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Pneumonia, a lung infection causing inflammation, remains a leading cause of global mortality, resulting in an estimated annual fatality rate of approximately 4 million individuals according to the World Health Organization. Accurate and timely diagnosis of pneumonia in its early stages is crucial for effective patient care. Given the criticality of this issue, our study introduces an automated approach utilizing convolutional neural networks and transfer learning to detect pneumonia in chest X-ray images of children aged 1 to 5 years. We employed two pretrained ResNet-50 models trained on different datasets: ImageNet, containing 14 million natural images, and RadImageNet, consisting of 1.4 million medical images. Our results show that RadImageNet outperformed ImageNet, demonstrating superior performance in pneumonia detection. Evaluation using six key performance metrics revealed that the ResNet-50 model pretrained on RadImageNet achieved superior performance compared to the ImageNet-based model, further emphasizing the efficacy and interpretability of RadImageNet for binary classification tasks in medical image datasets. These findings underscore the importance of RadImageNet as a valuable source of pretrained models, particularly for small medical image datasets.

Introduction

Pneumonia is an infection that causes inflammation in one or both lungs. It can be caused by various organisms, including bacteria, viruses, and fungi. According to the World Health Organisation (WHO), pneumonia has an estimated annual fatality rate of approximately 4 million people. Consequently, it is the leading cause of death in both children and elderly individuals worldwide. Therefore, ensuring a timely and accurate diagnosis of pneumonia at an early stage is crucial for optimal patient care.

Several radiological imaging techniques can be utilized for lung disease diagnosis, including chest X-ray, computerized tomography (CT) of the lungs, chest ultrasound (US), and magnetic resonance imaging (MRI) of the chest. Among these techniques, a chest X-ray is the most commonly used modality for detecting pneumonia due to its low cost and widespread availability [START_REF] Li | Accuracy of deep learning for automated detection of pneumonia using chest X-ray images: a systematic review and meta-analysis[END_REF]. However, it should be noted that the use of chest X-rays for pneumonia detection can pose challenges, even for experienced radiologists, due to the similarities between pneumonia-related chest X-ray findings and those associated with other lung conditions such as cancer, pulmonary bleeding, and fluid overload [START_REF] Liang | A transfer learning method with deep residual network for pediatric pneumonia diagnosis[END_REF]. Consequently, relying solely on chest X-rays to diagnose pneumonia may result in delayed diagnosis and hinder the implementation of appropriate treatment strategies.

Therefore, there is a pressing need for the development of improved pneumonia detection methods that can enhance both the accuracy and speed of diagnosis. Researchers and healthcare professionals are actively exploring alternative approaches, including the utilization of advanced imaging techniques and the development of machine learning algorithms, to assist in the interpretation of radiological images. These advancements hold significant potential to facilitate early and accurate detection of pneumonia, enabling timely treatment interventions and ultimately improving patient outcomes.

One promising area of research is the application of machine learning in medical imaging, particularly in the field of medical image classification. Machine learning, a widely utilized technique within the realm of artificial intelligence (AI), enables computers to learn patterns from data samples [START_REF] Erickson | Machine learning for medical imaging[END_REF]. By leveraging machine learning algorithms, meaningful patterns can be extracted from various data types, including medical images. Within the domain of machine learning, deep learning, or deep machine learning, is a subset that involves the application of neural network models with multiple layers [START_REF] Do | Basics of deep learning: a radiologist's guide to understanding published radiology articles on deep learning[END_REF]. These deep neural networks have the ability to extract higher-level features from raw input data samples, such as medical images.

In the realm of medical image analysis, convolutional neural network (CNN) models have shown great promise [START_REF] Do | Basics of deep learning: a radiologist's guide to understanding published radiology articles on deep learning[END_REF]. Specifically designed for processing and extracting relevant information from images, CNNs employ an architecture that includes layers for convolution operations, pooling, and nonlinear activation functions. This design enables CNNs to effectively capture spatial relationships and patterns within images, making them highly suitable for tasks such as pneumonia detection in chest X-rays [START_REF] Lakhani | Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks[END_REF].

Over the past decade, numerous studies have utilized various machine learning models and deep neural networks to automatically identify lung diseases from chest X-ray images. It is important to note that training CNN models requires a large volume of labeled samples. Moreover, training a CNN model can be computationally intensive and demands powerful hardware due to the complex architectures of deep neural networks. To address these challenges, the use of transfer learning technique has been proposed as a deep learning approach [START_REF] Pan | A survey of transfer learning[END_REF].

Transfer learning has gained popularity as a solution for limited sample sizes and resource constraints. It is a common method in deep learning where a model designed for one problem is repurposed to tackle a different but related task. This approach is particularly valuable in cases where annotated images are scarce, and there are limited computing resources available for training new models from scratch [START_REF] Weiss | A survey of transfer learning[END_REF]. By leveraging transfer learning, the training process can be expedited with fewer input data, leading to improved performance and generalizability of deep learning models.

Successful transfer learning relies on several factors, including a large sample size, image diversity, and similarity between the training and target application images [START_REF] Pan | A survey of transfer learning[END_REF]. In the field of image analysis AI applications, transfer learning utilizing models trained on the ImageNet dataset has been extensively studied. ImageNet is a comprehensive dataset comprising over 14 million images of the natural world [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF]. It has served as a valuable resource for developing sophisticated models in computer vision, particularly for image classification tasks. Architectures of deep neural networks such as ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], Inception [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF], and DenseNet [START_REF] Huang | Densely Connected Convolutional Networks[END_REF] pretrained with Ima-geNet have gained widespread adoption in medical imaging applications, despite the differences in the tasks at hand. However, recent research has demonstrated that pretrained models derived from medical source databases can outperform pretrained models from ImageNet, showcasing the potential for achieving better performance with domain-specific data [START_REF] Xie | Pre-training on grayscale ImageNet improves medical image classification[END_REF].

Recently, an open radiologic deep learning research dataset called RadImageNet has been developed to address the challenges mentioned earlier [START_REF] Mei | RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning[END_REF]. RadImageNet serves as a valuable basis for transfer learning in medical imaging applications. The database comprises a vast collection of 1.35 million medical images, covering CT, MRI, and US modalities, across 11 distinct anatomic regions. Importantly, these images have annotated by radiologists who possess fellowship training and board certification, ensuring the accuracy and reliability of the dataset.

To further enhance the capabilities of deep learning models in medical imaging, a study was conducted where four convolutional neural networks (CNNs) were trained from scratch using the RadImageNet dataset [START_REF] Mei | RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning[END_REF]. The outcomes of this study have provided compelling evidence for the superiority of RadImageNet pretrained models over ImageNet pretrained models in the classification of eight distinct medical applications. Notably, the RadImageNet models showcased notable improvements in performance, ranging from 0.9% to 9.4% in terms of the area under the receiver operating characteristic curve (AUC).

Inspired by the significant advancements observed in the previous study, the present investigation employed pretrained ResNet-50 models obtained from both RadImageNet and ImageNet datasets. The primary objective was to focus on pneumonia detection by analyzing a medical dataset comprising chest X-ray images.

Evaluation using six key performance metrics demonstrated that the ResNet-50 model pretrained on RadImageNet achieved superior performance compared to the ImageNet-based model. These results further highlight the effectiveness and interpretability of RadImageNet for binary classification tasks in medical image datasets. Consequently, these findings reinforce the significance of RadImageNet as a valuable source of pretrained models, particularly for smaller medical image datasets.

Related Works

In recent years, CNN models have gained significant popularity for their accurate detection of various types of pneumonia infections. Several studies have proposed different CNN architectures to improve the performance of pneumonia detection systems.

Mao et al. [START_REF] Mao | Pneumonia Detection in chest X-rays: a deep learning approach based on ensemble RetinaNet and Mask R-CNN[END_REF] introduced a new and improved approach called RetinaNet and Mask R-CNN models for pneumonia detection. Their ensemble model utilized ResNet-50 and ResNet-101 networks as supporting networks. By combining the strengths of these architectures, they achieved enhanced accuracy in detecting pneumonia disease.

Rifa'i et al. [START_REF] Rifa'i | Analysis for Diagnosis of Pneumonia Symptoms Using Chest X-Ray Based on Resnet-50 Models With Different Epoch[END_REF] experimented with the ResNet-50 architecture using different epoch numbers, including 20 epochs, 50 epochs, and 100 epochs. They found that the best results were obtained using the ResNet-50 architecture with 100 epochs, showcasing its effectiveness in pneumonia detection.

Another study by Hasan et al. [START_REF] Hasan | A Combined Approach Using Image Processing and Deep Learning to Detect Pneumonia from Chest X-Ray Image[END_REF] presented a model based on the VGG-16 and VGG-19 architectures to detect pneumonia in chest X-ray images. Their approach demonstrated superior accuracy and reliability compared to the transfer learning model InceptionV3.

Chouhan et al. [START_REF] Chouhan | A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images[END_REF] focused on feature extraction using pretrained CNN models on the ImageNet dataset. They proposed an ensemble model that combined the outputs from AlexNet, DenseNet-121, InceptionV3, ResNet-18, and GoogLeNet. The ensemble model achieved an impressive accuracy of 96.4% on unseen dataset, surpassing the performance of individual models.

From the literature survey conducted above, it can be observed that CNN models such as VGG-16, VGG-19, ResNet-50, and ResNet-101 have shown promise in detecting pneumonia. However, it is crucial to conduct a comparative evaluation and analysis of these models to fully understand their effectiveness and accuracy in detecting pneumonia and to identify the most suitable model for a specific application.

Please note that the high performances mentioned earlier were achieved using pretrained models based on ImageNet, which is a collection of natural images, despite the differences in the specific tasks being addressed. In this research, we showcased that a pretrained ResNet-50 model derived from a medical source database called RadImageNet exhibited superior performance compared to the pretrained ResNet-50 model trained on ImageNet when applied to a medical image dataset [START_REF] Kermany | Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification[END_REF].

Methodology

Dataset

We utilized a dataset of chest X-ray images, collected from the Guangzhou Women and Children's Medical Center [START_REF] Kermany | Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification[END_REF] presented in [START_REF] Kermany | Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning[END_REF], for training and testing our models. The dataset comprises 5856 images, with 1583 images classified as Normal and 4273 images depicting Pneumonia. Therefore, each X-ray scan is labeled with one of two classes, Normal or Pneumonia, based on radiological records. The original images have varying dimensions. Sample images for each class are shown in Figure 1.

Data Preprocessing and Splitting

Image preprocessing is a crucial step in training deep learning models using specific libraries for deep learning tasks like TensorFlow and Keras. This subsection focuses on how to preprocess an image dataset using these libraries, particularly through the use of the ImageDataGenerator module.

When working with image datasets, the images may have varying sizes and dimensions, which can pose a problem for training a model since the input data must be consistent to be processed effectively. Therefore, a common preprocessing step is to resize all images to a fixed size. In our case, we will resize all images to 224 × 224 pixels.

The ImageDataGenerator module is a powerful tool for image preprocessing. This module has the ability to rescale the pixel values of images and split the image dataset into training and validation sets. In many cases, pixel values in images can range from 0 to 255. By using the argument rescale = 1./255, we can rescale the pixel values of images to be between 0 and 1. This procedure is called normalization of the pixel values, and it can help improve the training of the model, as it makes the training more numerically stable.

To ensure that our model is trained effectively and can generalize well to new, unseen data, we split the dataset into three sets: training, validation, and test. The validation_split argument in the ImageDataGenerator module splits the data into 85% training data and 15% validation data.

Table 1 shows the exact split of our dataset into the three sets. We Therefore, the module reads the images one by one, resizes them to the fixed size, shuffles them, and then splits the dataset into smaller batches using the batch_size parameter provided by the flow_from_directory function. Batching can help improve the convergence of the model during training, allowing for better generalization and faster training times.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a powerful tool for classifying image datasets. Specifically designed for image analysis and computer vision tasks, CNNs excel in tasks such as disease detection in medical imaging [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. A CNN model comprises multiple layers that perform various operations on the input image data. The key layers in a CNN model include:

• Convolutional layer: This layer applies a convolution operation to the input data, allowing the network to detect features from the image. Typically, a nonlinear activation function, such as the rectified linear unit (ReLU), follows the convolution operation to introduce nonlinearity and extract more complex features. The ReLU activation function sets the negative values to zero and preserves the positive values and it is defined as σ(z) = max(0, z), where z is the input value. By eliminating the negative values, ReLU accelerates the training process and helps CNNs learn discriminative features effectively [START_REF] Berner | Towards a regularity theory for ReLU networks -chain rule and global error estimates[END_REF].

Convolutional layers produce feature maps as their output, which are then passed on to the next layer in the network for further processing.

• Pooling layer: The pooling layer reduces the number of parameters in the feature maps, thereby decreasing computational complexity. It operates by downsampling the spatial dimensions of the feature maps, effectively summarizing the presence of features in the local neighborhood. Common pooling techniques include max pooling and average pooling, which retain the maximum or average value within each pooling region, respectively. By discarding irrelevant details and retaining important features, pooling helps improve translation invariance and reduce overfitting.

• Fully connected or dense layer: This layer is used for classification tasks, such as image classification problems. In a dense layer, each neuron is connected to every neuron in the previous layer, receiving inputs from all of them. The dense layer calculates a dot or scalar product between the inputs and learned weights and applies an activation function to produce the output. Common activation functions used in dense layers include sigmoid and softmax functions:

-Sigmoid activation function: The sigmoid function is often used in binary classification tasks. It maps the output of a dense layer to a probability value between 0 and 1, indicating the likelihood of belonging to the positive class. The sigmoid function is given by σ(z) = 1 1+e -z , where z is the input value. The sigmoid function's S-shaped curve (see Figure 2) ensures that the output value is always bounded within the range [0, 1], making it suitable for binary classification.

-Softmax activation function: The softmax function is commonly used in multi-class classification tasks. It converts the output of a dense layer into a probability distribution over multiple classes. The softmax function exponentiates each element of the input vector and normalizes it by dividing by the sum of all exponentiated values. This ensures that the resulting probabilities sum to 1, making it suitable for mutually exclusive classes. The softmax function is given by σ(z i ) = e z i n j=1 e z j , where z i is the input value and n is the total number of classes.

Figure 2 illustrates the plots of sigmoid and softmax activation functions which are serving binary and multi-class classification problems, respectively.

By combining these layers with appropriate activation functions (e.g., ReLU for convolutional layers, softmax or sigmoid for classification tasks), CNNs can learn and extract meaningful features from images. Consequently, they achieve accurate image classification and perform exceptionally well in various computer vision tasks. The core concept behind ResNets is the use of residual connections, also known as shortcut connections. In traditional architectures, the aim is to directly learn the underlying mapping H(x) by sequentially applying transformations to the input x, resulting in a layer output F (x). However, ResNets take a different approach by introducing the idea of residual learning. Residual learning involves learning a residual mapping F (x) = H(x) -x instead. This means that the network focuses on learning the difference between the output of a layer and its input, rather than directly learning the mapping itself. By doing so, the network can capture the underlying features necessary for improving predictions.

The key advantage of residual connections is that they allow information to skip one or more layers and be directly fed to deeper layers. In other words, the output of a residual block in a ResNet is computed as H(x) := F (x) + x, where x represents the input and F (x) represents the learned residual mapping. This addition operation enables the network to learn the residual functions and leverage the identity mapping (x) to preserve important information throughout the layers.

Figure 3 illustrates a residual block within a deep residual network, where the residual connection skips two layers.

One of the significant benefits of ResNets is that they alleviate the vanishing gradient problem commonly encountered in deep neural networks [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. The vanish-Figure 3: A residual block of the deep residual network.

ing gradient problem occurs when the gradients become exponentially small, making it difficult to update the earlier layers effectively. By using residual connections, ResNets provide a shortcut for the gradient flow, allowing the gradients to propagate more easily through the network. This facilitates training deep networks with improved optimization and avoids degradation in performance as the network depth increases.

ResNet-50: This model is a deep residual CNN with an architecture comprising 50 layers. Its architecture is composed of a series of convolutional layers, including residual blocks, followed by a global average pooling layer and a fully connected layer for classification. The residual blocks are the fundamental building blocks of ResNet-50. Each residual block typically contains multiple convolutional layers. These layers learn to extract increasingly complex features from the image data as the depth of the network increases. The residual connections in each block allow for the direct flow of information, enabling the network to effectively capture and utilize both low-level and high-level features.

ResNet-50 has approximately 23.5 million trainable parameters, which makes it a relatively large model. Despite its depth and parameter count, ResNet-50 achieves outstanding performance on various image classification tasks. Its success can be attributed to the effectiveness of the residual connections in training deep networks and capturing intricate feature representations.

Image Datasets: ImageNet and RadImageNet

ImageNet is a widely used, publicly available dataset for image classification tasks in computer vision research [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF]. It is known for its large-scale collection of labeled images and has become a benchmark dataset for training and evaluating deep learning models, particularly CNNs, in the field of image classification [START_REF] Xie | Pre-training on grayscale ImageNet improves medical image classification[END_REF].

The ImageNet dataset consists of over 14 million labeled images that are categorized into more than 20,000 different classes or categories. The dataset covers a wide range of object categories, including natural images such as animals, plants, and everyday objects. It has played a crucial role in advancing the state-of-the-art in image classification and has been instrumental in the development of deep learning algorithms.

On the other hand, the RadImageNet database is a significant addition to the field of medical imaging. It is a large-scale dataset that comprises approximately 1.4 million radiologic images, specifically focusing on CT, MRI, and US modalities [START_REF] Mei | RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning[END_REF]. The images in RadImageNet cover 11 anatomic regions and have been meticulously annotated by fellowship-trained and board-certified radiologists.

The annotations provided by the experts in the field of radiology make RadIm-ageNet a valuable resource for training and evaluating deep learning models specifically designed for medical image analysis. In [START_REF] Mei | RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning[END_REF], the authors have utilized RadIm-ageNet to train neural networks from scratch, enabling the development of powerful pretrained models that excel in tasks related to medical image classification and analysis. Therefore, ImageNet is a widely recognized dataset for general image classification tasks, while RadImageNet serves as an essential resource for medical imaging research, particularly in the development of deep learning models for medical image analysis.

Transfer Learning

Transfer learning has gained popularity in deep learning due to the lack of annotated images and limited computing resources required to train models from scratch. This technique enables faster training with fewer input data and improves the performance and generalizability of deep learning models. In medical imaging applications, transfer learning using models trained on ImageNet has been extensively studied. The ResNet, DenseNet, and Inception architectures have been widely adopted for classifying pneumonia disease.

While medical imaging models pretrained with ImageNet have shown high performance, recent studies have demonstrated that models pretrained on medical source datasets can achieve even better results. However, the effectiveness of transfer learning depends on several factors, including a large sample size, diverse images, and the similarity between the training and target application images. Drawing inspiration from these concepts, we utilized the pretrained ResNet-50 model trained on RadIm-ageNet, a comprehensive and diverse medical image dataset. We then compared its performance with the pretrained ResNet-50 model trained on ImageNet. It is important to note that we employed the same architecture for both models to ensure a fair comparison.

In our approach, we utilized pretrained ResNet-50 models that were originally trained on ImageNet and RadImageNet, respectively. To tailor these models to our specific task, we removed the original output layer. This involved discarding the final classification layer, which was initially designed to classify images into numerous categories, and adapting it for our binary classification problem.

Next, we froze all the layers in the networks, which means that we prevented their weights from being updated during the training process. This approach is commonly referred to as transfer learning, as we leveraged the knowledge and representations learned by the models on the respective datasets (ImageNet and RadImageNet) to benefit our own classification task.

To customize the network for our specific task, we added a flatten layer after the frozen layers. This layer reshapes the output from the previous layers into a one-dimensional vector, which serves as the input for subsequent layers. In addition, we included a dense layer with a sigmoid activation function. This dense layer has a number of neurons equal to the desired number of classes in our binary classification problem. The sigmoid activation function is commonly used in binary classification tasks as it outputs probabilities for the two classes or labels. The output of this layer represents the predicted probabilities for each class, which can be interpreted as the likelihood of an input image belonging to a certain class.

Meanwhile, we utilized class activation maps to facilitate the debugging of deep neural networks. To achieve this, we employed the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm for both models. By leveraging this technique, we gained valuable insights into the areas of interest within chest X-ray radiographs that the proposed network focused on while detecting pneumonia disease. The result of Grad-CAM is presented as a heatmap visualization, allowing for a clearer understanding of the network's attention regions.

Training Phase

In this section, we employed a transfer learning approach to evaluate and compare pretrained ResNet-50 models on the ImageNet and RadImageNet datasets, respectively. Initially, radiologists were tasked with distinguishing between Pneumonia chest X-ray images and Normal images. Therefore, our models were designed to address a binary classification problem, specifically classifying images as either Pneumonia or Normal.

All of the proposed networks were trained using a binary cross-entropy loss function. Furthermore, the convergence results for gradient descent systems play a crucial role in understanding the behavior and efficiency of optimization algorithms [START_REF] Ahmadova | Convergence results for gradient flow and gradient descent systems in the artificial neural network training[END_REF]. To optimize our models, we employed the Adam optimizer, which is a stochastic gradient descent (SGD) method with additional features. The Adam optimizer has gained popularity in various deep learning tasks due to its adaptive learning rates and momentum-based updates. We set the learning rate to 0.001, the batch size to 16, and the number of epochs (iterations) to 25. Python was utilized in conjunction with the TensorFlow and Keras libraries to train, validate, and test our proposed models. The training process was conducted on a Kaggle notebook equipped with two NVIDIA T4 GPUs and 16 GB of allocated RAM. The codes for this research work can be accessed at https://github.com/IsmailHuseynov/RadImageNet. Specifically, Figure 6a illustrates the confusion matrix for the ResNet-50 model pretrained on the ImageNet dataset. This particular model accurately predicts 140 out of 234 Normal chest X-rays, but it misclassifies 94 normal chest X-rays as Pneumonia. Moreover, it correctly predicts 385 out of 390 Pneumonia chest X-rays, while mistakenly classifying 5 Pneumonia X-rays as Normal chest X-rays.

Results and Discussion

On the other hand, Figure 6b portrays the confusion matrix for the ResNet-50 model pretrained on the RadImageNet dataset. In this case, the model achieves improved performance compared to the ImageNet scenario. It accurately predicts 171 out of 234 Normal chest X-rays, with only 63 Normal chest X-rays being misclassified as Pneumonia. Additionally, it correctly predicts 388 out of 390 Pneumonia chest X-rays, misclassifying only 2 Pneumonia X-rays as Normal chest X-rays.

Therefore, based on the comparison of these confusion matrices, it is evident that the RadImageNet case outperforms the ImageNet case, demonstrating superior performance in terms of classification accuracy. The AUC of the ROC curve is widely regarded as one of the most crucial evaluation metrics for assessing the performance of classification models. It provides a comprehensive measure of the model's ability to correctly classify instances across all possible thresholds. By analyzing the ROC curves and AUC values, we can determine the effectiveness of the transfer learning models in the specific classification tasks at hand. The receiver operating characteristic (ROC) curves depicting the performance of different transfer learning models on the testing dataset can be observed in Figure 7. The ROC curve illustrates the trade-off between the true positive rate (TPR) and the false positive rate (FPR) for varying classification thresholds.

In the ImageNet case (Figure 7a), the pretrained ResNet-50 model achieved an area under the ROC curve (AUC) of 96.6 %. This indicates a high discriminative ability of the model in distinguishing between positive (Pneumonia) and negative (Normal) instances. On the other hand, in the RadImageNet case (Figure 7b), the pretrained ResNet-50 model achieved an AUC of 98.1 %. This suggests that RadImageNet case demonstrates an even better performance and higher accuracy in classifying the data from the dataset of chest X-ray images of lungs [START_REF] Kermany | Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification[END_REF]. 8 presents examples of Grad-CAM activation maps, which are utilized to identify informative regions in chest X-ray images for pneumonia detection using the proposed ResNet-50 models. As shown in Figure 8, the ResNet-50 model pretrained on the RadImageNet dataset effectively focuses on the lungs to detect pneumonia, surpassing the performance of the ResNet-50 model pretrained on the ImageNet dataset. An intriguing finding from our study is that all the chest X-rays depicted in Figure 8 exhibit class activation maps that highlight regions within the chest, indicating that the proposed models exclusively consider areas inside the chest and effectively leverage heat maps to identify lung inflammation and diagnose pneumonia.

Conclusion and Future Directions

In this study, we employed two CNN-based deep transfer learning algorithms to automatically classify chest X-ray radiographs into Pneumonia and Normal classes, addressing a binary classification problem. We utilized two ResNet-50 models pretrained on the natural image dataset of ImageNet and the medical image collection of RadImageNet, respectively, while maintaining the same architecture. By leveraging transfer learning, we accelerated the training of our proposed models and overcame the challenge of limited data samples.

Based on six key performance metrics, the ResNet-50 model pretrained on RadIm-ageNet showcased superior performance compared to the ImageNet case, demonstrating its higher interpretability and effectiveness in binary classification tasks on medical image datasets. This finding highlights the value of RadImageNet as a pretrained model source, particularly for small medical image datasets.

Moving forward, our research will expand to encompass the detection and differentiation of multi-class X-ray images, specifically targeting bacterial and viral pneumonia cases. Additionally, we plan to create new pretrained VGG-16 and VGG-19 deep neural network models based on RadImageNet, a large-scale medical image dataset. These models will be further explored for disease detection beyond the scope of ImageNet, offering enhanced utility and applicability in the medical domain.
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 1 Figure 1: Sample scans of chest X-ray with pneumania and normal patients.

  use the training set to train our model, the validation set to monitor the performance during training, and the test set to evaluate the final performance of the model on new, unseen data. It is important to keep the test set completely separate from the training and validation sets to avoid overfitting and obtain an unbiased estimate of the model's performance.
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 2 Figure 2: Plots of sigmoid and softmax activation functions.

4. 1

 1 Residual Networks: ResNet-50 Residual Networks (ResNets) are a revolutionary architecture in deep learning designed to overcome the challenges associated with training very deep neural networks. Introduced by K. He et al. [23] from Microsoft Research in 2015, ResNets have had a profound impact on the field of image analysis.

  Figure 4a depicts the training and validation curves for accuracy, while Figure 4b illustrates the training and validation curves for loss of each model. For the ImageNet case, the training data accuracy increases sharply from epoch 0 to epoch 4, and gradually increases until epoch 25, which is equivalent to 0.96. The accuracy graph of the validation dataset is 0.98 for epoch 14, as shown in Figure 4a. In terms of the training results, there is a significant decline in the loss curve from epoch 0 to epoch 25, where the loss is close to 0.1. As for the loss of the validation results, the loss curve declines with fluctuation, and at epoch 16, it equals 0.07.
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 4 Figure 4: Accuracy and loss curves of the proposed ResNet-50 models

Figure 5 :

 5 Figure 5: Comparison of accuracy and loss curves of the proposed ResNet-50 models.
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 6 Figure 6 presents a comparison of the confusion matrices obtained from each proposed model. The confusion matrix provides valuable insights into the performance of a classification model, illustrating four key parameters: true positive (TP), false positive (FP), true negative (TN), and false negative (FN).Specifically, Figure6aillustrates the confusion matrix for the ResNet-50 model pretrained on the ImageNet dataset. This particular model accurately predicts 140 out of 234 Normal chest X-rays, but it misclassifies 94 normal chest X-rays as Pneumonia. Moreover, it correctly predicts 385 out of 390 Pneumonia chest X-rays, while mistakenly classifying 5 Pneumonia X-rays as Normal chest X-rays.On the other hand, Figure6bportrays the confusion matrix for the ResNet-50 model pretrained on the RadImageNet dataset. In this case, the model achieves improved performance compared to the ImageNet scenario. It accurately predicts 171 out of 234 Normal chest X-rays, with only 63 Normal chest X-rays being misclassified as Pneumonia. Additionally, it correctly predicts 388 out of 390 Pneumonia chest X-rays, misclassifying only 2 Pneumonia X-rays as Normal chest X-rays.Therefore, based on the comparison of these confusion matrices, it is evident that the RadImageNet case outperforms the ImageNet case, demonstrating superior performance in terms of classification accuracy.
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 6 Figure 6: Confusion matrices of the proposed ResNet-50 models.
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 7 Figure 7: ROC curves with AUC for the proposed ResNet-50 models.
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 8 Figure 8: X-ray image and the corresponding heatmaps

Figure

  Figure 8 presents examples of Grad-CAM activation maps, which are utilized to

Table 1 :

 1 Distribution of a dataset of chest X-ray images. As shown in Table 1, the dataset consists of 5856 images, with 4273 (73%) images belonging to the Pneumonia class and 1583 (27%) images belonging to the Normal class. The training set contains 4448 images, the validation set contains 784 images, and the test set contains 624 images.

	Data Splitting	Normal	Pneumonia	Total
	Training samples	1147	3301	4448 (85 %)
	Validation samples	202	582	784 (15 %)
	Test samples	234	390	624
	Total	1583 (27 %) 4273 (73 %)	5856

Table 2

 2 compares the performance metrics between proposed models on the test dataset. The pretrained ResNet-50 model on ImageNet dataset achieves 84% accuracy score, while ResNet-50 model pretrained on the RadImageNet dataset achieves 90% accuracy on testing dataset. In comparison with these models, the pretrained model on RadImageNet showed better performance than the pretrained model on ImageNet dataset. The output may appear excellent in terms of accuracy score, but it can be misleading since the used dataset of chest X-rays is an imbalanced dataset (73 % Pneumonia class and 23 % Normal class). In such scenarios, other metrics such as precision, recall and F1-score should be used for each class in conjuction with the accuracy score to gain better understanding of the model's performance. As observable in Table2, the precision, recall and F1-score in RadImageNet case shows superior performance than ImageNet case for each class.

	Model		Precision	Recall			F1-score
	ResNet-50 ImageNet RadImageNet ImageNet RadImageNet ImageNet RadImageNet
	Normal	97%	99%	60%	73%	74%	84%
	Pneumonia	80%	86%	99%	99%	89%	92%

Table 2 :

 2 Performance metrics for the proposed ResNet-50 models.

(a) ImageNet case (b) RadImageNet case

Evaluation Criteria

Upon completing the training phase, we proceeded to evaluate the performance of the proposed models by measuring their effectiveness on the test dataset. We employed six key performance metrics to compare and assess the models' capabilities: accuracy, recall, precision, F1-score, area under the curve (AUC), and receiver operating characteristic (ROC) curve:

• Accuracy represents the overall correctness of the model's prediction, measuring the proportion of correctly classified instances out of the total number of instances;

• Recall indicates the model's ability to correctly identify positive instances among all the actual positive instances in the dataset;

• Precision measures the model's ability to correctly classify positive instances among all instances predicted as positive. It focuses on minimizing false positives;

• F1-score is a metric that combines both precision and recall into a single value, providing a balanced measure of a model's performance. The F1-score is a harmonic mean of the precision and recall. The highest possible value of an F1-score is 1, indicating perfect precision and recall, and the lowest possible value is 0, if either precision or recall are zero;

• Area under the curve (AUC) measures the model's ability to distinguish between positive (Pneumonia) and negative (Normal) classes. The AUC value ranges from 0 to 1, where a value of 0.5 indicates a model that performs no better than random guessing, and a value of 1 indicates a perfect model;

• Receiver operating characteristic (ROC) is a graphical representation of the performance of a binary classification problem. It plots the true positive rate (TPR) on the y-axis against the false positive rate (FPR) on the x-axis.

The ROC curve demonstrates how well the model can distinguish between positive (Pneumonia) and negative (Normal) classes at different classification thresholds. The closer the curve is to the top-left corner of the plot, the better the model's performance.