not irrelevant so they need to have an erasure as well. Since we don’t care about the
content of propositions, it is not necessary to erase them to types. We thus erase Prop to unit and
propositions to (). It is then easy to provide erasure for Reveal as we can simply use (). In contrast,
we do preserve ghost types even if their values are erased. For them, erasure essentially recovers
the associated relevant type, but removing dependencies on ghost values since these values are
removed from the context. Also notice the translation of exfalso which may not use the proof of ⊥
given it is erased so instead raises an exception, declaring that the branch is inaccessible.

We now show that erasure is sound through the following lemmas: two syntactical properties of
erasure in relation with substitution and cast removal; and the fact that it preserves typing.

Lemma 3.1. [Erasure.erase_subst] Erasure commutes with substitution: assuming Γ ⊢ D :: s,

• [C [G := D]]Y =U [C]Y [G := [D]Y], when s ∈ {T,K}.
• [C [G := D]]Y =U [C]Y , when s ∈ {P,G}.

Lemma 3.2. [Erasure.erase_castrm] Erasure ignores casts: [|D |]Y =U [D]Y .

Lemma 3.3. [Erasure.erase_typing, Erasure.erase_conv, Erasure.erase_context]

• If ⊢ Γ then ⊢ ⟦Γ⟧Y .
• If Γ ⊢ D ≡ E then ⟦Γ⟧Y ⊢ [D]Y ≡ [E]Y .
• If Γ ⊢ C : � and md(C) ∈ {T,K} then ⟦Γ⟧Y ⊢ [C]Y : ⟦�⟧Y .

7In the formalisation we have chosen () but any closed term would have worked.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:10 Théo Winterhalter

[GK/T]Y := G

[Prop]Y := tyval unit ()
[Sorts8]Y := tyval ty8 ty∅
[∀K/T/G (GK/T : �).�]Y := tyval (∀(G : ⟦�⟧Y).⟦�⟧Y) (_G.[�]∅)
[∀G (GG : �).�]Y := tyval (⟦�⟧Y → ⟦�⟧Y) (__.[�]∅)
[∀P (Gs : �).�]Y := ()
[∀r (Gs : �).�]Y := [�]Y
[_(GK/T : �).CK/T]Y := _(G : ⟦�⟧Y).[C]Y
[_(GG/P : �).CK/T]Y := [C]Y
[CK/T DK/T]Y := [C]Y [D]Y
[CK/T DG/P]Y := [C]Y
[erased �]Y := [�]Y
[Reveal C ?]Y := ()
[D ≈� E]Y := ()
[cast�,D,E (4, %, C)]Y := [C]Y
[⊥]Y := ()
[exfalsoK/T � ?]Y := [�]∅
[CG/P]Y := ■

⟦�⟧Y := El [�]Y
[�]∅ := Err [�]Y
⟦•⟧Y := •
⟦Γ, GK/T : �⟧Y := ⟦Γ⟧Y , G

T : ⟦�⟧Y
⟦Γ, GG/P : �⟧Y := ⟦Γ⟧Y

Fig. 4. Erasure translation

A direct corollary is that whenever Γ ⊢ � : SortK/T/G and md(�) = K then ⟦Γ⟧Y ⊢ [�]∅ : ⟦�⟧Y ;
another is that � ≡ � implies [�]∅ ≡ [�]∅ . We use these facts in the proof.

Proof. The first item is a corollary of the two others that we both prove by induction on the
derivation, using Lemmas 3.2 and 3.3. Note that we make use of the fact that conversion is untyped
as well in the target so that ■ ≡ ■ holds. For instance to show that [reveal(hide C, %, ?)]Y ≡ [? C]Y
holds, we remark that both sides have mode P or G so we know both sides erase to ■. For the
congruence rules of conversion, Lemma 2.4 is useful to make sure both sides are indeed erased in
the same way so that the induction hypotheses are enough to conclude. □

3.2 Revival [Revival.revive_term]

Erasure preserves ghost types to some extent but not their inhabitants, and the parametricity
translation will need to recover this information. We thus need to consider an extra translation we
call revival to echo resurrection of irrelevant variables in a context as introduced by Pfenning [2001]:
we revive values that have been erased. We define ⟦−⟧E in Figure 5 with the idea that whenever
Γ ⊢ C : � with md(C) = G then ⟦Γ⟧E ⊢ ⟦C⟧E : ⟦�⟧Y (notice the type is the one from erasure).
We now prove soundness of revival. We first make an observation about context that says that

when Γ ⊢ C : � then [C]Y still makes sense in ⟦Γ⟧E (i.e. is implicitly lifted to it). The rest is similar to
what we did for erasure.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:11

⟦GG⟧E := G

⟦_(GK/T/G : �).CG⟧E := _(G : ⟦�⟧Y).⟦C⟧E
⟦_(GP : �).CG⟧E := ⟦C⟧E
⟦CG DK/T⟧E := ⟦C⟧E [D]Y
⟦CG DG⟧E := ⟦C⟧E ⟦D⟧E
⟦CG DP⟧E := ⟦C⟧E
⟦hide C⟧E := [C]Y
⟦reveal C % ?G⟧E := ⟦?⟧E ⟦C⟧E
⟦cast�,D,E 4 % C⟧E := ⟦C⟧E
⟦exfalsoG � ?⟧E := [�]∅
⟦CK/T/P⟧E := ■

⟦Γ, GK/T/G : �⟧E := ⟦Γ⟧E, G
T : ⟦�⟧Y

⟦Γ, GP : �⟧E := ⟦Γ⟧E

Fig. 5. Revival translation

Γ ⊢ � : Type

Γ ⊢ ∥�∥ : Prop

Γ ⊢ � : Type Γ ⊢ C : �

Γ ⊢ sq C : ∥�∥

Γ ⊢ 4 : ∥�∥ Γ ⊢ % : ∥�∥ → Prop Γ ⊢ C : ∀G . % (sq G)

Γ ⊢ sq-elim 4 % C : % 4

Fig. 6. Propositional truncation (squash) in the target

Lemma 3.4. [Revival.type_to_rev] ⟦Γ⟧Y is a sub-context of ⟦Γ⟧E

Lemma 3.5. [Revival.revive_subst] Revival commutes with substitution: assuming Γ ⊢ D :: s,

• ⟦C [G := D]⟧E =U ⟦C⟧E [G := [D]Y], when s ∈ {T,K}.
• ⟦C [G := D]⟧E =U ⟦C⟧E [G := ⟦D⟧E], when s = G.

• ⟦C [G := D]⟧E =U ⟦C⟧E , when s = P.

Lemma 3.6. [Revival.revive_castrm] Revival ignores casts: ⟦|D |⟧E =U ⟦D⟧E .

Lemma 3.7. [Revival.revive_typing, Revival.revive_conv, Revival.revive_context]

• If ⊢ Γ then ⊢ ⟦Γ⟧E .
• If Γ ⊢ D ≡ E then ⟦Γ⟧E ⊢ ⟦D⟧E ≡ ⟦E⟧E .
• If Γ ⊢ C : � and md(C) = G then ⟦Γ⟧E ⊢ ⟦C⟧E : ⟦�⟧Y .

3.3 Parametricity [Param.param_term]

We are now ready to perform the parametricity translation. We follow Keller and Lasson [2012]—
hence the use of Kind—and interpret types by propositional predicates. Propositions are also
interpreted as propositions so in particular D ≈ E must be interpreted by a proposition. Having
propositional equality in a definitional proof-irrelevant Prop is a notorious problem [Abel and
Coquand 2020] and while there are options to circumvent the issue [Pujet and Tabareau 2022,
2023], we decide instead to simply squash an equality type that might live in Type. To that end we

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:12 Théo Winterhalter

Γ ⊢ � : Type8 Γ ⊢ D : � Γ ⊢ E : �

Γ ⊢ D =� E : Type8

Γ ⊢ � : Type Γ ⊢ D : �

Γ ⊢ refl� D : D =� D

Γ ⊢ 4 : D =� E Γ ⊢ % : ∀(G : �). D =� G → Sorts Γ ⊢ C : % D (refl� D)

Γ ⊢ J 4 % C : % E 4

J (refl� D) % C ≡ C

Fig. 7. Propositional equality in the target

assume the target theory features propositional truncation (or squash) described in Figure 6, and
(proof-relevant) equality, given in Figure 7.

The parametricity translation ⟦−⟧P is given in Figure 8 except for the translation of casts which
is a bit more involved and which we will now describe. We refer the reader to the formalisation
for the full definition. ⟦cast�,D,E 4 % C⟧P depends on the mode of C so we will only consider the
case when it is T, the other cases are similar. Let us start by computing the expected type for
⟦cast 4 % C⟧P :

⟦% E⟧P [cast 4 % C]Y = ⟦%⟧P ⟦E⟧E ⟦E⟧P [cast 4 % C]Y

= ⟦%⟧P ⟦E⟧E ⟦E⟧P [C]Y

We also compute the type of ⟦%⟧P :

⟦� → Type⟧P [%]Y = ∀(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦Type⟧P [%]Y

= ∀(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦%⟧Y → Prop

This confirms that ⟦%⟧P ⟦E⟧E ⟦E⟧P [C]Y is a proposition so we can prove it by eliminating the
squash from ⟦4⟧P which is of type ∥⟦D⟧E = ⟦E⟧E ∥, and then use the J eliminator to also rewrite
the equality ⟦D⟧E = ⟦E⟧E in the type of ⟦C⟧P which is ⟦%⟧P ⟦D⟧E ⟦D⟧P [C]Y . We can swap ⟦D⟧P

for ⟦E⟧P because after rewriting they are both proofs of the same proposition: ⟦�⟧P ⟦E⟧E .
Soundness of parametricity is very similar to that of erasure and revival.

Lemma 3.8. [Param.typing_rev_sub_param] ⟦Γ⟧E is a sub-context of ⟦Γ⟧P .

Combined with Lemma 3.4, ⟦Γ⟧Y is thus also a sub-context of ⟦Γ⟧P . [Param.typing_er_sub_param]

Lemma 3.9. [Param.param_subst] Parametricity commutes with substitution: assuming Γ ⊢ D :: s

• If s ∈ {K,T} then ⟦C [G := D]⟧P =U ⟦C⟧P [G := [D]Y , G := ⟦D⟧P].
• If s = G then ⟦C [G := D]⟧P =U ⟦C⟧P [G := ⟦D⟧E, G := ⟦D⟧P].
• If s = P then ⟦C [G := D]⟧P =U ⟦C⟧P [G := ⟦D⟧P].

Similarly to erasure and revival, we show that when two terms are the same up to casts, then
their parametricity translations are equal. Before, we proved the translations were syntactically
equal, this time we only prove definitional equality as we need to exploit proof irrelevance. Before
we do that we thus establish that the parametricity translation produces terms of the right modes.

Lemma 3.10. [Param.param_scoping] Parametricity produces consistent modes:

• If Γ ⊢ C :: K then ⟦Γ⟧P ⊢ C :: T.
• If Γ ⊢ C :: s with s ∈ {P,G,T} then ⟦Γ⟧P ⊢ C :: P.

Lemma 3.11. [Param.param_castrm] Parametricity ignores casts: if Γ ⊢ C :: s then ⟦|C |⟧P ≡ ⟦C⟧P .

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:13

⟦GK/T/G⟧P := G

⟦GP⟧P := G

⟦Kind8⟧P := _�. El � → Type8
⟦SortT/G8 ⟧P := _�. El � → Prop
⟦Prop⟧P := __. Prop
⟦∀K/T (GK/T : �).�⟧P := _5 . ∀(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦�⟧P (5 G)
⟦∀K/T (GG : �).�⟧P := _5 . ∀(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦�⟧P 5

⟦∀K/T (GP : �) .�⟧P := _5 . ⟦�⟧P → ⟦�⟧P 5

⟦∀G (GK/T/G : �).�⟧P := _5 . ∀(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦�⟧P (5 G)
⟦∀G (GP : �).�⟧P := _5 . ∀(G : ⟦�⟧P). ⟦�⟧P 5

⟦∀P (GK/T/G : �).�⟧P := ∀(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦�⟧P

⟦∀P (GP : �).�⟧P := ∀(G : ⟦�⟧P). ⟦�⟧P

⟦_(GK/T/G : �).C⟧P := _(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦C⟧P

⟦_(GP : �).C⟧P := _(G : ⟦�⟧P). ⟦C⟧P

⟦C DK/T⟧P := ⟦C⟧P [D]Y ⟦D⟧P

⟦C DG⟧P := ⟦C⟧P ⟦D⟧E ⟦D⟧P

⟦C DP⟧P := ⟦C⟧P ⟦D⟧P

⟦erased �K⟧P := ⟦�⟧P

⟦hide CT⟧P := ⟦C⟧P

⟦reveal C % ?G/P⟧P := ⟦?⟧P ⟦C⟧E ⟦C⟧P

⟦Reveal C ?K⟧P := ⟦?⟧P ⟦C⟧E ⟦C⟧P

⟦toRevC,? D⟧P := ⟦D⟧P

⟦fromRevC,? D⟧P := ⟦D⟧P

⟦D ≈� E⟧P := ∥⟦D⟧E =⟦�⟧Y ⟦E⟧E ∥
⟦gh-refl� D⟧P := sq (refl⟦�⟧Y ⟦D⟧E)
⟦cast�,D,E 4 % C⟧P := (explained in the text, given in Coq)
⟦⊥⟧P := ⊥
⟦exfalsoK/T/G � ?⟧P := exfalso (⟦�⟧P [�]∅) ⟦?⟧P

⟦exfalsoP � ?⟧P := exfalso ⟦�⟧P ⟦?⟧P

⟦_⟧P := ■

⟦•⟧P := •

⟦Γ, GK : �⟧P := ⟦Γ⟧P , G
T : ⟦�⟧Y , G

T : ⟦�⟧P GT

⟦Γ, GT/G : �⟧P := ⟦Γ⟧P , G
T : ⟦�⟧Y , G

P : ⟦�⟧P GT

⟦Γ, GP : �⟧P := ⟦Γ⟧P , G
P : ⟦�⟧P

Fig. 8. Parametricity translation

Proof. The proof essentially makes repeated use of congruence rules of conversion and uses
proof irrelevance to get rid of the translation of casts. □

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:14 Théo Winterhalter

Lemma 3.12. [Param.param_typing, Param.param_conv, Param.param_context]

• If ⊢ Γ then ⊢ ⟦Γ⟧P .

• If Γ ⊢ D ≡ E : � then ⟦Γ⟧P ⊢ ⟦D⟧P ≡ ⟦E⟧P .

• If md(C) ∈ {K,T} and Γ ⊢ C : � then ⟦Γ⟧P ⊢ ⟦C⟧P : ⟦�⟧P [C]Y .
• If md(C) = G and Γ ⊢ C : � then ⟦Γ⟧P ⊢ ⟦C⟧P : ⟦�⟧P ⟦C⟧E .
• If md(C) = P and Γ ⊢ C : � then ⟦Γ⟧P ⊢ ⟦C⟧P : ⟦�⟧P .

4 Meta-theoretical Consequences of the Model

As we explained before, our target is standard enough to be a subset of Coq or Agda with cumula-
tivity. As such, we argue it is safe to assume it is consistent and enjoys various properties such
as type former discrimination (two different type formers are never convertible) or injectivity of
constructors. Assuming this, we can lift certain properties back to GTT thanks to our translations.

Mode injectivity. [Model.sort_mode_inj] Before we prove relative consistency, we are going to
prove that Γ ⊢ Sorts8 ≡ Sortr9 entails s = r which combined with Lemma 2.6 will ensure e.g. that

a proof of ⊥ is indeed in mode P. To do this we instrument erasure translation of sorts so that it
carries extra information about the mode which it carried before. We do so by adding one extra
argument to tyval which is essentially a mode but which is ignored by El and Err so it doesn’t
affect the proof in any way. Assuming injectivity for the tyval constructor, we are able to deduce
the desired property.

Theorem 4.1 (Consistency). [Model.relative_consistency] GTT is consistent.

Proof. Assuming there is a proof of ⊥ in the empty context GTT, we then translate ⊢ ? : ⊥ to
⊢ ⟦?⟧P : ⟦⊥⟧P and since ⟦⊥⟧P is ⊥ we get a contradiction in the target. □

Another feature which we advocated for in the introduction was the ability to discriminate type
formers, and we can use the model to lift this property back to GTT. It in fact generalises the
property we showed about sorts. Note that beyond sorts, we have not formalised this theorem
further due to the quadratic number of cases we would have to consider.

Theorem 4.2 (Discrimination of type formers). GTT can discriminate type formers. Concretely

we can disprove conversions involving different type formers at the head, such as:

• ∀r (Gs : �).� . Type
• Kind8 . Type8
• Type8 . Ghost8
• Type8 . Prop
• - . Type8
• . . .

Proof. The idea is to remark that such type formers are distinguished in the model, either by
using the erasure (Lemma 3.3) or the parametricity (Lemma 3.12) translations, depending on the
case. Let us look precisely at some representative cases.
Let us start with ∀K (GT : �).�. Assuming ∀K (GT : �).� ≡ Type, by applying erasure, we get

tyval (∀(G : ⟦�⟧Y).⟦�⟧Y) (_G .[�]∅) ≡ tyval ty8 ty∅

then by congruence of El and its computation rules we get

∀(G : ⟦�⟧Y).⟦�⟧Y ≡ ty8

which is not possible because the target discriminates type formers.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:15

Now, for ∀K (GG : �).�, the above does not work since it is not erased to a dependent function
type. There we rely instead on parametricity. So assuming ∀K (GG : �).� ≡ Type, we get

_5 . ∀(G : ⟦�⟧Y) (G : ⟦�⟧P G). ⟦�⟧P 5 ≡ _�. El � → Prop

By weakening, we can add some variable 5 : ⟦�⟧Y , and use congruence of application and V-
reduction to obtain

∀(G : ⟦�⟧Y) (G : ⟦�⟧P G) . ⟦�⟧P 5 ≡ El 5 → Prop

which the target also discriminates (two function types against a function type with codomain
Prop). Notice how the two sides are not even of the same type to begin with so the proof also
exploits the fact that conversion is untyped. □

We argued already that this property is useful in practice: it allows for early returns in conversion
algorithms and it helps avoiding cluttering user feedback with nonsensical error messages.

Coherence of modes. One last interesting property we wish to prove is that whenever C : � and
� : Sorts then C :: s. To establish this property we however need to assume injectivity of ∀ in the

source. Unfortunately, we are unable to derive this property from the model, and so it would require
a different approach to derive (such as characterising conversion with a reduction relation that is
shown confluent, or by using logical relations). We believe our conversion is close enough to that
of Gilbert et al. [2019] that we can safely assume it and we leave a formal proof to future work. We
in fact need only assume the following.

Conjecture 4.3. If Γ ⊢ ∀r8, 9 (G
s : �).� ≡ ∀r8, 9 (G

s : �′).�′ then Γ, Gs : � ⊢ � ≡ �′.

This assumption in turn lets us conclude a form of uniqueness of type: when Γ ⊢ C : � and
Γ ⊢ C : � then � and � are convertible up to universe levels and casts. We can then conclude
our theorem which justifies the simplified rules presented in the paper, compared to the rules we
formalised.

Lemma 4.4 (Mode coherence). [Model.mode_coherence]
If ⊢ Γ and Γ ⊢ C : � and Γ ⊢ � : Sorts then Γ ⊢ C :: s.

As we shall see in Section 5.1, the model also lets us derive free theorems as is usual with
parametricity models.

5 Extending GTT with Inductive Types

As we advertised in the introduction, ghost types really shine when used as indices to inductive
types. We will thus show how to extend GTT and the translations of Section 3 to natural numbers
(Section 5.2) and vectors (Section 5.3). We will however start with booleans in order to showcase
how we can derive free theorems (Section 5.1). All three cases have been formalised.

We leave a more general treatment of inductive types for future work, but we have tried to make
our treatment as generic as possible. We will see however that there are some surprises along the
way, in the case of vectors, and it would be interesting to see how general this can be. It is also
important to note that the inductive types we consider in GTT cannot always be eliminated to
sort Kind—in other words, they might not support large elimination. This is a limitation coming
from the fact that the parametricity translation produces propositions and that proofs cannot in
general be eliminated to produce relevant information which is expected from the translation of
Kind. Keller and Lasson [2012, Section 4.4] show how to circumvent this problem for so-called
small inductive types, i.e. inductive types that do not store types. Booleans, natural numbers and
vectors are small inductive types so we can recover large elimination for them. We only do it for
booleans which is enough for the sake of our examples.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:16 Théo Winterhalter

Inductive B :=

| true

| false.

Inductive B• :=

| true•

| false•

| B∅ .

Inductive BP : B• → SProp :=

| trueP : BP true•

| falseP : BP false•.

Fig. 9. Booleans and their translations

5.1 A Free Theorem for Booleans

We first show how to translate booleans. Given that they are very basic we can use them to illustrate
how we derive free theorems with one example: functions of type erased bool → bool must be
constant. In order to ease reading, we present the definition of booleans, their erasure and their
parametricity predicate directly in Coq syntax in in Figure 9. The idea is pretty straightforward: B is
erased to tyval B• B∅ while true and false are erased to true• and false•. Then the BP predicate
is only verified by exception-free booleans, i.e. those obtained from true and false.

5.1.1 Translating the eliminator. The main difficulty is translating the eliminator, especially for the
parametricity translation of large elimination. We essentially follow Pédrot and Tabareau [2018]
and Keller and Lasson [2012] in order to translate the eliminator by using B• and BP . The rules
for the eliminator are given in Figure 10. We will focus on the cases s = T and s = K and refer
the reader to the formalisation for the full details. Using Coq syntax, the erasure translation of
bool-elimK/T is given by the following term which is essentially the eliminator of B•.

Definition B_elim• (P : B• → ty) (t : El (P true•)) (f : El (P false•)) (b : B•) : El (P b) :=

match b with

| true• ⇒ t

| false• ⇒ f

| B∅ ⇒ Err (P B∅)

end.

We can thus easily verify the expected computation rules hold.

B_elim• P t f true• ≡ t

B_elim• P t f false• ≡ f

The parametricity translation for r = T is given by the following definition. And it exploits the
computation rules given above.

Definition B_elimP P (PP : ∀ b (bP : BP b), El (P b)→ SProp)

t (tP : PP true• trueP t) f (fP : PP false• falseP f) b (bP : BP b) : PP b bP (B_elim• P t f b) :=

match bP with trueP ⇒ tP | falseP ⇒ fP end.

Now, when r = K the translation is not so simple. Indeed, we now have PP : ∀ b (bP : BP b), El (P b)

→ Type, so we can no longer perform a case analysis on bPwhich inhabits a proposition. Instead, we

can do a case analysis on b, generalising over bP : BP b. When b ≡ true• we can thus exploit proof
irrelevance to obtain that bP ≡ trueP so that tP : PP true• bP t. We proceed similarly for false•.
Finally, for the B∅ case, we conclude using a simple inversion that BP B∅ is uninhabited and thus
that the goal is vacuously true.

Definition B_elimK
P P (PP : ∀ b bP, El (P b) → Type) t tP f fP b :

∀ (bP : BP b), PP b bP (B_elim• P t f b) :=

match b with

| true• ⇒ _ (bP : BP true•), tP

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:17

Γ ⊢ 1 : bool Γ ⊢ % : bool → Sortr Γ ⊢ C : % true Γ ⊢ 5 : % false

Γ ⊢ bool-elimr 1 % C 5 : % 1

Γ ⊢ C :: r

Γ ⊢ bool-elimr true % C 5 ≡ C

Γ ⊢ 5 :: r

Γ ⊢ bool-elimr false % C 5 ≡ 5

Fig. 10. Eliminator for booleans

| false• ⇒ _ (bP : BP false•), fP

| B∅ ⇒ _ (bP : BP B∅), ⊥_elim (B
P_inv bP)

end.

5.1.2 Free theorem. We now focus on the free theorem. We want to show that our models supports
the following proposition: ∀(5 : erased bool → bool), 5 (hide true) = 5 (hide false). Because
we did not formalise equality, we resort to its impredicative encoding and show we support the
following proposition instead:

∀(5 : erased bool → bool) (% : bool → Prop), % (5 (hide true)) → % (5 (hide false)) .

Since this is a proposition, we don’t need to inhabit its erasure, the only thing we need is show
its parametricity is inhabited in the model. In Coq syntax, the theorem we have to prove is the
following:

∀ (fe : B•) (fP : ∀ (b : B•) (bP : BP b), BP fe) (P : B• → unit) (PP : ∀ (b : B•) (bP : BP b), SProp),

PP fe (fP true• trueP)→ PP fe (fP false• falseP).

which is proven trivially [FreeTheorem.constant_free_theorem] by exploiting proof irrelevance.

5.2 Natural Numbers

A second example is natural numbers which is also rather straightforward. With them we also see
how one can lift usual results on natural numbers to their erased counterparts without having to
reprove them. We give the Coq inductive definition of N and its translations in Figure 11.

5.2.1 Translating the eliminator. As for booleans, the only slight difficulty is translating the elimi-
nator. This time we are going to give more details. First, we give the typing and computation rules
for the eliminator in Figure 12. They are rather standard except for the scoping conditions; their
presence ensures that the parametricity translation of both sides are proof of propositions, letting
us use proof irrelevance to model the computation rules for the parametricity translation.
For erasure, we only have to consider the case where r = T as it’s the only relevant case.8 We

build the following term using the induction principle of N• (it is mostly a reformulation of it).

N_elim• : ∀ (P : N• → ty) (z : El (P O•)) (s : ∀ (n : N•), El (P n) → El (P (S• n))) (n : N•), El (P n).

We then verify it interprets the conversion rules of nat-elim:

N_elim• P z s O• ≡ z

N_elim• P z s (S• n) ≡ s n (N_elim• P z s n)

For revival, similarly we only have one case to consider: this time r = G. The type we have to
inhabit is exactly the same so we simply reuse N_elim•. The equations are obviously also verified.

8Remember, we disallow elimination to Kind.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:18 Théo Winterhalter

Inductive N :=

| O

| S (n : N).

Inductive N• :=

| O•

| S• (n : N•)

| N∅ .

Inductive NP : N• → SProp :=

| OP : NP O•

| SP : ∀ n, NP n → NP (S• n).

Fig. 11. Natural numbers and their translations

Γ ⊢ = : nat Γ ⊢ % : nat → Sortr

Γ ⊢ I : % 0 Γ ⊢ B : ∀r (GT : nat). % G → % (S G) r ≠ K

Γ ⊢ nat-elimr = % I B : % =

Γ ⊢ % :: K Γ ⊢ I :: r
Γ ⊢ B :: r r ≠ K

Γ ⊢ nat-elimr 0 % I B ≡ I

Γ ⊢ = :: T Γ ⊢ % :: K Γ ⊢ I :: r Γ ⊢ B :: r r ≠ K

Γ ⊢ nat-elimr (S =) % I B ≡ B = (nat-elimr = % I B)

Fig. 12. Eliminator for natural numbers

For parametricity, we can again provide the same translation for both the T and G cases, the
only difference being that one uses erasure of the branches [I]Y and [B]Y , while the other one uses
revival ⟦I⟧E and ⟦B⟧E . The P case is similar but simpler. The properties we need to prove are the
following, they follow by a simple induction on the parametricity proof of type NP n.

∀ (Pe : N• → ty) (PP : ∀ n (nP : NP n), El (Pe n)→ SProp)

(ze : El (Pe O•)) (zP : PP O• OP ze)

(se : ∀ n, El (Pe n)→ El (Pe (S• n)))

(sP : ∀ n nP (h : El (Pe n)) (hP : PP n nP h), PP (S• n) (SP n nP) (se n h))

n (nP : NP n),

PP n nP (N_elim• Pe ze se n).

∀ (Pe : N• → unit) (PP : ∀ n (nP : NP n), SProp)

(z : PP O• OP)

(s : ∀ n nP (h : PP n nP), PP (S• n) (SP n nP))

n (nP : NP n),

PP n nP.

As mentioned before, we need not worry about the computation rules since these are strict propo-
sitions which enjoy definitional proof irrelevance.
This concludes the proof that the model supports natural numbers. In the formalisation we

assume that the constants we have proven in Coq (they are found in the TransNat module) exist in
the target and we use them to formalise the proof.

Before we move on to vectors, we will show a few examples that will prove useful later, and that
already illustrate what can be achieved with erased natural numbers.

5.2.2 Erased successor. We can define a wrapper around the successor function for erased natural
numbers by using reveal.

gS : erased nat → erased nat
gS := _=. reveal = (__. erased nat) (_<. hide (S <))

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:19

If we were to use a style closer to pattern matching we would directly write:

gS : erased nat → erased nat
gS (hide <) := hide (S <)

In fact, we have reason to believe that in practice hide and reveal can be inferred—as is already the
case in F*—and a user would then write the following.

gS : erased nat → erased nat
gS = := S =

In the same fashion we could define addition for erased natural numbers by lifting regular
addition and lift the usual properties by the appropriate uses of reveal. Once again, F* demonstrates
that it works in practice as the SMT solver can leverage equational reasoning on natural numbers
to rewrite in erased natural numbers seamlessly.

5.2.3 Discriminating erased natural numbers. This example shows the power of ghost types: even
though they cannot be used for computation, one can still distinguish values, something which
cannot be done in Prop. The key is to use Reveal to define a discrimination proposition discrP such
that discrP (hide 0) is provable but discrP (hide (S =)) is equivalent to ⊥.

discrP : erased nat → Prop
discrP := _=. Reveal = nat-discrP

Herein nat-discrP is such a discriminator for natural numbers. We would typically define it by
using large elimination on nat as follows:

“ nat-discrP G := nat-elim G (__. Prop) ⊤ (__ _. ⊥)”

but since we have not formalised large elimination, we instead resort to large elimination on
booleans. We thus map natural numbers to boolean by testing whether they are 0.

iszero = := nat-elim = (__. bool) true (__. false)
nat-discrP G := bool-elim (iszero G) (__. Prop) ⊤ ⊥

In order to discriminate hide 0 from gS = for any =, we are first going to reveal = to reduce gS = to
hide (S <) which will let us exploit the discriminator above. [Examples.type_discr]

discr : ∀(= : erased nat). hide 0 ≈ gS = → ⊥
discr := _=. reveal=_(_< 4. fromRev (cast 4 discrP (toRev ★)))

Herin toRev ★ is a proof9 of discrP (hide 0) whereas fromRev goes from discrP (hide (S <)) to ⊥.

5.3 Vectors

We now extend GTT with vectors where the length index is an erased natural number. This time
we give their syntax and typing rules in details in Figure 13. Indeed, this example is the only one
where ghosts play a major role. This means that hide and even gS appear in the typing rules, but
the biggest surprise is probably the appearance of glength in the computation rule for vec-elim.
The most natural rule would have been to use = from the left-hand side instead of relying on

another function. In fact it seems necessary to ensure that both sides of the equation have the
same type. First, note that we consider untyped conversion for a reason: both sides may have
been annotated with casts that were necessary for typing, but those are removed at conversion
time; it is thus not an expectation of our conversion rules. The second, more important reason is
that such a rule would be able to extract the natural number stored in the vcons constructor, but

9Assuming★ : ⊤, which we can encode as _G.G : ⊥ → ⊥.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:20 Théo Winterhalter

C,D, �, � ::= · · · | vec � = | vnil� | vcons 0 = E | vec-elims E % I B

md(vec � =) = K md(vnil�) = md(vcons 0 = E) = T md(vec-elims E % I B) = s

Γ ⊢ � : Type8 Γ ⊢ = : erased nat

Γ ⊢ vec � = : Type8

Γ ⊢ � : Type

Γ ⊢ vnil� : vec � (hide 0)

Γ ⊢ 0 : � Γ ⊢ E : vec � =

Γ ⊢ vcons 0 = E : vec � (gS =)

Γ ⊢ E : vec � = Γ ⊢ % : ∀(< : erased nat) . vec �< → Sorts

Γ ⊢ I : % (hide 0) vnil Γ ⊢ B : ∀0 < F. % < F → % (gS <) (vcons 0 < F) s ≠ K

Γ ⊢ vec-elims E % I B : % = E

Γ ⊢ � :: K Γ ⊢ % :: K Γ ⊢ I :: s Γ ⊢ B :: s s ≠ K

Γ ⊢ vec-elims vnil� % I B ≡ I

Γ ⊢ 0 :: T Γ ⊢ = :: G Γ ⊢ E :: T Γ ⊢ % :: K Γ ⊢ I :: s Γ ⊢ B :: s s ≠ K

Γ ⊢ vec-elims (vcons 0 = E) % I B ≡ B 0 (glength E) E (vec-elims E % I B)

Fig. 13. Vectors

Inductive vec• (A : ty) :=

| vnil•

| vcons• (a : El A) (v : vec• A)

| vec∅ .

Inductive vecP (A : ty) (AP : El A → SProp) :

∀ n (nP : NP n), vec• A → SProp :=

| vnilP : vecP A AP O• OP vnil•

| vconsP a (aP : AP a) n nP v :

vecP A AP n nP v →

vecP A AP (S• n) (SP n nP) (vcons• a v).

Fig. 14. Erasure and parametricity inductive types for vectors

this information is gone after erasure which would jeopardise revival as we shall see. Instead we
reconstruct this information from the vector itself.

The glength function is defined using the eliminator and computes the ghost length by iterating
gS as shown below. We could have lifted the regular length function to erased natural numbers but
we believe the current presentation is less ad-hoc as it amounts to iterating the building blocks of
the indices of vec. Furthermore, the rule is no longer so surprising if we simply see the last two
arguments of B as recursive calls on E . How this generalises to other inductive types remains to be
investigated.

glength E := vec-elim E (__ _. erased nat) (hide 0) (_0 < F A . gS A)

In other words, glength vnil ≡ hide 0 and glength (vcons 0 = E) ≡ gS (glength E).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:21

5.3.1 Modelling vectors. To build the model, we proceed as we did for natural numbers by showing
how one implements the various translations in Coq. The corresponding inductive types are found
in Figure 14. This time it is more involved so we will go step by step.
First, erasure no longer consists in simply adding a special constructor for errors: the natural

number argument has disappeared both from the type and from the vcons• constructor. The type
vec• A is thus isomorphic to list (El A) which matches well the intuition that vectors are lists with
an extra invariant constraining its length. This length reappears in the vecP A AP n nP v predicate.
Ignoring AP and nP for now, it says that v is an exception-free list of length n. The nP argument
ensures that n itself is free of exceptions whereas AP is a predicate verified by all the elements
of the list. Before we turn our attention towards the eliminators, remark that the parametricity
translation of vectors is the first time we really make use of revival: without it there would be no
way to recover the length to put inside the predicate: ⟦vec � =⟧P := vecP [�]Y ⟦�⟧P ⟦=⟧E ⟦=⟧P .

For erasure, we only need to consider the T case as usual. We require a constant as follows that
we implement by using the eliminator of vec•.

vec_elim• :

∀ (A : ty) (P : vec• A → ty)

(z : El (P vnil•)) (s : ∀ (a : El A) (v : vec• A), El (P v) → El (P (vcons• a v))) (v : vec• A),

El (P v).

We verify the following two equations hold definitionally:

vec_elim• A P z s vnil• ≡ z

vec_elim• A P z s (vcons• a v) ≡ s a v (vec_elim• A P z s v)

For revival (and thus theG case), we can reuse vec_elim• but some care needs to be taken. Indeed,
the type we need to inhabit is slightly different; s now mentions some natural number:

∀ (A : ty) (P : vec• A → ty)

(z : El (P vnil•)) (s : ∀ (a : El A) (n : N•) (v : vec• A), El (P v) → El (P (vcons• a v))) (v : vec• A),

El (P v).

This might seem harmless as we can inhabit this type by feeding any natural number to s. Only,
we need to interpret the computation rule for vec-elim. This is not just a technicality due to our
definition of vec_elim•, the natural number is simply not stored in the vec• data type! This solves
the mystery of why we need to use glength in the computation rule: to have a proper computation
rule, we need to recompute the natural number index from v. Once we have made this observation
it suffices to use a length• function in the model, corresponding to the erasure of glength in the s

branch of vec_elim• and it verifies the expected equations.
For parametricity, we have three cases to consider and this time they are all different. Only the

G case is not straightforward so we will focus on this one and refer the reader to the formalisation
[TransVec.pm_vec_elim, TransVec.pm_vec_elim_Prop] for details about the others. The property we
need to prove is as follows.

∀ A (AP : El A→ SProp)

(Pe : vec• A → ty)

(PP : ∀ n nP (v : vec• A) (vP : vecP A AP n nP v), El (Pe v) → SProp)

(ze : El (Pe vnil•)) (zP : PP O• OP vnil• vnilP ze)

(se : ∀ (a : El A) (n : N•) (v : vec• A), El (Pe v)→ El (Pe (vcons• a v)))

(sP :

∀ a aP n nP v vP (h : El (Pe v)) (hP : PP n nP v vP h),

PP (S• n) (SP n nP) (vcons• a v) (vconsP a aP n nP v vP) (se a n v h)

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:22 Théo Winterhalter

)

n nP v vP,

PP n nP v vP (vec_elim• A Pe ze (_ a v, se a (length• v) v) v).

Here, a basic induction on vP is not enough (as it was up till now). In the recursive case there is
indeed a mismatch between n and length• v. We solve this problem by remarking that they are
propositionally equal10 which we also prove by induction on vP.

Lemma err_length_eq : ∀ A AP n nP v (vP : vecP A AP n nP v), ∥ length• v = n ∥.

This concludes our construction of the model. This translation echoes the alternative representa-
tion of vectors as a refinement type with a condition on the length:

vec � = ≈ {; : list � | length ; = =}.

There is a trade-off between the two versions: the inductive one makes it easier in theory to produce
correct-by-construction results, but relevant terms end up being polluted by proofs, which can be
tedious to write and manage (for instance, they might get in the way of equality or computation). We
argue that our setting allows one to get the best of both worlds, as we will illustrate in Section 5.3.2
and as this will become even clearer in Section 6.

5.3.2 Examples. We start by showing that even though the length index is erased, we can still take
advantage of it to define the usual head and tail total functions. To do it, we have to rely on exfalso
but also on the discriminator discr introduced in Section 5.2.

head : vec � (gS =) → �

tail : vec � (gS =) → vec � =

head is defined below:

% := _< F. ∀(: : erased nat) . < ≈ gS : → �

I := _: (ℎ : hide 0 ≈ gS :). exfalso � (discr : ℎ)
B := _0 = E _ : ℎ. 0

head := _(E : vec � (gS =)) . (vec-elim E % I B) = (gh-refl (gS =))

tail has a similar definition but we also use a cast to rewrite in the length index of the vector.

% := _< F. ∀(: : erased nat). < ≈ gS : → vec � :

I := _: ℎ. exfalso (vec � :) (discr : ℎ)
B := _0 = E _ : ℎ. cast 4 (vec �) E
tail := _(E : vec � (gS =)) . (vec-elim E % I B) = (gh-refl (gS =))

where 4 : = ≈ : is obtained from ℎ : gS = ≈ gS: . The two functions erase as one would do in
OCaml by raising an exception when the list is empty.

Finally, we bring closure to our initial example of reversal of vectors and show how we define it
in GTT,11 assuming ⊕ is lifting the usual addition on nat to erased nat.

rev : ∀ = <. vec � = → vec �< → vec � (= ⊕<)
rev (hide 0) < vnil 022 := cast 40 (vec �) 022
rev (gS :) < (vcons 0 : F) 022 := cast 41 (vec �) (rev : (gS <) F (vcons 0 < 022))

where 40 : (hide 0) ⊕< ≈< and 41 : : ⊕ (gS <) ≈ (gS :) ⊕< are standard, modulo reveal. In the
next section we will show how the ideal version without casts can also be supported. However, we
can already argue that the cast is no more than a crutch for the type checker and that it can safely

10We need a squash to go from Prop to SProp.
11The version using eliminators explicitly is given in Figure 15 in Appendix A.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:23

be ignored for any subsequent proofs about rev. Equational reasoning is highly simplified when
compared to the version with a transport over proof-relevant equality.

6 Ghost Reflection

As stated in the introduction, one of the main motivations for this work is to be able to obtain a nicer
notion of extensional type theory using ghost types. We now introduce GRTT (ghost reflection
type theory) as a variant of GTT presented in Section 2. We will show how GRTT is conservative
over GTT, allowing us to lift the properties we established for GTT in Section 4 to GRTT. We can
do it because GTT has been set up just right so that it can support extensionality. In a sense, this
section is going to be a justification for the rules of GTT. GRTT also has the advantage of showing
how one could use GTT in practice by letting some oracle insert the casts for the user who doesn’t
have to worry about them.

6.1 Definition of GRTT [RTyping.grtyping]

GRTT is a variant of GTT where we remove cast from syntax as well as its typing rule, and where
we change Γ ⊢ |�| ≡ |� | for Γ ⊢ � ≡ � in the conversion rule (both rules are highlighted in blue in
Figure 2). Note that we reuse the conversion from GTT here. We annotate the turnstile of GRTT
judgements with an G to differentiate them from GTT judgments.

Instead of casts, ghost equality is eliminated through a special ghost equality reflection rule that
let us convert between types which have equal ghost values inside.

Γ ⊢G 4 : D ≈� E Γ ⊢G % : � → Sorts Γ ⊢G C : % D s ≠ K

Γ ⊢G C : % E

This rule mimics the cast typing rule and has the same limitation that it cannot be used at sort
Kind. This way, conservativity of GRTT over GTT essentially states that casts can indeed be safely
ignored when computing: they never play a role in computational behaviour of programs. The
reader may find it surprising that we limit reflection to applicative contexts instead of the usual
generality of ETT; in other words we cannot use reflection of an equality that is only well formed
under binders. The main reason is that it corresponds exactly to the GTT model we give. If we
wanted to allow for reflection of ghost equalities under binders we would need to extend GTT
with extra extensionality principles that we conjecture would in turn require at least function
extensionality in the target of the parametricity translation. For now we chose to limit ourselves to
a more agnostic notion of equality that we in any case believe is enough for most applications and
leave the investigation of other approaches to future work.
GRTT can thus be seen as a restriction of the regular ETT where reflection happens only at

certain positions such as the length index of vectors. Our running example of rev can be expressed
in GRTT just as it was in Section 1.

6.2 Potential Translations

We adapt—and mostly simplify—the proof of Oury [2005]; Winterhalter et al. [2019] to translate
derivations in GRTT to derivations in GTT. The main idea being replacing the use of reflection with
casts in the target. As Oury; Winterhalter et al. already discuss in their case, this means a priori
that the same term (resp. context or type) can have several valid translations and typically vary in
which casts appear in the term. Our own proof can become much simpler thanks to the fact that
ghost casts are irrelevant for conversion. We can thus prove that all translations of the same term
are definitionally equal.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:24 Théo Winterhalter

We start making this fact precise by defining potential translations of a GRTT term C as GTT
terms C ′ such that |C ′ | =U C . Thus, two potential translations of a same term are definitionally equal
in GTT.
We define potential translations of judgments as follows. [Potential.tr_ctx, Potential.tr_ty]

(1) ⊢ Γ
′ ∈ ⟦⊢G Γ⟧G when ⊢ Γ

′ is derivable and |Γ′ | =U Γ (pointwise);
(2) Γ′ ⊢ C ′ : �′ ∈ ⟦Γ ⊢G C : �⟧G when Γ

′ ⊢ C ′ : �′ is derivable and |C ′ | =U C and |�′ | =U �.

Note that we do not need to provide a translation to conversion since it is purely syntactic and
ignores casts, meaning we can use conversion derivation as is.

We will now define the two crucial lemmas for conducting the translation. They essentially state
that the translation does not get in the way of typing.

Lemma 6.1 (Choice of type). [Potential.tr_choice]
If Γ′ ∈ ⟦⊢G Γ⟧G and Γ

′ ⊢ C ′ : �′ ∈ ⟦Γ ⊢G C : �⟧G and Γ
′ ⊢ �′′ : Sorts8 ∈ ⟦Γ ⊢G � : Sorts8 ⟧G with

Γ ⊢ C :: s then we also have Γ′ ⊢ C ′ : �′′ ∈ ⟦Γ ⊢G C : �⟧G .

Proof. We apply the conversion rule by remarking that |�′ | ≡ |�′′ | holds since |�′ | =U |�′′ |. □

Lemma 6.2 (Preservation of type formers). [Potential.tr_sort_eq, Potential.tr_bot_eq]
If Γ′ ⊢ C ′ : �′ ∈ ⟦Γ ⊢G C : �⟧G where � has a type former in its head then �′ has the same head as �.

Proof. Since |�′ | =U � we know that �′
=U cast 41 %1 (. . . (cast 4= %= �′′) . . .) for some �′′

with the same head as �. By Lemma 2.6 we also know that Γ′ ⊢ �′ : Sort. Using Lemma 4.4 we thus
get that Γ′ ⊢ �′ :: K. By inversion of typing on the cast rule, we would however get that this mode
cannot be K. Hence, = = 0 (no casts were applied) and �′

=U �′′. □

6.3 Eliminating Ghost Reflection

We now define a translation from GRTT derivations to GTT derivations by showing that whenever
a judgment J is derivable in GRTT, then ⟦J⟧G is inhabited, i.e. J has a translation in GTT.
Furthermore, this translation is constructive meaning we could extract an algorithm from it.

Theorem 6.3 (Translation from GRTT to GTT). [ElimReflection.elim_reflection,elim_ctx]

(1) If ⊢G Γ, then there exists ⊢ Γ
′ ∈ ⟦⊢G Γ⟧G .

(2) If Γ ⊢G C : �, then for all ⊢ Γ
′ ∈ ⟦⊢G Γ⟧G , there exists Γ

′ ⊢ C ′ : �′ ∈ ⟦Γ ⊢G C : �⟧G .

Proof. We prove the assertions above by induction on the derivations and freely use Lemmas 6.1
and 6.2 to align the various translations. We show a few representative cases.
The most interesting case is probably the ghost reflection rule. By induction hypothesis we have

Γ
′ ⊢ 4′ : D′ ≈�′ E ′ ∈ ⟦Γ ⊢G 4 : D ≈� E⟧G and Γ

′ ⊢ % ′ : �′ → B ∈ ⟦Γ ⊢G % : � → Sorts⟧G and
Γ
′ ⊢ C ′ : % ′ D′ ∈ ⟦Γ ⊢G C : % D⟧G with s ≠ K. We can then easily conclude that Γ′ ⊢ cast 4′ % ′ C ′ :

% ′ E ′ ∈ ⟦Γ ⊢G C : % E⟧G . □

6.4 Conservativity and Meta-theoretical Results

We now establish some meta-theoretical consequences of the GRTT to GTT translation. We show
that GRTT is conservative over GTT, meaning that GRTT captures exactly what can be proven in
GTT, they have the same logical power.

Theorem 6.4 (Conservativity). [ElimReflection.conservativity]Whenever we have valid type

in GTT ⊢ � : Sorts such that its cast-free version is inhabited in GRTT ⊢G C : |�| with C :: s then it is

already inhabited in GTT, i.e. there is some C ′ such that |C ′ | =U C and ⊢ C ′ : �.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:25

Proof. Assume ⊢ � : B and ⊢G C : |�|, then by applying Theorem 6.3 we have some ⊢ C ′ : �′ ∈
⟦⊢G C : |�|⟧G . Besides, we know that ⊢ � : Sorts ∈ ⟦⊢G |�| : Sorts⟧G so by Lemma 6.1 we get
⊢ C ′ : � ∈ ⟦⊢G C : |�|⟧G . □

There is one caveat: the term C in GRTT needs to be in the right mode, something which we
inherit from the conversion rule. As stated earlier we conjecture that this requirement is redundant
but we leave it to future work.

Theorem 6.5 (Consistency of GRTT). [ElimReflection.consistency] GRTT is consistent.

Proof. Assuming ⊢G C : ⊥, then by Theorem 6.3 and Lemma 6.1 we get some ⊢ C ′ : ⊥ which
would disprove consistency of GTT (Theorem 4.1). □

Properties like discrimination of type formers are inherited trivially from GTT since GRTT uses
the same conversion. Of course, this works mainly because we did not consider reflection as part of
definitional equality but as a rule in itself. We argue that this is enough and that GRTT serves rather
as a way to demonstrate that GTT could be used in practice. Conservativity ensures that there is no
risk to forgetting about casts (or even hiding them to a user), and furthermore the resulting proof
term is essentially the same (up to casts). Amongst prospects, this means that equations such as
associativity of vector concatenation which features two terms of different types could be rewritten
with, without worrying about casts on either side.

7 Related Work

Ghost types, erasure and shape irrelevance with dependent types. Shape irrelevance was introduced
by Abel et al. [2017b] for sized types to be able to say that the size argument in a type does not
affect its shape (e.g. one cannot match on a size to build a type that would be either nat or bool).
Shape irrelevance was later refined by Nuyts and Devriese [2018] in the more general framework
of modalities, from which one may extract a notion of heterogeneous equality. It shares similarities
with the erased modality in that both are used to represent data that is irrelevant for computation
but still holds meaning as a specification. Both are implemented in Agda, and in fact Agda’s
implementation of the erased modality is a special case of Quantitative type theory (QTT) [Atkey
2018] which is also implemented in Idris 2 [Brady 2021]. It tracks variable usage in judgements,
separating occurrences in the term from the ones in the type. Compared to GTT, all of these cases
are not type-based—although we believe that our proof should be adaptable to modalities—and to
the best of our knowledge do not consider internal principles like we did. The ability to distinguish
relevance in the term and in the type however is convenient to be able to consider e.g. the length
arguments in vector terms to be irrelevant. For us, it is only achieved in GRTT for propositionally
equal sizes, in other words for terms of the same type (which should not be a restriction in practice).
Another notable difference is that in QTT, one is able to freely use erased data in types, while GTT
only let us using them when building propositions. It is unclear to us how big of a problem it is in
practice as such types cannot typically be inhabited if they branch on erased data.

Ghost types in F* [Swamy et al. 2016] served as an inspiration for our Ghost universe, but there
remains several differences. Indeed, in F*, ghost is an effect rather than a universe and it comes with
implicit lifts to it so that ghost computations can be eliminated into any non-informative type. In
contrast to GTT, it considers the universe to be non-informative, meaning that ghost computations
can be examined not only to produce propositions but also any type. This is possible because the
erasure they consider gets rid of all types, unlike what we do. However there is also an important
similarity in how both F* and GRTT handle equality reflection: they both cannot freely go under
binders.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:26 Théo Winterhalter

Brady et al. [2003] show that inductive types need not store their indices, a case that we also
make for vectors in the introduction. They erase arguments to constructors but do not seem to
allow to carry this information with typing while we can expose in the type of rev that the natural
numbers it takes as arguments are erased. Their work focus mainly on memory optimisation and
we believe is essentially orthogonal to what we propose.

Miquel [2001] introduced the Implicit Calculus of Constructions (ICC) which features a special
dependent product type whose arguments are not materialised and which behaves as an intersection
type. There is no need to erase these arguments because they are not there in the first place. Like
GRTT, ICC has undecidable type checking and Barras and Bernardo [2008] thus introduce a variant,
called ICC*, with more annotations to recover decidability of checking. We conjecture it is also
the case for GTT and in that sense the two systems are similar. Another similarity is that, in
ICC*, conversion also compares so-called extracted terms. Both ICC and ICC* cannot distinguish
constructors because inductive types are only impredicative encodings. While they can encode
vectors this way, the head and tail function are outside of their scope, while it is an important part
of ours.

Cedille [Stump 2017; Stump and Jenkins 2018] proposes dependent intersection types relying on
a primitive notion of erasure for terms that discards types. Like ICC, it offers a notion of erasure
that is different than that of GTT, with different kinds of applications, perhaps more prominently
for impredicative encodings. We instead focused on reasoning principles about erased data, which
is what casts (or reflection) give us, in addition to free theorems obtained through parametricity.

Ghost code in verification. Filliâtre et al. [2016] introduce ghost code to theWhy3 tool for program
verification [Filliâtre and Paskevich 2013]. What we propose is close to a dependent version of
their work, which lets us additionally internalise the fact that some data is ghost. Like in their
case, we can erase ghost code to benefit from better extraction and to ensure that ghost code does
not interfere with computations. Their type system features other similarities with our work in
that variables are syntactically annotated with their ghost status and like us they state that those
annotations can be inferred by the typing rules and need not be supplied by the user. One main
difference is that Why3 supports effects which we do not, as Coq or Agda do not. In that direction
connecting our work with F* would allow for a better comparison and we leave it for future work.

8 Conclusion and Future Work

The various translations we presented in the paper provide a model both for GTT and GRTT that
we can view as two variants of the same system. GTT is better suited to serve as a kernel to a proof
assistant while GRTT might be better as a practical system, despite the fact that type checking is
obviously undecidable (as it is for type systems with equality reflection). Indeed, there are many
ways to make this system practical, be it with definitional equality handlers à laAndromeda 1 [Bauer
et al. 2016], or by delegating such proof obligations to an SMT solver à la F* [Swamy et al. 2016] or
even via the use of (user-defined) rewrite rules. A general take-away from this is that automation
confined to erased positions remains powerful and useful but crucially does not get in the way
of equational reasoning or of extracted programs. The latter point is reinforced by the erasure
translation we propose that gets rid of both proofs and ghost values and could as such serve as a
first step before extraction.
We thus believe that this and future work in that direction could help justify and inform the

design and meta-theory of tools like F* or expand the capabilities of other proof assistants such
as Coq or Agda. There are still several challenges to tackle before implementation. Perhaps the
most prominent and achievable one would be to extend G(R)TT to support general inductive types.
As these proofs are usually tricky, we would highly benefit from a formalisation such as that

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

Dependent Ghosts Have a Reflection for Free 258:27

of MetaCoq [Sozeau et al. 2020a,b] which deals with most features of Coq. A general treatment
of indices would be of particular interest, especially given the fact that some dependencies are
erased even after revival. A general treatment of inductive types would also need to support large
elimination at least for all small inductive types. We could then hope to tackle other properties of
GTT than the ones we establish with the current model. One of them is termination. We conjecture
that GTT—and even GRTT (as opposed to ETT in general)—have a proper notion of computation
and that they are in fact strongly normalising. We could prove this fact from our model by showing
that it is in fact a simulation for reduction. In case this would prove insufficient to prove decidability
of type checking—this time only for GTT—we could have a look at other methods such as logical
relations [Abel et al. 2017a]. While decidability of type checking is out of reach for GRTT, we believe
that what is decidable is to determine which proof obligations are required to make a term type-
check. In other words we could decide where casts are necessary and type former discrimination
would ensure that the obligations make sense and are typically about indices of inductive types, or
constraints of refinement types.
Another point to sort out before implementation is the way we deal with binders for ghost

reflection. As stated in the paper, the ghost reflection rule does not give rise directly to an imple-
mentation. Indeed, it should rather be merged with conversion to properly work. This means that
appropriate care is required when going under contexts. For instance, when comparing _G .5 and
_G.6, and then 5 and 6 recursively, one cannot make use of G to provide an equality to the reflection
rule. Doing so would presumably require function extensionality for ghost equality.

Finally, it would be interesting to extend GTT to support accessibility predicates as ghost types.
Indeed, in Coq they are currently considered as inductive types in Prop, but not in SProp. In
other words, it does not enjoy definitional proof irrelevance, but it is still erased during extraction,
which makes it a perfect candidate for our Ghost universe. Such an extension would require more
investigation as the target cannot readily accommodate for potentially non-terminating definitions
that we would only show terminating after the fact (typically through the parametricity translation).

Data-Availability Statement

The formalisation and related files to this paper are all available online [Winterhalter 2024].

A Definition of Reversal of Vectors in GTT

We provide here the definition of rev (Figure 15) using eliminators. We still omit the proofs 40 and
41.

rev : ∀ = <. vec � = → vec �< → vec � (= ⊕<)
rev := _= < E. (vec-elim E (_ : F. ∀<. vec �< → vec � (: ⊕<)) 1vnil 1vcons) <
1vnil := _ < 022. cast 40 (vec �) 022
1vcons := _ 0 : F A42 < 022. cast 41 (vec �) (A42 (gS <) (vcons 0 < 022))
40 : (hide 0) ⊕< ≈<

41 : : ⊕ (gS <) ≈ (gS :) ⊕<

Fig. 15. Definition of rev from Section 5.3.2.

References

Andreas Abel and Thierry Coquand. 2020. Failure of normalization in impredicative type theory with proof-irrelevant

propositional equality. Logical Methods in Computer Science 16 (2020).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

258:28 Théo Winterhalter

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2017a. Decidability of conversion for type theory in type theory.

Proceedings of the ACM on Programming Languages 2, POPL (2017), 1–29.

Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. 2017b. Normalization by evaluation for sized dependent types.

Proceedings of the ACM on Programming Languages 1, ICFP (2017), 1–30.

Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending homotopy type theory with strict equality. arXiv

preprint arXiv:1604.03799 (2016).

Robert Atkey. 2018. Syntax and semantics of quantitative type theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science. 56–65.

Bruno Barras and Bruno Bernardo. 2008. The implicit calculus of constructions as a programming language with dependent

types. In Foundations of Software Science and Computational Structures: 11th International Conference, FOSSACS 2008,

Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March

29-April 6, 2008. Proceedings 11. Springer, 365–379.

Andrej Bauer, Gaëtan Gilbert, Philipp G. Haselwarter, Matija Pretnar, and Chris Stone. 2016. The ‘Andromeda’ prover.

http://www.andromeda-prover.org/

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of Type Theory. In

Certified Programs and Proofs – CPP 2017. 182–194.

Edwin Brady. 2021. Idris 2: Quantitative type theory in practice. arXiv preprint arXiv:2104.00480 (2021).

Edwin Brady, Conor McBride, and James McKinna. 2003. Inductive families need not store their indices. In International

Workshop on Types for Proofs and Programs. Springer, 115–129.

Jesper Cockx and Andreas Abel. 2016. Sprinkles of extensionality for your vanilla type theory. In Types for Proofs and

Programs (TYPES).

Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. 2021. The Taming of the Rew: A Type Theory with Computational

Assumptions. Proceedings of the ACM on Programming Languages (2021). https://doi.org/10.1145/3434341

Robert L. Constable and Joseph L. Bates. 2014. The NuPrl system, PRL project. http://www.nuprl.org/

Coq development team. 2023. The Coq proof assistant reference manual. LogiCal Project. http://coq.inria.fr Version 8.17.

Adrian Dapprich and Andrej Dudenhefner. 2021. Generating Infrastructural Code for Terms with Binders using MetaCoq

and OCaml. Bachelor thesis, Saarland University (2021).

Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. 2016. The spirit of ghost code. Formal Methods in System

Design 48 (2016), 152–174.

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—where programs meet provers. In Programming Languages

and Systems: 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 22. Springer, 125–128.

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional Proof-Irrelevance without K.

Proceedings of the ACM on Programming Languages (Jan. 2019), 1–28. https://doi.org/10.1145/3290316

Martin Hofmann. 1995. Conservativity of equality reflection over intensional type theory. In International Workshop on

Types for Proofs and Programs. Springer, 153–164.

Chantal Keller and Marc Lasson. 2012. Parametricity in an impredicative sort. arXiv preprint arXiv:1209.6336 (2012).

Yann Leray. 2022. Formalisation et implémentation des propositions strictes dans MetaCoq. Technical Report. Inria Rennes -

Bretagne Atlantique ; LS2N-Nantes Université. 17 pages. https://inria.hal.science/hal-04433492

Alexandre Miquel. 2001. The implicit calculus of constructions extending pure type systems with an intersection type

binder and subtyping. In International Conference on Typed Lambda Calculi and Applications. Springer, 344–359.

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Vol. 32. Citeseer.

Andreas Nuyts and Dominique Devriese. 2018. Degrees of relatedness: A unified framework for parametricity, irrelevance,

ad hoc polymorphism, intersections, unions and algebra in dependent type theory. In Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science. 779–788.

Nicolas Oury. 2005. Extensionality in the calculus of constructions. In International Conference on Theorem Proving in Higher

Order Logics. Springer, 278–293.

Pierre-Marie Pédrot and Nicolas Tabareau. 2018. Failure is Not an Option An Exceptional Type Theory. In ESOP 2018 - 27th

European Symposium on Programming (LNCS, Vol. 10801). Springer, Thessaloniki, Greece, 245–271. https://doi.org/10.

1007/978-3-319-89884-1_9

Frank Pfenning. 2001. Intensionality, extensionality, and proof irrelevance in modal type theory. In Proceedings 16th Annual

IEEE Symposium on Logic in Computer Science. IEEE, 221–230.

Loïc Pujet and Nicolas Tabareau. 2022. Observational equality: now for good. Proceedings of the ACM on Programming

Languages 6, POPL (2022), 1–27.

Loïc Pujet and Nicolas Tabareau. 2023. Impredicative Observational Equality. Proceedings of the ACM on Programming

Languages 7, POPL (2023), 2171–2196.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

http://www.andromeda-prover.org/
https://doi.org/10.1145/3434341
http://www.nuprl.org/
http://coq.inria.fr
https://doi.org/10.1145/3290316
https://inria.hal.science/hal-04433492
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1007/978-3-319-89884-1_9

Dependent Ghosts Have a Reflection for Free 258:29

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze, Gregory Malecha, Nicolas

Tabareau, and Théo Winterhalter. 2020a. The MetaCoq Project. Journal of Automated Reasoning (Feb. 2020). https:

//doi.org/10.1007/s10817-019-09540-0

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. 2020b. Coq Coq Correct!

Verification of Type Checking and Erasure for Coq, in Coq. Proceedings of the ACM on Programming Languages (Jan.

2020), 1–28. https://doi.org/10.1145/3371076

Kathrin Stark, Steven Schäfer, and Jonas Kaiser. 2019. Autosubst 2: reasoning with multi-sorted de Bruijn terms and vector

substitutions. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs. 166–180.

Pierre-Yves Strub. 2010. Coq modulo theory. In Computer Science Logic: 24th International Workshop, CSL 2010, 19th Annual

Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings 24. Springer, 529–543.

Aaron Stump. 2017. The calculus of dependent lambda eliminations. Journal of Functional Programming 27 (2017), e14.

Aaron Stump and Christopher Jenkins. 2018. Syntax and semantics of Cedille. arXiv preprint arXiv:1806.04709 (2018).

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.

2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

Théo Winterhalter. 2020. Formalisation and meta-theory of type theory. Ph. D. Dissertation. Université de Nantes.

Théo Winterhalter. 2024. ICFP 2024 Artefact: Dependent Ghosts Have a Reflection for Free. https://doi.org/10.5281/zenodo.

11500966

Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2019. Eliminating Reflection from Type Theory. In CPP

2019 - 8th ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM, Lisbonne, Portugal, 91–103.

https://doi.org/10.1145/3293880.3294095

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 258. Publication date: August 2024.

https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3371076
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.5281/zenodo.11500966
https://doi.org/10.5281/zenodo.11500966
https://doi.org/10.1145/3293880.3294095

	Abstract
	1 Introduction
	2 Ghost Type Theory
	2.1 Syntax of GTT
	2.2 Cast-free Syntax
	2.3 Mode of a Term
	2.4 Typing Rules of GTT
	2.5 Preliminary Results

	3 Model of GTT
	3.1 Erasure
	3.2 Revival
	3.3 Parametricity

	4 Meta-theoretical Consequences of the Model
	5 Extending GTT with Inductive Types
	5.1 A Free Theorem for Booleans
	5.2 Natural Numbers
	5.3 Vectors

	6 Ghost Reflection
	6.1 Definition of GRTT
	6.2 Potential Translations
	6.3 Eliminating Ghost Reflection
	6.4 Conservativity and Meta-theoretical Results

	7 Related Work
	8 Conclusion and Future Work
	A Definition of Reversal of Vectors in GTT
	References

