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Bubble break-up and effects of soluble surfactants on bubble dynamics in a solid body rotating flow

We present experimental results describing the behavior of a bubble placed within a horizontal highspeed solid-body rotating flow. We focus on the stretching and break-up of the bubble that happens in this situation, and on the effect that a surfactant introduced in the liquid has on this. In order to explore the effects of surfactants on the bubble we have used two solutions of TetradecylTrimethylAmmoniumBromide (TTAB): one whose concentration is lower than the Critical Micelle Concentration (0.33 CMC) and one with a concentration larger than the CMC (2 CMC). The results show that as expected the deformation of the bubble is larger in both surfactant solutions than in water, and can be modeled by the model of Rosenthal 1962 in the case of both solutions. In the case of the 0.33 CMC solution, the bubble behaves as if it were seeing an effective surface tension equal to that in the saturated solution. We observed that the bubble could break up at certain rotational speeds for large bubble sizes. We show that this break-up occurs through a resonance mechanism when the rotational velocity of the tank becomes of the order of the eigenfrequency of the bubble.

I. INTRODUCTION A. Bubbles in vortices

When a bubble enters a flow with locally high vorticity regions, it most often remains trapped inside. This is observed in numerous flow situations where these high vorticity regions exist like mixing layers, turbulence, recirculating flows, and body or propeller wakes [START_REF] Green | Fluid Vortices[END_REF]. The reason is that the flow inside high vorticity regions is non-homogeneous with low-pressure minimums at their center, which induces forces driving bubbles towards the vortex core, as reported in many studies [START_REF] Green | Fluid Vortices[END_REF][START_REF] Sridhar | Drag and lift forces on microscopic bubbles entrained by a vortex[END_REF][START_REF] Marten | Ring bubbles of dolphins[END_REF][START_REF] Choi | Non-spherical bubble behavior in vortex flow fields[END_REF][START_REF] Jha | Interaction of a vortex ring with a single bubble: bubble and vorticity dynamics[END_REF][START_REF] Cabut | Analysis of the water flow inside tire grooves of a rolling car using refraction particle image velocimetry[END_REF]. At the lab scale, Naciri [START_REF] Naciri | Contribution à l'étude des forces exercées par un liquide sur une bulle de gaz: portance, masse ajoutée et interactions hydrodynamiques[END_REF] proposed measurements of these forces in a horizontal solid-body rotating flow, which can be representative of these vortex regions. He found that bubbles released in this type of flow experience, like in shear flows [START_REF] Saffman | The lift force on a small sphere in a slow shear flow[END_REF][START_REF] Auton | The lift force on a spherical body in a rotational flow[END_REF][START_REF] Ervin | The rise of bubbles in a vertical shear flow[END_REF][START_REF] Magnaudet | Some aspects of the lift force on a spherical bubble[END_REF][START_REF] Tomiyama | Transverse migration of single bubbles in simple shear flows[END_REF][START_REF] Takemura | Migration and deformation of bubbles rising in a wall-bounded shear flow at finite reynolds number[END_REF][START_REF] Hayashi | Lift coefficients of clean ellipsoidal bubbles in linear shear flows[END_REF], a lift force that, adding to the other radial forces (pressure and added mass), make them spiraling towards an equilibrium position located close to the rotation axis, according to the rotation speed. The coordinates of this equilibrium position were used to measure the drag and lift coefficients. Several subsequent studies contributed to determining these forces more precisely, either numerically [START_REF] Bluemink | A sphere in a uniformly rotating or shearing flow[END_REF][START_REF] Bluemink | Drag and lift forces on particles in a rotating flow[END_REF] or experimentally [START_REF] Bluemink | Drag and lift forces on particles in a rotating flow[END_REF][START_REF] Van Nierop | Drag and lift forces on bubbles in a rotating flow[END_REF][START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF][START_REF] Rastello | Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow[END_REF][START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF].

All were limited to moderate rotation speeds, a condition for the bubble to be at equilibrium reasonably far from the rotation axis so that it does not disturb the solid-body rotating flow. The property of the interface and its consequences on the bubble dynamics, its deformation, as on its wake, were examined considering various cases: clean interface (silicone oils -Rastello et al. [START_REF] Rastello | Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body rotating flow[END_REF]), interface partially covered with impurities (demineralized water -Rastello et al. [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF][START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF], Rastello and Marié [START_REF] Rastello | Wake behind contaminated bubbles in a solid-body rotating flow[END_REF]), or solid interface (spheres in glycerin mixtures or water -Bluemink et al. [START_REF] Bluemink | A sphere in a uniformly rotating or shearing flow[END_REF][START_REF] Bluemink | Drag and lift forces on particles in a rotating flow[END_REF]).

B. Bubble behavior in a high-speed solid body rotational flow

In Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF] we investigated the behavior of a bubble released in a solid body rotating flow of demineralized water at higher rotation speeds (up to 900 rpm), and for larger bubble diameter than in studies mentioned in the preceding paragraph. At these relatively high velocities, the bubble stabilizes close to the rotation axis, most of the time straddling the axis, thus mimicking the bubbles trapped in a vortex core. We studied the stretching of the bubble as a function of its size and of the rotation of the cell. We showed that the bubble aspect ratio could be well reproduced by the analytical model of Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF], provided that the Weber number is corrected to account for the real pressure field seen by the bubble. Indeed, in a horizontal solid body rotating flow the bubble is slightly shifted from the rotation axis by buoyancy, while the original model assumes an axisymmetry of the bubble around this axis. The drag and lift coefficients were also determined from the bubble position. For large Reynolds numbers, we observed that the bubble became very unstable in position and shape, even leading in some cases to its break-up. The mechanism causing the break-up was suspected to be a resonance.

C. Goal of the present study

Our first objective is to investigate the effect of a surfactant on the bubble stretching and break-up and on the forces acting on the bubble. It has long been known that the presence of contaminants (surfactant or impurities) at the surface could modify the forces acting on the bubble in a spectacular way [START_REF] Rastello | Clean versus contaminated bubbles in a solid-body rotating flow[END_REF][START_REF] Clift | Bubbles, Drops and Particles[END_REF][START_REF] Tagaki | Surfactant Effect on Bubble Motion and Bubbly Flows[END_REF]. The inclusion of surfactants in the liquid can increase the drag force, hence reducing the bubble rising velocity, and modify the lift force that bubbles experience in shear flows, which may influence their lateral motion in such flows. These changes in behavior are linked to the distribution of surfactant at the surface and the impact this has on the boundary conditions at the interface. This distribution depends on the relative magnitude of the characteristic times of adsorption, desorption, diffusion, and advection of the surfactant at the surface, and on the nature of the surfactant as well: solid or soluble [START_REF] Cuenot | The effects of slightly soluble surfactants on the flow around a spherical bubble[END_REF][START_REF] Lakshmanan | Marangoni effects caused by contaminants adsorbed on bubble surfaces[END_REF]. For bubbles rising in a quiescent liquid, the contaminants adsorbed are generally convected to the downstream cap of the bubble where they accumulate, thus creating a gradient of surface tension. This gradient generates an interfacial shear stress in the opposite direction, the Marangoni effect [START_REF] Frumkin | On surfactants and interfacial motion[END_REF][START_REF] Levich | Physicochemical Hydrodynamics[END_REF], which slows down the flow at the rear of the bubble and induces an interfacial flow opposing that due to the bubble motion.The consequence is that the upstream cap free from adsorbed contaminant behaves as a mobile surface with vanishing stress, while the downstream cap covered by contaminant is immobile with no slipcondition applying. Small amounts of contaminants may have a significant effect. For example Lakshmanan and Ehrhard [START_REF] Lakshmanan | Marangoni effects caused by contaminants adsorbed on bubble surfaces[END_REF] numerically found that surface tension variations of less than 2 %, could generate Marangoni stresses strong enough to change the rising characteristic of a bubble to that of a solid sphere with the same diameter.

The second objective of the present study is to characterize more precisely the conditions for which bubble break-up happens and confirm that it is actually caused by a resonance phenomenon.

As will be presented below, for a given range of rotational velocities, break-up can be observed for a wider range of conditions in the presence of surfactant: the mechanism responsible for bubble instability can then be described more precisely in these conditions than with our previous water experiments [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF].

We will introduce the experimental set-up in section II, show the results for bubble deformation in the presence of surfactants in section III, and describe break-up conditions in section IV.

II. EXPERIMENT

A. Experimental set-up

The experimental set-up is shown in Fig. 1, and is identical to the one previously used in Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF]. A Plexiglas tank with a diameter of 11 cm and a length of 10 cm is spun along its horizontal axis 𝑧. Three holes on the body of the cylindrical tank are used to either fill in the liquid or inject an air bubble. The range of tank rotation speed 𝜔 is [600-900] rpm, i.e. from 63 rad.s -1 to 94 rad.s -1 . Two cameras are used to capture bubble shape and position: a Phantom 4.3 V360 is positioned perpendicular to the axis of rotation (side view in figure 1), and records in particular the stretching of the bubble along the axis of rotation. A second camera, Basler acA800 is placed parallel to the cross-section 𝑥 -𝑦 plane, along the axis of rotation (front view in figure 1). Two LED panels are used for backlight imaging to facilitate our image processing techniques. The cameras are synced to capture the bubble at the same time at a frame rate of 𝐹 = 200 Hz. The resolution is adjusted at 600 × 800 pixels for both cameras. For each injected bubble volume and fixed 𝜔, 255 synchronized images are recorded. After suitable calibration accounting for bubble location and refraction due to the cylindrical walls of the tank, the recorded images are processed to extract the contour of the bubble on both side and front views (same set-up and method as described in Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF]).

The experiment was performed with water in which a controlled quantity of surfactant is introduced. The water used here is demineralized, similar to the water used in Rastello et al. [START_REF] Rastello | Drag and lift forces on interface-contaminated bubbles spinning in a rotating flow[END_REF]. Its resistivity is 0.3 MΩ.cm. We have used a chemical compound called TetradecylTrimethylAmmo-niumBromide (TTAB), whose molecule is displayed in Fig. 2. The critical micelle concentration (CMC) of TTAB is 𝐶 𝐶 𝑀𝐶 = 1.5 g/l. Below the CMC value, we expect the bubble interface to be not entirely saturated. In order to explore the effects of TTAB on bubble dynamics, we have tested two separate TTAB concentrations in demineralized water. One solution of TTAB surfactant lower than 𝐶 𝐶 𝑀𝐶 and the other higher than 𝐶 𝐶 𝑀𝐶 .

First, the solution below the CMC condition has been investigated. This solution, which we will call 𝐶 ′ , has a concentration of 0.5 g/l, corresponding to 0.33 CMC. For the second solution, we chose a concentration of 3 g/l, which is twice the CMC concentration. We call this solution 𝐶". The objective is to test the effect of surfactants for both the unsaturated (lower than CMC, 𝐶 ′ solution) and saturated (higher than CMC, 𝐶" solution) interface. A summary of our solutions Therefore, in order to understand the dynamics of the bubble in the presence of TTAB surfactant (𝐶 ′ and 𝐶 " ) and compare them with the case of demineralized water, we are limited to a range of volumes not larger than 𝑉 = 0.16 cm 3 for 𝜔 in the range [63, 94] rad.s -1 (see tables II and III).

All the quantities introduced in the following sections related to the bubble size and position are measured for each image and then averaged over the total number of images recorded by each camera. The standard deviation around these averaged values will be indicated by the error bars.

We will assume in the modeling that the bubble is axisymmetric, of characteristic lengths 𝐿 and 𝐷 (figure 1 right). By increasing the rotation speed, the large bubble close to the axis of rotation becomes more axisymmetric, as discussed by Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF] and as will be shown in the following section. For each front view image the equivalent bubble diameter 𝐷 for a given injected volume and 𝜔 is defined as the mean value between minor axis and major axis dimensions, as measured with the Matlab regionprops function. As explained in Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF], the bubble does not strictly converge towards an equilibrium position but rather describes a limit cycle around a given position, as illustrated in figure 3 for three different rotation rates. Given that the amplitude of the limit cycle is small compared to the bubble size, in the following we call 'equilibrium position' the mean bubble position. We retrieved the distance of the bubble to the axis of the cell, 𝑟 𝑒 , by measuring from the images the distance from the center of the cell (using the circular shape of the wall of the tank) to the center of the bubble, output by the regionprops Matlab function which detects the centroid of the bubble front view projection.. The length 𝐿 is directly measured as the major axis from the side view projection, with the same Matlab function.

B. Dimensionless Parameters

We discuss in this section the parameters, and corresponding dimensionless numbers, needed to describe the position and shape of a bubble of volume 𝑉 placed in a solid-body rotating flow. As mentioned before we characterize the bubble shape with two lengths: a length 𝐿 corresponding to the dimension of the bubble along the axis of rotation 𝑧, and the (supposedly) smaller length scale 𝐷, corresponding to the diameter of the bubble projection in a plane normal to the axis of rotation.

Two dimensionless numbers are introduced to quantify the shape of the bubble: the aspect ratio 𝑋 = 𝐿/𝐷 which determines the stretching of the bubble along the axis, and the aspect ratio 𝑋 𝐹 defined as the ratio of major to minor axis as measured on the front view. The physical parameters in this problem are the acceleration of gravity 𝑔, the liquid density 𝜌 𝑙 , the rotational velocity of the tank 𝜔, the gas-liquid surface tension 𝜎 and 𝜇 the dynamic viscosity of the liquid. We add to these quantities the distance of the bubble to the axis of the cell, 𝑟 𝑒 , which controls the pressure difference seen by the bubble.

We group the above parameters into four independent dimensionless numbers, namely the Rossby number 𝑅𝑜 = 𝑟 𝑒 /𝐷, the Reynolds number 𝑅𝑒 = 𝜌 𝑙 𝜔𝑟 𝑒 𝐷/𝜇, the Froude number 𝐹𝑟 = 𝜔 2 𝑟 𝑒 /𝑔, the Weber number 𝑊 𝑒 = 𝜌 𝑙 𝜔 2 𝐷 3 /8𝜎. We have chosen here to introduce a Reynolds number based on the mean velocity seen by the bubble. An alternative choice could be to introduce a shear Reynolds number based upon the velocity difference across the bubble:

𝑅𝑒 𝑠ℎ𝑒𝑎𝑟 = 𝜌 𝑙 𝜔𝐷 2 𝜇 = 𝑅𝑒/𝑅𝑜 (1) 
As shown in Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF], and as will be detailed in the following section, the main control parameter driving the stretching of the bubble is 𝑊 𝑒, but a correction in 𝑅𝑜 has to be introduced.

III. BUBBLE DEFORMATION IN THE PRESENCE OF SURFACTANTS A. Position of the bubble

We first present measurements of 𝑟 𝑒 , the distance of the bubble center to the cell axis. We show in Fig. 4 that this distance is approximately proportional to 𝑔/𝜔 2 , for both 𝐶 ′ and 𝐶 ′′ solutions.

More precisely, it can be approximated by 𝑟 𝑒 = 0.8𝑔/𝜔 2 , or equivalently 𝑅𝑜 ∼ 0.8𝑔/𝐷𝜔 2 . This behavior has already been observed in experiments carried out without surfactant. It can be understood by considering a simple balance of forces, wherein the dominant forces acting on the bubble are buoyancy and the drag force, which in this regime scales as 𝜌 𝑙 𝜔 2 𝑟 𝑒 times the volume of the bubble [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF].

B. Bubble interface configuration

As already observed in Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF], when the rotation rate is increased, the bubble stretches, as illustrated in figure 5 (right column). In order to study the deformation of the bubble in the two different chosen solutions (𝐶 ′ and 𝐶"), we first plot the variations of the longitudinal aspect ratio 𝑋 as a function of the rotational speed. As illustrated in figure 6, the aspect ratio 𝑋 for the case of surfactant solutions is higher than for demineralized water for given volume and 𝜔 values. The symbols ⃝ (data of 𝐶 ′ solution) and (data of 𝐶" solution) have been shifted up in comparison with symbols × (data of demineralized water) for the same range of volumes (0.004 cm 3 < 𝑉 < 0.13 cm 3 ) which shows that the bubble is much more stretched along the horizontal axis in presence of surfactants. This aspect ratio increases when 𝜔 is increased, as expected due to the steepening of the centrifugal pressure field around the bubble. Note however that a maximum in aspect ratio is observed for larger bubble volumes of both surfactant solutions. A similar maximum had been observed for the larger bubbles investigated in Rodgar et al. [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF].

This maximum is associated with increased fluctuations in bubble shape, and we believe it is related to the nearing of the conditions for break-up (see section IV below).

Since the bubble is close to the axis of rotation, the aspect ratio of the bubble should be predicted by the model of Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF], provided the bubble Weber number is replaced by a corrected Weber number We ′ defined as [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF]:

We ′ = We(1 + 4Ro 2 ) (2)
such that the associated We ′ captures the pressure difference seen by the off-centered bubble, and We = 𝜌 𝑙 𝜔 2 𝐷 3 /8𝜎 is the Weber number of the centered bubble defined in section II B. We plot in figure 7 the aspect ratio 𝑋 as a function of this corrected Weber We ′ , taking into account the surface tension values measured by the tensiometers. The data for the 𝐶 ′ (0.33 CMC) solution (surface tension lower than CMC) are collapsed, but not with the Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF] prediction, and the deformation of the bubble is larger than predicted by the model. However, the data for the 𝐶" (2 CMC) are well fitted with the solid curve of the model (figure 7 right), as was the case for demineralized water [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF]. Note that the error bars are large for large We: large fluctuations in aspect ratio are observed when the bubble approaches break-up conditions, see the following section.

The underprediction of bubble deformation in the 𝐶 ′ case suggests that the bubble sees an effective surface tension which is different than the surface tension at rest of the 𝐶 ′ solution. Figure 8 shows that if the Weber number for this solution is computed with a surface tension of 37 mN/m (which is the CMC value), a good agreement is found with the Rosenthal model. Our interpretation is that in the C' case, there may be an accumulation or inhomogeneous distribution of surfactant on the different regions of the bubble interface, in particular close to the axis of rotation of the tank. This could explain that the effective surface tension seen by the bubble is the CMC concentration even though we are at 0.33 CMC. More generally, a nonhomogeneous distribution of surfactant is expected to generate Marangoni flow from regions of low surface tension (high concentration in surfactant) to regions of high surface tension (zones depleted in surfactant). Depending on where the surfactant will accumulate, both opposite tendencies can be a priori considered: if one assumes that the concentration in surfactant is lower at the tips than at the middle plane then this will induce a flow towards the tips of the bubble which will enhance the stretching. On the contrary, if the surfactant is mainly accumulated at the tips, Marangoni stresses will moderate the stretching instead of promoting it. At this stage, we are not able to discriminate between the two hypotheses.

Maps of the average bubble front view contours for three different rotation rates and for the three types of solutions are shown in figure 9. While the water and C" bubbles look very similar for a given 𝜔, the bubble in the C' case exhibits a slightly different orientation. This may be the signature of possible additional Marangoni interfacial flow, due to a non-homogeneous concentration of the surfactant for this specific case.

The other dimensionless number representing the shape of the bubble is the front view aspect ratio 𝑋 𝐹 , the aspect ratio in the ( r, θ) plane. Figures 5 and9 illustrate that as 𝜔 is increased, the bubble becomes more axisymmetric. This is confirmed in figure 10 where 𝑋 𝐹 decreases with 𝜔 except for smaller bubbles for which 𝑋 𝐹 is already close to one for the lowest 𝜔. For both our surfactant solutions the values of the front view aspect ratio (symbols ⋄ and •) are generally slightly higher than that for demineralized water (×), for the same volume range. The values of 𝑋 𝐹 reach up to 1.6 for 𝐶 ′ and 𝐶", but remain close to 1.1 for smaller bubbles (lighter symbols): these bubbles correspond to larger Rossby bubbles which do not straddle the axis of rotation (Ro> 0.5). Note that in spite of relatively large 𝑋 𝐹 values, the axisymmetry assumption turns out to efficiently capture the stretching of the bubble as predicted by the modified Rosenthal's model once the off-centered bubble position is taken into account (as seen in figure 7 for the C" solution).

The deformation in the cross-section is expected to be controlled by the mean velocity seen by the bubble, namely 𝜔𝑟 𝑒 . Therefore, the relevant dimensionless number controlling this deformation should be the Weber number built with this mean velocity: 𝑊 𝑒 𝑟𝑒 = 𝜌 𝑙 (𝑟 𝑒 𝜔) 2 𝑅/𝜎 = 4𝑊 𝑒𝑅𝑜 2 . We test this assumption in figure 11, which shows the variations of 𝑋 𝐹 as a function of 𝑊 𝑒 𝑟𝑒 for 𝐶 ′ , 𝐶" and demineralized water data. The figure shows a clear increase of 𝑋 𝐹 when 𝑊 𝑒 𝑟𝑒 is increased.

The front view aspect ratio for the smaller bubbles (lighter symbols) seems indeed to be controlled by this Weber number. However, for larger bubbles, and larger 𝑊 𝑒 𝑟𝑒 , the data are scattered and do not exhibit the same behavior. This Weber number is expected to be most relevant when the bubble is far from the axis of rotation or at least when it is not straddling it. This condition corresponds to 𝑅𝑜 > 0.5. We plot in figure 11 (right) the front view aspect ratio of the subset of data for which the Ro> 0.5 condition is fulfilled: as expected the data are relatively well aligned. Regarding bubbles located closer to the axis of rotation, such that Ro< 0.5, the aspect ratio in the cross-section is probably controlled by the wake expected to envelop the bubble for these conditions. The precise description of this dynamics in the very low Ro limit, and its impact on bubble shape, is left for future work.

IV. BREAK-UP

A. Rupturing without surfactants

As illustrated in the previous section, when 𝜔 is increased, the longitudinal aspect ratio of the bubble 𝑋 increases. This stretching of the bubble can lead to rupturing. We studied this break-up with the following protocol: starting from rest, the rotation frequency is increased by 5 rad.s -1 steps, and we wait for 120 s between each step in 𝜔 to ensure a stationary regime is reached. The experiment stops when the bubble breaks up. Two different types of break-ups have been observed

during experiments with this protocol. One is the situation where the bubble splits into two bubbles from the middle. In certain cases, bubble break-up leads to the formation of two bubbles of very different sizes (figures 12 right and figure 14).When this type of break-up happens, we observe that the longitudinal bubble aspect ratio 𝑋 increases and reaches a peak, but the bubble does not rupture at this moment: break-up is delayed and occurs at a lower 𝑋. This leads to the formation of two dissimilar fragments.

Figure 14 illustrates that the decrease of the aspect ratio observed after the peak in aspect ratio, and just before break-up (figure 12 right), is actually not caused by a longitudinal contraction, but by the increase in the cross-sectional size of the bubble just before break-up (images 2 to 5). This could be caused by the drainage of the smaller bubble cavity into the larger cavity, analogous to the emptying of a small bubble into a large one because of Laplace's law. This type of break-up configuration is less frequent than the previous quasi-symmetric one. We believe the type of final configuration, with equal or unequal bubbles, is of a stochastic nature and depends on the velocity fluctuations in the liquid and on the magnitude of the initial dissymmetry of the bubble when the break-up process is initiated. Left: bubble of volume 𝑉 = 0.31 cm 3 at 𝜔 = 89 rad.s -1 . The bubble breaks into two equal size bubbles (corresponding to the sequence of figure 13), break-up occurs when maximum aspect ratio is reached. Right: bubble of volume 𝑉 = 0.40 cm 3 at 𝜔 = 73 rad.s -1 . Break-up does not coincide with the moment of maximum stretching. This results in break-up into two different size bubbles, as illustrated in figure 14. when break-up could be observed. In all the cases of this figure, the bubble breaks above a given 𝜔. The smallest bubble which we were able to break ruptured at 𝜔 ≃ 89 rad.s -1 , which is close to the maximum rotation rate our experiment can reach. When bubbles larger than 0.4 cm 3 are injected into the cell, they break during the transient spiraling regime which is observed at start-up, and therefore such bubbles cannot be stabilized close to the axis of the cell.

Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF] investigated the stability of the bubble to axisymmetric disturbances in his work, in order to clarify if the stretching of the bubble could result in a capillary instability as in the classical Rayleigh-Plateau instability [START_REF] Rayleigh | On the instability of a cylinder of viscous liquid under capillary force[END_REF]. He showed that for large rotation rates, the destabilizing effect of capillarity on the stretched bubble could be balanced by the stabilizing effect of the centrifugal force. More precisely, he proposed a necessary and sufficient condition for stability to such disturbances, in the form:

-1 V(cm 3 ) V = FP 3 V = FP 3 V = FP 3 V = FP 3 V = FP 3 V = FP 3 V = FP 3 V = FP 3
𝑘 2 𝐷 2 /4 + (𝜌 𝑙 -𝜌 𝑔 )𝐷 3 𝜔 2 /8𝜎 > 1 (3)
where 𝑘 is the wavenumber of the considered axisymmetric perturbation, 𝜌 𝑙 the liquid density and 𝜌 𝑔 the gas density. Note that condition (3) predicts instability below a given rotation rate, which

is not what we observe experimentally. We plot in figure 16 the location of our experimental data points in the 𝜔

√︃ 𝐷 3 (𝜌 𝑙 -𝜌 𝑔 ) 8𝜎
, 𝑘 𝐷/2 plane. We consider perturbations of wavenumber 𝑘 = 4𝜋/𝐿, corresponding to perturbations of wavelength 𝜆 = 𝐿/2: all data points fall largely into the stable region, even those for which break-up is observed. Note that given the distance to the instability region, this would also be the case for perturbations such that 𝜆 = 𝐿.

As can be seen on the signals of figure 12, the uncentered bubble undergoes shape oscillations due to the rotation of the cell, and therefore a periodic forcing at 𝜔. The bubble itself has an eigenfrequency which depends on its size. The eigenfrequency of a spherical bubble of radius 𝑅 for mode 𝑛 can be approximated by Rayleigh's formula [START_REF] Prosperetti | Free oscillations of drops and bubbles: the initial-value problem[END_REF]:

𝜔 𝑛 = √︄ (𝑛 -1) (𝑛 + 1) (𝑛 + 2) 𝜌 𝑙 𝜎 𝑅 3 (4) 
In our case, the bubble is not spherical, but elongated: we assume that the above expression can be used to estimate the eigenfrequency with a characteristic size 𝑅 ∼ 𝐿/2. The frequency of mode 𝑛 = 2 will therefore be

𝜔 0 = √︄ 96 𝜌 𝑙 𝜎 𝐿 3 (5) 
This frequency will decrease when 𝜔 is increased, and the bubble stretches. Figure 17 illustrates the variations of the eigenfrequency of a bubble of volume 𝑉 ≃ 0.35 cm 3 for modes 2, 3 and 4:

the eigenfrequency is predicted with the model of Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF], which has been shown to predict correctly the stretching of a bubble as a function of 𝜔 provided an appropriate correction is included to account for buoyancy [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF]. As expected these frequencies decrease as a function of 𝜔 when 𝜔 is increased, due to the stretching of the bubble. This figure shows that a coincidence of the frequency of the tank (red line) with the frequency of the bubble occurs in the range of investigated rotation rates for modes 𝑛 = 2 and 3. On the other hand, images of the bubble at the moment of break-up (figure 13) suggest that the shape mode of the bubble is consistent with mode 𝑛 = 2. Figure 17 shows that the match between cell rotation rate and 𝑛 = 2 eigenfrequency for the 𝑉 ≃ 0.35 𝑐𝑚 3 bubble occurs at 𝜔 ≃ 66 rad.s -1 . Break-up in the experimental data for bubbles of similar volumes k l g FIG. 16: Stability criterion proposed by Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF], in the case of a bubble aligned with the axis of rotation. Here 𝑘 is the wave number as 2𝜋/𝜆, and 𝜆 is the wavelength of the considered perturbation. Experimental data points were plotted for perturbations such that 𝜆 = 𝐿/2. All the experimental demineralized water data lie in the stable part of the diagram.

is observed between 68 and 73 rad.s -1 , which is consistent with this value. This suggests that a resonance mechanism is likely responsible for the observed break-up.

We plot in figure 18 the data of figure 15, where we have non dimensionalized 𝜔 by 𝜔 0𝑅 defined as:

𝜔 0𝑅 = √︄ 12 𝜌 𝑙 𝜎 𝑅 3 𝑒𝑞 (6)
In this expression, the eigenfrequency is estimated from the (constant) characteristic size of the bubble 𝑅 𝑒𝑞 , which is the radius of the sphere having the same volume. This reference is chosen, instead of the measured 𝐿 (bubble major axis) as in equation ( 5), because experimental values of 𝐿 experience very strong fluctuations close to resonance, and because break-up itself tends to FIG. 17: Predicted eigenfrequencies of a bubble of 𝑉 ≃ 0.35 cm 3 as a function of 𝜔. The red line is the rotational velocity of the tank 𝜔. The dashed magenta curve is the predicted value of the oscillated bubble frequency at shape mode 𝑛 = 2, computed from the model of Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF].

Black and blue curves are the calculated frequency of the oscillated bubble in modes 𝑛 = 3 and 4.

The circle indicates the moment where the frequency of the bubble coincides with the frequency of the tank at shape mode 𝑛 = 2 (𝜔 = 66 rad.s -1 ). introduce a bias towards larger 𝐿, and hence lower eigenfrequencies. The data of figure 18 shows that the values of 𝜔/𝜔 0𝑅 for all series are in a range between 0.66 to 0.83. These values are smaller than one: this is consistent with the fact that the eigenfrequency estimated via 𝑅 𝑒𝑞 , which underestimates bubble size, is expected to be larger than the actual bubble eigenfrequency.

B. Rupturing in of TTAB surfactant

We now study how break-up the bubble is impacted by the addition of surfactant to the solution. As for water, we have plotted in figure 19a the bubble volumes for which rupture is observed and indicated by a color circle the rotation speed 𝜔 break-up occurs for each of these volumes. Results show that bubble break-up occurs in the volume range [0.1, 0.17] 𝑐𝑚 3 which is smaller than that without surfactant. This result is expected: adding surfactant decreases the value of surface tension that the bubble experiences larger longitudinal stretching, and therefore Color circles indicate for each series the rotation rate at which break-up occurs (red circles for 𝐶 ′ solution; blue circles for 𝐶" solution; black circles for demineralized water). With surfactant (𝐶 ′ :

•, 𝐶": ) break-up occurs for bubbles with a volume V lower than 0.2 cm 3 . Without surfactant (same symbols as in figure 15) break-up could only be observed for bubbles with a volume V larger than 𝑉 = 0.31 cm 3 . b) Volume of the broken bubble as a function of ratio 𝜔/𝜔 0𝑅 for all experimental series experiencing break-up. c) Break-up conditions as a function of 𝜔/𝜔 0𝑅 fo 𝐶 ′ solution, with eigenfrequency computed using surface tension at rest (𝜎 = 52 mN/m).

. a range of volumes V=[0.14, 0.21] cm 3 (the same range of volume for which the break-up occurred by increasing 𝜔 in the previous experiments). Note that in order to reach the rotation speed of 94 rad.s -1 without breaking the bubble, we proceed differently than for the experiments of figures 18 and 19: rotation frequency is increased by larger steps, of 20 rad.s -1 instead of 5 rad.s -1 , and instead of waiting for 120 s between each increase, we only wait for 10 s maximum. The flow regime around the bubble is therefore a priori always in a transient regime before reaching the aimed rotation frequency of 94 rad.s -1 . The aim of this technique is to reach 94 rad.s -1 without breaking 18. This is another indicator that resonance is the likely reason for bubble break-up in this flow situation.

V. CONCLUSION

We have investigated in this study the behavior of a bubble in a horizontal high-speed solid body rotating flow with a soluble surfactant (TTAB). We discussed the bubble shape, position, and the nature of the mechanism responsible for bubble rupture. We have compared the behavior of the bubble in two different TTAB solutions: one with a concentration below the CMC (0.33 CMC), and the other one at twice the CMC concentration. Results were compared with those obtained with demineralized water [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF].

In the same range of volume sizes, we found that the longitudinal aspect ratio of the bubble in both TTAB solutions is higher than in the demineralized water case, with a bubble more stretched along the axis of rotation. We found a good agreement between the experimentally measured aspect ratio and the prediction of our model based on the Rosenthal [START_REF]The shape and stability of a bubble at the axis of a rotating liquid[END_REF] prediction for the 2 CMC case when the interface is saturated. However, the model underpredicts the experimental results for the 0.33 CMC solution (wherein the interface is not entirely saturated). We observe that in this case, the bubble stretches as if the surface tension was that of the CMC, i.e. lower than the surface tension measured for this solution at rest: this behavior is probably caused by a non-uniform distribution of surfactant around the bubble.

Finally, we discussed in section IV the conditions for which break-up of the bubble could be observed. When the flow rotation frequency is increased this break-up occurs above a given frequency. In surfactant solutions, it can be observed for smaller bubble volumes than in water for the same range of 𝜔. We showed that the rotation rates for which break-up is observed coincide with an estimate of the eigenfrequency of the bubble 𝜔 0𝑅 . Moreover, we presented a series of experiments in which we were able to jump above resonance and break-up the bubble by decreasing the rotation frequency. The values of 𝜔/𝜔 0𝑅 at break-up for this series are in the same range as for the previous series for which 𝜔 was increased. This is a strong argument in favor of a resonance mechanism.

The dimensionless parameter controlling this resonance is 𝜔/𝜔 0𝑅 : even though this parameter is not explicitly mentioned in section II B addressing the dimensional analysis of this problem, it can actually be directly related to the Weber number of the bubble as 𝜔/𝜔 0𝑅 = √︁ 2𝑊 𝑒/3(𝑅 𝑒𝑞 /𝐷) 3/2 .

The question of the effective surface tension value seen by the bubble when the interface is not saturated with surfactants, and hence of its effective Weber number, is a crucial issue to determine bubble shape and stability: numerical simulations in which surfactant exchange between interface and bulk is modeled [START_REF] Titta | Level-set simulations of a 2d topological rearrangement in a bubble assembly: effects of surfactant properties[END_REF] could yield insight into the surfactant distribution around the bubble and in its wake.

FIG. 1 :

 1 FIG. 1: Left: Configuration of the present problem, showing an approximately axisymmetric bubble close to the axis of rotation 𝑧. Right: sketch of the experimental set-up showing the positioning of the cameras relative to the rotating tank.

FIG. 2 :

 2 FIG. 2: Structure of the TTAB surfactant molecule. The carbon chain is the hydrophobic side of the surfactant while the 𝑁 + side is the hydrophilic head.

FIG. 3 :

 3 FIG. 3: Limit cycles described by bubble, for C' solution, 𝑉 = 0.078 cm 3 and a) 𝜔 = 62.6 rad/s b) 𝜔 = 78.5 rad/s c) 𝜔 = 94.2 rad/s. The red cross corresponds to the center of the tank.

FIG. 4 :

 4 FIG. 4: Variation of the Rossby number 𝑅 𝑜 as a function of 𝑔/(𝐷 𝜔 2 ). a) Bubbles in 𝐶 ′ solution. b) Bubbles in 𝐶" solution. The black line corresponds to 𝑟 𝑒 = 𝑔/𝜔 2 .

FIG. 5 :

 5 FIG. 5: Instantaneous snapshots of front view (left column) and side view (right column) of the bubble in C' solution, for 𝑉 = 0.078 cm 3 and a) 𝜔 = 62.6 rad/s b) 𝜔 = 78.5 rad/s c) 𝜔 = 94.2 rad/s. The red cross corresponds to the center of the tank.

FIG. 6 :

 6 FIG. 6: Aspect ratio of the bubble 𝑋 = 𝐿/𝐷 as a function of rotation speed 𝜔. a) for 𝐶 ′ solution (0.33 CMC). b) for 𝐶" solution (2CMC) c) for demineralized water, data taken from [22].

FIG. 7 :

 7 FIG.7: Bubble aspect ratio 𝑋 = 𝐿/𝐷 as a function of corrected Weber number. Left: bubbles in 𝐶 ′ solution. Right: bubbles in 𝐶" solution. The model works well for the 𝐶" case, but underpredicts bubble deformation in the 𝐶 ′ case.

FIG. 8 :

 8 FIG.8: Bubble aspect ratio 𝑋 = 𝐿/𝐷 as a function of the corrected Weber number for the case of the 𝐶 ′ solution: when the Weber number is computed with an effective surface tension of 𝜎 = 37 mN/m (CMC surface tension), the model is in agreement with the experimental aspect ratio.

FIG. 9 :

 9 FIG. 9: Average contour of the boundary of the bubble at a) 𝜔 = 62.6 rad/s b) 𝜔 = 78.5 rad/s c) 𝜔 = 94.2 rad/s; first row from top: for water solution 𝑉 = 0.06 cm 3 , second row C' solution 𝑉 = 0.05 cm 3 and third row C" solution 𝑉 = 0.05 cm 3 . The red cross corresponds to the associated mean position of the center of the bubble. The green cross corresponds to the center of the tank.

FIG. 10 :

 10 FIG.10: Variations of the aspect ratio 𝑋 𝐹 (aspect ratio seen on front view) as a function of the rotation speed 𝜔: a) bubbles in 𝐶 ′ solution (⃝); b) bubbles in 𝐶" solution ( );c) bubbles in demineralized water (×). Same caption as in figure6.

FFIG. 11 :

 11 FIG.11: Left: Front view aspect ratio 𝑋 𝐹 as a function of 𝑊 𝑒 𝑟𝑒 . ⃝: 𝐶 ′ solution; : 𝐶" solution;×: demineralized water. Right: same plot, only for bubbles such that Ro> 0.5.

Figure 15 FIG. 12 :

 1512 Figure 15 illustrates the conditions for which break-up is observed, for bubbles in the volume range of [0.31, 0.4] cm 3 , when 𝜔 is increased step by step. A circle is plotted around the symbol

  FIG. 13: Example of break-up for a bubble of volume 0.31 cm 3 splitting into two nearly equal size bubbles, at 𝜔 = 89 rad/s (side view).

  FIG. 14: Example of break-up for a bubble of volume 0.40 cm 3 splitting into a small and a large bubble, at 𝜔 = 73 rad/s (side view).

  ωUDGs

FIG. 15 :

 15 FIG. 15: Volume as a function of 𝜔 for the bubbles which experienced break-up. The circles indicate the 𝜔 of break-up.

FIG. 19

 19 FIG.19: a) Experimental conditions of series for which break-up is observed, in (𝑉, 𝜔) plane.

ωUDGs - 1 V(cm 3 )FIG. 20 :

 1320 FIG. 20: Left: Volume of the bubble as a function of rotation speed: reverse break-up, i.e. break-up obtained by decreasing 𝜔, is observed in 𝐶" (2 CMC) solution. Circles identify the rotation speed 𝜔 for which rupturing occurred. Right: Volume of the broken bubble as a function of ratio 𝜔/𝜔 0𝑅 .

Figure 20

 20 Figure 20 represents the bubble break-up when we reversely vary the rotational velocity of the tank. Circles indicate the conditions for which break-up occurred. We see the break-up of the bubbles with similar volume sizes as the bubbles in previous experiments of increasing 𝜔, but this time happening below a given rotational velocities. The values of the ratio 𝜔/𝜔 0𝑅 are plotted in figure 20 right: they are between 0.62 and 0.83, which is consistent with our previous experiments (gray zone in figure 19 right), and corresponds to the same dimensionless frequency window as in the experiments in figure 18. This is another indicator that resonance is the likely reason for bubble

TABLE I :

 I TTAB concentration and surface tension at rest for both solutions used in this study.

	(𝐶 ′ and 𝐶") concentrations is illustrated in table I. The surface tension value of each solution,
	shown in the third column of table I, has been measured with two different tensiometers. First a
	pendant drop tensiometer (Attension Theta Flex, Biolin Scientic AB) and a second pendant drop
	tensiometer Tracker Standard drop tensiometer. The value of the surface tension measured by both
	tensiometers are consistent to 1 mN/m.
	For performing experiments to analyze the bubble stretching in these two TTAB solutions,
	we have explicitly chosen bubble volumes that do not lead to rupturing during the experiments.

  Mean volume 𝑉 [cm 3 ] Mean equivalent radius 𝑅 𝑒𝑞[cm] 

	0.001	0.072
	0.004	0.098
	0.013	0.146
	0.05	0.228
	0.069	0.254
	0.078	0.266
	0.117	0.303
	0.127	0.311

TABLE II :

 II Characteristics of the bubbles in solution 𝐶

	0.003	0.09
	0.014	0.15
	0.025	0.183
	0.04	0.21
	0.055	0.23
	0.083	0.27
	0.123	0.308
	0.138	0.32
	0.141	0.322

′ (0.33 CMC): mean volume 𝑉 and radius 𝑅 𝑒𝑞 of a spherical bubble of equivalent volume. Mean volume 𝑉 [cm 3 ] Mean equivalent radius 𝑅 𝑒𝑞 [cm]

TABLE III

 III 

: Characteristics of the bubbles in solution 𝐶" (2 CMC): mean volume 𝑉 and radius 𝑅 𝑒𝑞 of a spherical bubble of equivalent volume.
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FIG. 18: Volume of the bubble as a function of ratio 𝜔/𝜔 0𝑅 , ratio between tank rotation frequency, and eigenfrequency of the equivalent spherical bubble, for all experimental series experiencing break-up in water. Circles identify the conditions for which rupturing occurred. Same symbols as in figure 15.

breaks at a smaller volume for a constant 𝜔 range.

We have also observed that this break-up occurs like in water, either causing the bubble to break into two fragments of similar sizes, or in two markedly unequal sizes following the same scenario as that described in figure 12. Figure 19b shows the values of 𝜔/𝜔 0𝑅 when break-up is observed for the various bubble volumes concerned by the rupture. The rupture occurs within a rotational frequency window with ratios located in the range between 0.62 and 0.83. This is similar to what is found in figure 18 for water and thus consistent with the idea that break-up is driven by a resonance mechanism: bubbles in the presence of surfactant should break when the eigenfrequency of mode 2 of the stretched oscillated bubble is of the same order of magnitude as the rotation tank frequency 𝜔. Note that figure 19b was obtained with the CMC surface tension for the 𝐶 ′ series, 37 mN/n: if on the contrary we compute 𝜔 0𝑅 with the value of surface tension at rest for this solution (i.e. 52 mN/m), dimensionless frequencies are shifted to lower values, around 0.5, see figure 19c. This suggests, as already mentioned in section III B, that bubbles in this 𝐶 ′ solution see an effective surface tension close to the CMC value.

In order to consolidate our assumption that resonance causes break-up, we carried out some additional experiments in which the starting rotation speed is 94 rad.s -1 and is decreased down to 𝜔 = 62 rad.s -1 . This reverse break-up experiment has been performed for the 𝐶" (2 CMC) solution in