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. Along the way, we investigate the behavior of Hr(n) for several classes of finitely generated groups, including abelian groups, certain nilpotent groups, lamplighter groups, and Cartesian products of free groups.

Introduction

Let Γ be a finitely generated group endowed with a finite generating set. Denote by |•| the induced word distance and by S n = {x ∈ Γ : |x| = n} the sphere of radius n centered at the neutral element e of Γ. We set

v = lim sup n→∞ 1 n log ♯S n .
The number v is called the volume growth of Γ with respect to the chosen generating set. Note that v is also the growth rate of balls, i.e. v = lim sup n→∞ 1 n log ♯B n , where B n is the ball of radius n centered at e, see [Man12, Section 2.2] for more details. The group Γ has exponential growth (respectively sub-exponential growth) if v > 0 (respectively v = 0) and this does not depend on the choice of the generating set, although the exact value of v does, when non-zero.

Consider an admissible probability measure µ on Γ. Let p n (x, y) be the n-step transition probability for the random walk (X k ) with step distribution µ. Define for 0 < r ≤ R the Green function

G(x, y|r) = ∞ n=0 r n p n (x, y),
where R is the radius of convergence of the series, which is also the inverse of the spectral radius of the random walk. When r = 1 we write G(x, y) = G(x, y|1) for simplicity. Note that we have G(x, y|r) = G(e, e|r)F (x, y|r), where F (x, y|r) is We will always consider random walks that are transient at the spectral radius, i.e. G(x, y|r) is finite for every x, y ∈ Γ and for every r ≤ R. By Varapoulos Theorem [Woe00, Theorem 7.8], only groups with at most quadratic growth can carry a random walk which is not transient at the spectral radius. In other words, we will always assume that Γ is not virtually Z d , d ≤ 2. In particular, this ensures that H r (n) and ω Γ (r) are well defined for every r ≤ R.

Notations. In all the paper, given two functions f and g, we write f ≃ g if the difference between f and g is bounded from above and below, that is |f -g| ≤ C for some constant C. We write f ≃ L g if the constant C depends on a parameter L. Assuming further that f and g are positive, we write f ≍ g if the ratio of f and g is bounded from above and below, that is 1 C f ≤ g ≤ Cf for some positive constant C. Similarly, if C depends on L, we write f ≍ L g. Also, if f ≤ Cg, we write f ≺ g and f ≺ L g if C depends on L. If the dependency is not clear from the context, we will avoid these notations. This paper mostly deals with the asymptotics of H r (n) as n goes to infinity. A fruitful line of research in the theory of random walks is to compute asymptotics in space of the Green function, that is asymptotics of G(e, x|r) as x goes to infinity. This is referred as renewal theory and goes back to Blackwell's renewal theorem for drifted random walks on R, see [START_REF] Blackwell | Extension of a renewal theorem[END_REF] and earlier references therein. The terminology renewal comes from an interpretation of the Green function G(e, x) as the probability that a renewal event takes place at x for a suited process, see [START_REF] Spitzer | Principles of Random Walks[END_REF]Chapter II.9].

In fact, the terminology renewal theory is used in a much broader setting and we refer to [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] Chapter XI] for a more complete exposition within the scope of probability theory. Let us also mention that Lalley [START_REF] Lalley | Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits[END_REF] generalized classical renewal theory, with a new approach to deal with asymptotics of certain counting functions arising in geometric group theory. This led to significant research in dynamical systems, where renewal theory is now a common thread.

Finally, note that Ledrappier interpreted the computation of the limit of H 1 (n) on the free group as a renewal theorem for the distance [START_REF] Ledrappier | Some asymptotic properties of random walks in free groups[END_REF], see also [START_REF] Ledrappier | A renewal theorem for the distance in negative curvature[END_REF] for related results concerning the Brownian motion on the universal cover of compact negatively curved manifolds. However, besides such specific examples, the behaviors of H r (n) and ω Γ (r) have not been investigated much in literature, so let us first explain in which context these quantities occur.

Consider a probability measure ν on Z ≥0 = {0, 1, 2, ...}. The branching random walk driven by ν and µ on Γ, denoted by BRW(Γ, ν, µ) is described as follows. One starts with a single particle at e. For every n, every alive particle at time n dies after giving birth to an independent number of children, according to the distribution of ν, each of which independently moves on Γ according to the distribution of µ. The measure ν is called the offspring distribution.

In recent years, there has been a large body of work dedicated to understanding the asymptotic behavior of BRW(Γ, ν, µ) in terms of geometric features of Γ. For such study, one usually condition on non-extinction of the system, which boils down to considering an offspring measure distributed on N = {1, 2, ...}, see [AN04, Chapter 1]. It is thus natural to assume that E[ν] > 1, otherwise, conditioned on non-extinction, ν is the Dirac measure at 1 and the branching random walk is nothing but the usual random walk whose step distribution is given by µ. One of the cornerstone result is that letting E[ν] = r, then 1 < r ≤ R if and only if the branching random walk is transient, i.e. almost surely it does not visit every vertex infinitely many times, see [START_REF] Benjamini | Markov chains indexed by trees[END_REF] and [START_REF] Gantert | The critical branching Markov chain is transient. Markov Process[END_REF]. Furthermore, if 1 < r ≤ R, then the branching random walk has exponential volume growth by [START_REF] Benjamini | On the trace of branching random walks[END_REF]. Precisely, letting M n be the cardinality of the number of elements of S n that are ever visited by the branching random walk, we have that almost surely, lim sup

n→∞ 1 n log M n > 0.
In some cases, such as hyperbolic groups [SWX22, Theorem 1.1] and relatively hyperbolic groups [DWY22, Theorem 1.1], it was shown that this growth rate coincides almost surely with the growth rate of the Green function at 1 < r ≤ R.

That is,

lim sup n→∞ 1 n log M n = ω Γ (r).
Moreover, for hyperbolic groups, we have H r (n) ≍ e nωΓ(r) , i.e. the Green function has purely exponential growth, see [SWX22, Theorem 3.1].

In fact, our original motivation for this paper was to answer some questions raised in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] about branching random walks on relatively hyperbolic groups. We introduce the following Poincaré series associated with µ on Γ. For r ≤ R and s ∈ R, we set Θ Γ (r, s) = x∈Γ G(e, x|r)e -sd(e,x) = n≥0 H r (n)e -sn .

(1.1)

The growth rate ω Γ (r) is thus the critical exponent of this Poincaré series, i.e. for s < ω Γ (r), Θ Γ (r, s) diverges and for s > ω Γ (r), Θ Γ (r, s) converges.

Several criteria were found in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] to ensure that this Poincaré series diverges at s = ω Γ (r). One of the missing pieces was whether there exists an example with convergent Poincaré series. Our main result exhibits such an example by actually constructing a relatively hyperbolic group for which divergence of the Poincaré series depends on r. Precisely, we prove the following.

Theorem 1.1 (Theorem 7.9). There exists a relatively hyperbolic group Γ, endowed with a finitely supported symmetric admissible probability measure µ, and there exist 1 < r * < r ♯ < R such that

(1) for any r ≤ r * , Θ Γ (r, ω Γ (r)) diverges,

(2) at r = r ♯ , Θ Γ (r, ω Γ (r)) converges.

Remark 1.2. We are unable to determine whether the second assertion is true for any r > r * . If this were true, we would obtain a phase transition for the divergence of the Poincare series and also for all the assertions in Corollary 1.3 below. However, up to changing the measure µ, we have a weak form of a phase transition at the level of the parabolic subgroups, see Remark 7.11 for more details.

We are now moving on explaining several applications of Theorem 1.1. Before that, let us put into context the series Θ Γ (r, s) under consideration. The question whether Θ Γ (r, s) converges or diverges at s = ω Γ (r) is of particular importance for many properties such as the construction of boundary measures and growth problems. It is also related to the parabolic gap property coined in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] that we discuss next.

Consider a relatively hyperbolic group Γ and a maximal parabolic subgroup P . The growth rate of the Green function induced on P is defined as

ω P (r) = lim sup n→∞ 1 n log x∈P |x|=n
G(e, x|r).

Following [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF], we say that Γ has a parabolic gap along P for the Green function at r ∈ [1, R] if ω P (r) < ω Γ (r). If this holds along every parabolic subgroups, we say Γ has a parabolic gap for the Green function at r and if this in turn holds for every r ∈ [1, R] we say that Γ has a parabolic gap for the Green function. This notion is analogous to the parabolic gap condition introduced in [START_REF] Dal'bo | Séries de Poincaré des groupes géométriquement finis[END_REF], where first examples of convergent (standard) Poincaré series were constructed without this parabolic gap condition. As an interesting consequence, the authors of [START_REF] Dal'bo | Séries de Poincaré des groupes géométriquement finis[END_REF] produced Patterson-Sullivan measures having atoms at parabolic points in the visual boundary of Hadamard manifolds.

In [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF], we proved that if there exists a relatively hyperbolic group with convergent Poincaré series, then the parabolic gap condition fails. On the other hand, having a parabolic gap has various applications related to asymptotic properties of branching random walks, see in particular [DWY22, Theorem 1.8, Remark 5.4].

Motivated by this discussion and by the work of [START_REF] Dal'bo | Séries de Poincaré des groupes géométriquement finis[END_REF], we make use of the above theorem to further develop various properties with a similar behavior. We introduce a family of Patterson-Sullivan type measures ν e (r) associated with the Poincaré series defined in (1.1) and a family of proper distances d r which are quasiisometric to the word distance. We summarize here the different results we obtain, see Theorem 7.9, Corollary 7.13 and Theorem 7.19.

Corollary 1.3. The pair (Γ, µ) in Theorem 1.1 has the following properties:

(1) the parabolic gap for the Green functions holds for r ≤ r * but fails at r = r ♯ , (2) the Patterson-Sullivan measure ν e (r) is supported on conical limit points for r ≤ r * and is purely atomic and supported on parabolic limit points at r = r ♯ , (3) the growth tightness for the proper distance d r holds for r ≤ r * but fails at r = r ♯ .

Remark 1.4. In [START_REF] Peigné | On some exotic Schottky groups[END_REF], Peigné constructed a divergent Schottky group without the parabolic gap condition. In view of our examples, it is relevant to ask here whether there exist examples of divergent Poincaré series (1.1) without a parabolic gap for the Green function.

Remark 1.5. The proper metric in (3) is defined by

d r (x, y) := ω Γ (r)|x -1 y| + |x -1 y| r
so it is a linear combination of the word metric |x -1 y| and the r-Green metric |x -1 y| r := -log G(x,y|r) G(e,e|r) . Cashen-Tao [START_REF] Christopher | Growth tight actions of product groups[END_REF] have shown examples of product groups with growth tightness for one generating set but not for another generating set. The above examples within the class of relatively hyperbolic groups are new.

These theorems are the conclusion of several results that we prove along the paper. If we restrict our attention to branching random walks, the study of H r (n) and ω Γ (r) seems to be relevant only for r > 1. However, as we now observe, even for r ≤ 1, both these quantities appear naturally and are worth being studied.

For any subset A of Γ, the growth rate ω A (r) of the Green function restricted to A at r can be defined similarly to ω Γ (r). Namely, we set

H A,r (n) = x∈Sn∩A G(e, x|r) and ω A (r) = lim sup n→∞ 1 n log H A,r (n).
We can interpret ω A (r) via the first return kernel to A associated with rµ, which is defined by

p r,A (x, y) = n≥1 z1,...,zn-1 / ∈A r n p(x, z 1 )p(z 1 , z 2 )...p(z n-1 , y), x, y ∈ A.
Letting G r,A denote the corresponding Green function, it holds that for every x, y in A, G r,A (x, y|1) = G(x, y|r) by [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF]Lemma 4.4]. Consequently, the growth rate ω A (r) coincides with the growth rate at 1 of this new Green function G r,A . In general, there is no reason for p r,A to be a Markov transition kernel, that is, y∈A p r,A (x, y) might not be a constant equal to 1. When A is a subgroup of Γ, then p r,A is A-invariant, so y∈A p r,A (x, y) is independent of x, but there is still no reason for this transition kernel to be Markov. As a matter of fact, in various interesting cases, p r,A is a sub-Markov transition kernel. Letting t be its total mass and setting pr,A = t -1 p r,A and G r,A for the corresponding Green function, we see that

G r,A (•, •|1) = G r,A (•, •|t).
Therefore, the growth rate ω A (r) restricted to A at r coincides in this case with the growth rate at some t < 1 of a Markov transition kernel on A. As explained above, in the context of relatively hyperbolic groups, letting A be a maximal parabolic subgroup, the relation between ω A (r) and ω Γ (r) is of particular importance in understanding the asymptotic behavior of H r (n). In particular, this discussion motivates the study of H r (n) and ω Γ (r) also for r ≤ 1.

In fact, a large part of our work is devoted to understanding the behavior of H 1 (n) for symmetric admissible and finitely supported random walks on amenable groups and our study goes beyond applications to relatively hyperbolic groups.

Here is a summary of the different results we obtain.

Theorem 1.6 (Theorem 3.1, Theorem 4.1). The function H 1 (n) is asymptotically linear in n for the following classes of groups:

(1) if Γ is a free abelian group of finite rank endowed with a finitely supported symmetric admissible probability measure, then H 1 (n) ∼ Cn for any finite generating set,

(2) if Γ is a finitely generated nilpotent group of nilpotency class N Γ ≤ 2 endowed with a finitely supported symmetric admissible probability measure, then H 1 (n) ≍ n for any finite generating set, (3) if Γ is a lamplighter group endowed with the set of generators considered in [START_REF] Brofferio | Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs[END_REF], then for the simple random walk, H 1 (n) ∼ Cn.

Finally, elaborating on the work of Picardello and Woess [START_REF] Picardello | The full Martin boundary of the bi-tree[END_REF], we prove the following phase transition result for random walks on bi-trees. Consider the Cartesian product of two regular trees T 1 and T 2 of respective degree l 1 and l 2 . Let µ i be finitely supported admissible symmetric probability measures on T i and set

µ = αµ 1 + (1 -α)µ 2 for 0 < α < 1.
Theorem 1.7 (Theorem 5.1). The probability measure µ on T 1 × T 2 satisfies the following. If l 1 = l 2 , then for every fixed r < R, H r (n) ≍ e nωΓ(r) for all n ≥ 1. If l 1 > l 2 , then there exists a phase transition at some r 0 ∈ (1, R) such that the following holds.

(1) For every r < r 0 , we have H r (n) ≍ e nωΓ(r) for all n ≥ 1.

(2) At r = r 0 , we have H r (n) ≍ n -1 e nωΓ(r) for all n ≥ 1.

(3) For every r 0 < r < R, we have H r (n) ≍ n -3/2 e nωΓ(r) for all n ≥ 1.

This theorem is a pivotal result in our paper. It is the conclusion of our general study of H r (n) on finitely generated group and is also one of the main pieces in proving Theorem 1.1.

Let us now give more details on how the paper is organized. It has seven sections including the introduction. In the first half which consists of Sections 2, 3, 4 and 5, we give general statements on H r (n) and ω Γ (r), as well as various examples of different situations. The second half focuses on applications to relatively hyperbolic groups and is divided into Sections 6 and 7. It is based both on the first half and on previous results of [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF].

More specifically, in Section 2, we consider the growth rate ω Γ (r) at the special value r = 1. We prove that ω Γ (1) = 0 and study further continuity of the function r → ω Γ (r) at 1.

We then study the asymptotic behavior of H 1 (n) on amenable groups Γ and we prove Theorem 1.6 in Sections 3 and 4. We show in particular that H 1 (n) is asymptotically linear in n for abelian groups and provide partial results for nilpotent groups, see Theorem 3.1 and Conjecture 3.5. This raises the question whether H 1 (n) always behaves linearly in amenable groups. We prove that it is the case for the simple random walk on the lamplighter group in Theorem 4.1. The main strategy in these two sections is basically to combine previously known renewal results, i.e. about the asymptotics in space of the Green function and known results on the large scale properties of the spheres S n .

Then, in Section 5, we prove Theorem 1.7. The behavior of H r (n) that we exhibit is of an again different form than the one described above, for (relatively) hyperbolic groups and for amenable groups respectively. As a particular consequence, we see that the quantity H r (n) may fail to be sub-multiplicative. This disproves an argument due to Candellero, Gilch and Müller [START_REF] Candellero | Branching random walks on free products of groups[END_REF] as well as its consequences, see Remark 7.14 for more details.

In Section 6, we focus on relatively hyperbolic groups. We introduce a proper distance d r on Γ, 1 ≤ r ≤ R, and its associated Poincaré series P(s). For r < R, d r is quasi-isometric to the word distance. The critical exponent of P(s) is 1 and we prove that divergence, respectively convergence of P(s) at 1 is equivalent to divergence, respectively convergence of the Poincaré series Θ Γ (r, s) at s = ω Γ (r). Then, we use P(s) to construct Patterson-Sullivan type measures ν x on the Bowditch boundary of the group. This allows us to find a characterization of divergence of Θ Γ (r, s) at the growth rate ω Γ (r) in terms of the support of the measures ν x , see in particular Theorem 6.17.

We then prove Theorem 1.1 in Section 7 and answer some questions raised in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF]. In particular, we show that whenever maximal parabolic subgroups are amenable, Γ necessarily has a parabolic gap for the Green function, see Corollary 7.4. Along the way, we study further the distance d r and prove that the parabolic gap for the Green function is equivalent to growth tightness for the distance d r . In particular, we find that for suited r, Γ is not growth tight for d r , which allows us to partially answer a question raised in [START_REF] Goulnara | Growth tight actions[END_REF], see Corollary 7.22.

The growth rate of the Green function at r = 1

We study ω Γ (1) in this section. We first show that ω Γ (r) always vanishes at 1 and then study continuity at this special value.

2.1. Nullity of the growth rate at r = 1. In this section, we do not need to assume that the random walk is symmetric, nor that it is finitely supported. We start with the following lower bound.

Lemma 2.1. Let Γ be a finitely generated group and µ an admissible probability measure on Γ. Then, ω Γ (1) ≥ 0.

Proof. Since the series

∞ n=0 H 1 (n) = ∞ k=0 x∈Γ p k (e, x) = ∞ k=0 1 = ∞, we have that ω Γ (1) = lim sup n→∞ 1 n log H 1 (n) ≥ 0.
Remark 2.2. If µ is finitely supported, then there is a constant C > 0 such that H n (1) ≥ C for all n ≥ 1. In fact, since the random walk driven by µ is transient and has bounded jumps at most C 0 > 0, it will eventually visit the annulus

A(n, n + C 0 ) = {x, n ≤ |x| ≤ n + C 0 }. Note that x∈A(n,n+C0) G(e, x) = x∈A(n,n+C0) k≥0 p k (e, x) = x∈A(n,n+C0) k≥0 P(X k = x).
Thus,

x∈A(n,n+C0)
G(e, x) ≥ P(the random walk ever visits A(n, n

+ C 0 )) ≥ 1. Now by [DWY22, Lemma 3.1 (1)], H 1 (n) ≍ H 1 (n + 1), hence x∈A(n,n+C0) G(e, x) ≍ H 1 (n),
which concludes the proof that H n (1) ≥ C.

Proposition 2.3. Let Γ be a finitely generated group and µ be an admissible probability measure on Γ. Then ω Γ (1) ≤ 0. Moreover, if Γ has exponential growth, there exists C > 0 such that H 1 (n) ≤ Cn 3 .

Proof. Note that

H 1 (n) ≤ G(e, e)♯S n , hence, if the volume growth rate v = lim sup n→∞ 1 n log ♯S n = 0, then ω Γ (1) ≤ 0.
We assume that v > 0 in the remainder of the proof. Then there exist c 1 > 1 and v 1 , v 2 > 0 such that (2.1) c -1 1 e v1n ≤ ♯B n ≤ c 1 e v2n , where ♯B n is the cardinality of the ball of radius n. By [Var91, Theorem 1],

p n (x, y) ≤ c 2 e -c3n 1/3 for some c 2 , c 3 > 0. Choose c 4 so that c 1/3 4 c 3 > v 2 . Then H 1 (n) ≤ c4n 3 k=0 x∈Sn p k (e, x) + c 2 x∈Sn ∞ k=c4n 3 +1 c 3 e -c3k 1/3 ≤ c 4 n 3 + 1 + c 5 ∞ k=c4n 3 +1
e v2n e -c3k 1/3 .

Note that

∞ k=c4n 3 +1 e -c3k 1/3 ≤ ∞ c4n 3 e -c3t 1/3 dt ≤ c 6 n 2 e -c3c 1/3 4 n .

Thus we have

H 1 (n) ≤ c 4 n 3 + 1 + c 7 n 2 e v2-c3c 1/3 4 n ≤ c 8 n 3
and hence ω Γ (1) ≤ 0. Lemma 2.1 and Proposition 2.3 together yield the following corollary.

Corollary 2.4. Let Γ be a finitely generated group and let µ be an admissible probability measure on Γ. Then, ω Γ (1) = 0.

We also have the following result.

Proposition 2.5. Let Γ be a finitely generated group and let µ be an admissible probability measure on Γ. Then, r → ω Γ (r) is monotonically non-decreasing.

Proof. Since the Green function itself is non-decreasing in r, H n (s) ≤ H n (r), hence ω Γ (s) ≤ ω Γ (r) if s ≤ r.

2.2.

Continuity of the growth rate. We start with the following result which holds for every finitely generated group, without assuming that the random walk is finitely supported. We assume however that it is symmetric.

Proposition 2.6. Let Γ be a finitely generated group and let µ be a symmetric admissible probability measure on Γ. Then, the function ω Γ (r) is continuous for 0 < r < R.

Proof. We modify the arguments in [DWY22, Lemma 3.1], where µ was assumed to be finitely supported and only the case 1 < r < R was treated. There are constants c 1 > 0 and v 2 ≥ 0 such that ♯S n ≤ c 1 e v2n . Fix δ > 0. We choose c 2 so that for every

δ ≤ r ≤ R -δ, v 2 -c 2 (log R -log(R -r)) < ω Γ (r).
Note that since the underlying random walk is symmetric, for every x and every k, we have p k (e, x)p k (e, x) ≤ p 2k (e, e) and by [Woe00, Lemma 1.9], p 2k (e, e) ≤ R -2k . Thus, (2.2)

p k (e, x) ≤ R -k
for every x ∈ Γ and k ≥ 0. Consequently, we have for δ ≤ r ≤ R -δ,

x∈Sn k>c2n r k p k (e, x) ≤ c 1 e v2n k>c2n r R k ≤ c 1 δ -1 Re v2n-c2(log R-log r)n .
By the choice of c 2 we have that and hence 0 ≤ ω Γ (r) -ω Γ (s) ≤ c 2 (log r -log s), since ω Γ is non-decreasing by Proposition 2.5. Now δ > 0 is arbitrary, so we prove that ω Γ (r) is continuous in 0 < r < R.

The continuity at the inverse of the spectral radius seems to be a difficult problem in general. It is already known that ω Γ is continuous at R in hyperbolic groups [SWX22, Theorem 1.1] and in relatively hyperbolic groups [DWY22, Theorem 1.1]. However, we do not know much beyond these classes of groups.

We now investigate further continuity at r = 1. By [Woe00, Theorem 12.5], R = 1 can only happen if Γ is amenable, hence the following discussion only applies to amenable groups.

Assume that the random walk satisfies the following Gaussian lower bound. There exists a sub-exponential function f , i.e. 1 n log f (n) → 0, n → ∞, such that for every k, for every x ∈ Γ,

(2.3) p k (e, x) f (k)e -c |x| 2 k .
Then,

H r (n) = x∈Sn ∞ k=0 r k p k (e, x) ♯S n k=0 f (k)e -k log r -1 -c n 2 k f n log r -1 ♯S n e -n(1+c) √ log r -1 . It follows that ω Γ (r) ≥ -(1 + c) log r -1 + v.
Letting r ↑ 1, we see that 0 ≥ lim sup r↑1 ω Γ (r) ≥ v. Therefore v = 0 and lim r↑1 ω Γ (r) = 0.

Remark 2.7. We thus recover the fact that a Gaussian lower bound like (2.3) cannot hold for groups of exponential volume growth, which was already noticed in literature, see for instance the comments after [Ale92, (0.3)].

Proposition 2.8. Let Γ be a finitely generated virtually nilpotent group endowed with a finite generating set and let µ be a finitely supported symmetric admissible probability measure on Γ. Then, the function ω Γ is left-continuous at 1.

Proof. The fact that a Gaussiam lower bound (2.3) with f (k) = k -d/2 holds for virtually nilpotent groups is well known, see for instance [Ale02, Corollary 1.9].

Abelian and nilpotent groups

Our goal in this section is to prove the following result.

Theorem 3.1. Let Γ be a finitely generated nilpotent group of nilpotency class N Γ at most 2. Consider a finitely generating set S and a finitely supported admissible symmetric probability measure µ on Γ. Then, x∈Sn G(e, x) ≍ n.

In general, there exists C ≥ 1 and 0 < β ≤ 1 that only depends on N Γ such that 

1 C n ≤ x∈Sn G(e, x) ≤ Cn 2-β . Moreover, if Γ = Z d ,
1 ♯S n x∈Sn x -d+2 ∼ C 1 n -d+2 .
Moreover, by [DLM12, Theorem 1.4],

♯S n ∼ C 2 n d-1 , hence x∈Sn x -d+2 ∼ C 3 n. Consequently, x∈Sn G(e, x) ∼ C 4 n.
For sake of completeness, let us consider the case of a (possibly lazy) simple random walk on Z d , endowed with the standard set of generators. The quadratic form Q associated with the covariance matrix introduced above is the Hessian at u = 0 of the function Φ(u) =

x∈Z d µ(x)e u•x ,
see [Woe00, Section 8 B, Section 13] for more details. Letting (e 1 , ..., e d ) be standard generators defined by e i = (0, ..., 0, 1, 0..., 0), where 1 is at the ith position and assuming that µ is of the form

µ = αδ e + 1 -α 2d d i=1 (δ ei + δ -ei ),
we have

Φ(u) = α + 1 -α d d i=1 cosh(u i ),
where u i are the coordinates of u. In particular,

Q(x) = 1 -α d x, x
and so the explicit computations of [Woe00, Theorem 25.11] yield

G(e, x) ∼ Γ( d-2 2 )π -d 2 (1 -α) -d+3/2 2d -d+3/2 x -d+2 2 ,
where • 2 is the Euclidean norm.

Furthermore, the constant in [DLM12, Theorem 1.1] is given by

L x -d+2 dµ L ,
where L is the boundary of the convex hull C of the generating set S and dµ L is the cone volume on L. Applying this to our context where S is the standard generating set and • is the Euclidean norm • 2 , we get

1 ♯S n x∈Sn x -d+2 ∼ ∂B1 x -d+2 2 dµ 1 n -d+2 ,
where B 1 is the unit ball for the 

G(e, x) ∼ n • 2 d d! ∂B1 x -d+2 2 dµ 1 Γ( d-2 2 )π -d 2 (1 -α) -d+3/2 2d -d+1/2 .
3.2. Non-abelian nilpotent groups. In general, for nilpotent groups, we cannot prove such precise asymptotics. Let Γ be a finitely generated nilpotent group. Set

Γ 1 = Γ, Γ 2 = [Γ, Γ], ..., Γ n = [Γ n-1 , Γ].
Let N Γ be the nilpotency class of Γ, that is N Γ is the smallest n such that Γ n+1 is trivial. Note that the groups Γ n /Γ n+1 are all finitely generated abelian groups and so have a well defined rank. The homogeneous dimension of Γ is defined as

D = NΓ n=1 n rank Γ n /Γ n+1 .
By [Ale02, Theorem 1.8, Corollary 1.9], there exists c such that

(3.1) 1 c n -D/2 e -c |x| 2 2n ≤ p n (e, x) ≤ cn -D/2 e -1 c |x| 2 2n ,
where D is the homogeneous dimension of Γ. This is enough to deduce rough asymptotics for the Green function as we now show.

Lemma 3.3. For any positive a, b, c, there exists K > 0 such that as u tends to infinity,

n≥1 cn -a e -bu/n ∼ Ku -(a-1) .
Proof. The proof is adapted from [Woe00, Theorem 25.11]. We set t n = n u , so that

∆ n = t n -t n-1 = 1 u -→ u→∞ 0. Then, 1 c u a-1 n≥1 cn -a e -bu/n = n≥1 t -a n e -b tn ∆ n .
The right hand-side is a Riemannian sum of ∞ 0 t -a e -b/t dt so it converges to a constant that only depends on a and b.

Applying this lemma to a = D/2 and u = |x| 2 , we deduce from (3.1) that for every symmetric finitely supported admissible probability measure on a finitely generated nilpotent group,

(3.2) G(e, x) ≍ |x| -D+2 .
Guivarc'h [START_REF] Guivarc | Croissance polynomiale des groupes de Lie et périodes des fonctions harmoniques[END_REF] and Bass [START_REF] Bass | The degree of polynomial growth of finitely generated nilpotent groups[END_REF] independently proved that the homogeneous dimension D is the degree of the polynomial growth of Γ, that is, letting B n be the ball of radius n,

♯B n ≍ n D .
Conversely, by the landmark paper of Gromov [START_REF] Gromov | Groups of polynomial growth and expanding maps[END_REF], a finitely generated group of polynomial growth is virtually nilpotent. Extending the work of Gromov, Pansu [START_REF] Pansu | Croissance des boules et des géodésiques fermées dans les nivariétés[END_REF] proved deep results about the asymptotic behavior of the word distance in terms of the geometry of the universal cover of Γ. As a particular case of his results, we have

♯B n ∼ cn D , see [Pan83, Proposition (5), Section (51)].
Although one might expect from these asymptotics that ♯S n ∼ c ′ n D-1 , it is in fact much more difficult to obtain precise asymptotics for ♯S n . However, Breuillard and Le Donne proved the following.

Proposition 3.4. [BD13, Corollary 9, Corollary 11] Let Γ be a finitely generated nilpotent group endowed with a finite generating set. Let N Γ be its nilpotency class.

(

1) If N Γ ≤ 2, then ♯B n = Cn D + O n D-1 and ♯S n ≍ n D-1 .
(2) In general, there exists 0 < β ≤ 1 that only depends on N Γ such that

♯B n = Cn D + O n D-β and there exists C > 0 such that 1 C n D-1 ≤ ♯S n ≤ Cn D-β .
This proposition allows us to conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. Combining (3.2) and Proposition 3.4, we have for

N Γ ≤ 2 x∈Sn G(e, x) ≍ n and in general we have 1 C n ≤ x∈Sn G(e, x) ≤ Cn 2-β .
Together with Proposition 3.2, this concludes the proof of the theorem.

It is also conjectured that one can always take β = 1 in the above result of Breuillard and Le Donne, see [START_REF] Breuillard | On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry[END_REF]Conjecture 10]. In such case, we would always have H 1 (n) ≍ n. Conversely, note that since we already know that Gaussian estimates (3.1) hold, the following conjecture is a reformulation of that of Breuillard and Le Donne.

Conjecture 3.5. Let Γ be a finitely generated nilpotent group and let µ be a symmetric admissible finitely supported probability measure and S be a finite generating set. Then, x∈Sn G(e, x) ≍ n.

Finally, note that for the particular case of the Heisenberg group H 3 (Z) whose homogeneous dimension is 4, the fact that ♯S n ∼ Cn 3 for the standard set of generators is well known and was first proved by Shapiro, see [START_REF] Shapiro | A geometric approach to the almost convexity and growth of some nilpotent groups[END_REF]Theorem,p.607]. See also [START_REF] Duchin | Fine asymptotic geometry in the Heisenberg group[END_REF]Theorem 25] which is analogous to [DLM12, Theorem 1.1] for abelian groups, which in turn is a key result that we used within the proof of Proposition 3.2. However, even for the Heisenberg group, it is unknown to our knowledge if one can replace ≍ with ∼ in the asymptotics of the Green function (3.2).

Polycyclic groups and groups of intermediate growth.

Let us conclude this section with a small discussion on possible ways to generalize our results for nilpotent groups.

By a seminal result of Mal'cev [START_REF] Mal | On a class of homogeneous spaces[END_REF], finitely generated torsion free nilpotent groups are exactly the lattices in simply connected nilpotent Lie groups, see also [START_REF] Santanam | Discrete subgroups of Lie groups[END_REF]Theorem 2.18]. A further topic of interest would be the growth rate of the Green function for lattices in simply connected solvable Lie groups. By [Rag72, Theorem 4.28], these are exactly torsion free polycyclic groups. Moreover, every finitely generated polycyclic group has a subgroup of finite index which is torsion free by [START_REF] Santanam | Discrete subgroups of Lie groups[END_REF]Lemma 4.6].

This gives motivation for studying H 1 (n) for polycyclic groups. The exponent 1/3 in Varapoulos' on-diagonal upper bound p n (e, e) ≺ e -c1n 1/3 that we used within the proof of Proposition 2.3 is known to be optimal for polycyclic groups of exponential growth. Indeed, by [Ale92, Theorem 1], we also have p n (e, e) e -c2n 1/3 for such groups. In order to get asymptotics of H 1 (n), optimal off-diagonal upper and lower bounds would be needed. However, as already mentioned, Gaussian-type estimates like (2.3) cannot hold for groups of exponential volume growth and finding optimal upper and lower bounds would have to involve somehow the growth rate v. This in turn would require new material.

In another direction, it is not hard to see that the rough asymptotics of the Green function in Theorem 3.1 hold for any virtually nilpotent groups. Indeed, let Γ be a virtually nilpotent and N be a finite index nilpotent subgroup of Γ. Consider a word distance

| • | Γ on Γ and a word distance | • | N on N . Then, the restriction of | • | Γ to N is bi-Lipschitz to | • | N . Moreover, if |x| Γ = n, then x is within a uniform bounded distance of a point y ∈ N . In particular, G(e, x) ≍ G(e, y) and |y| N ≍ n. We find that x∈Γ,|x|Γ=n G(e, x) ≍ x∈N,|x|N ≍n G(e, x). Moreover, | • | -D+2 Γ ≍ | • | -D+2
N and given the asymptotics of Proposition 3.4, the sphere

S n (Γ) for | • | Γ and S n (N ) for | • | N satisfy that ♯S n (Γ) ≍ ♯S n (N ). Thus we have x∈Γ,|x|Γ=n G(e, x) ≍ n -D+2 ♯S n (Γ) ≍ n -D+2 ♯S n (N ).
As explained above, virtually nilpotent groups are exactly the groups of polynomial growth, by a celebrated result of Gromov. Answering Conjecture 3.5 would thus settle the case of polynomial growth. It would be interesting to see if the linear asymptotics of H 1 (n) also hold for groups of intermediate growth.

The lamplighter group and DL graphs

Beyond nilpotent groups, studying the growth rate and the asymptotics of H 1 (n) for general finitely generated solvable groups seems to be a difficult task. Our next goal is to compute precise such asymptotics for the lamplighter group, which is the first step into this direction.

The lampligther group L q is the restricted wreath product Z q ≀ Z. The study of this group is a classical topic in geometric group theory and we refer to [CM17, Lecture 15] for an overview of its properties. The usual description of L q is as follows. Consider the line Z and suppose that there is a lamp at each site of Z. Every lamp can be either off or lit with q-1 different colors, so that it has q different possible states. At the beginning, every lamp is switched off. The lampligther is at the origin of Z and can either change the state of the lamp where they stand or take one step to the left or to the right in Z. Those possible actions are considered as the generators of the group. Elements of L q are then described by the position of the lamplighter on Z and the states of the lamps, which can be seen as a function Z → Z q with finite support.

There is a one-to-one correspondence between the lamplighter group Z q ≀ Z and the vertices of the Diestel-Leader graph DL(q, q), which is defined as the following horocycle product. Consider the (q + 1)-regular tree T q and let h be a horofunction based at some fixed chosen point at infinity (see [BW05, Section 2] for a precise definition and also [CM17, Section 15.4], where h is called a height function). Then, DL(q, q) = (x 1 , x 2 ), x i ∈ T q , h(x 1 ) = -h(x 2 ) . Thus, any element x of Z q ≀ Z can be written as x = (x 1 , x 2 ), x i ∈ T q .

Following [START_REF] Brofferio | Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs[END_REF], what we call here the simple random walk on L q is the simple random walk on DL(q, q) endowed with the product graph distance. In other words, it is the simple random walk on the graph whose vertices are elements of DL(q, q) and two vertices (x 1 , x 2 ) and (y 1 , y 2 ) are connected by an edge if x i and y i are connected with an edge in T q for i = 1, 2. This is exactly the simple random walk on L q endowed with an appropriate set of generators described in [BW05, Section 2], see in particular [START_REF] Brofferio | Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs[END_REF](2.3)] for a formula for the probability measure µ (with α = 1 2 since we do not consider biased random walks here). In terms of lamplighting, we need to change a bit the above description to understand this random walk. Think of the lamps not placed at each vertex of Z but at the middle of each edge. Suppose the current position of the lamplighter is k ∈ Z. They first toss a coin. If "head" comes up, they move to k + 1 and switch the lamp on the transverse edge to a state chosen at random in Z q . Otherwise, they move to k -1 and also switch the lamp on the transverse edge to a random state.

Lamplighter groups provide a great source of examples of particular asymptotic behaviors of random walks, see [START_REF] Kaimanovich | Random walks on discrete groups: boundary and entropy[END_REF], [START_REF] Erschler | On the asymptotics of the rate of departure to infinity[END_REF], [START_REF] Erschler | On drift and entropy growth for random walks on groups[END_REF], [START_REF] Revelle | Heat kernel asymptotics on the lamplighter group[END_REF], [START_REF] Revelle | Rate of escape of random walks on wreath products and related groups[END_REF], [START_REF] Bartholdi | Horocyclic products of trees[END_REF] just to name a few. We prove here that H 1 (n) is still asymptotically linear in n for the simple random walk. Our study is based on the renewal theorems of [START_REF] Brofferio | Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs[END_REF], see also references therein for other significant results related to random walks on these groups.

Theorem 4.1. Consider the simple random walk on L q . There exists C such that x∈Sn G(e, x) ∼ Cn.

We identify L q = Z q ≀ Z with DL(q, q) as above, with h a fixed horofunction. By [BW05, (4.1)], the word distance in L q is given by

d(x, y) = d(x 1 , y 1 ) + d(x 2 , y 2 ) -|h(y 1 ) -h(x 1 )|. Note that h(y 2 ) -h(x 2 ) = -h(y 1 ) + h(x 1 ), so d(x, y) = d(x 1 , y 1 ) + d(x 2 , y 2 ) -|h(y 2 ) -h(x 2 )|.
The identity element e is identified with (o 1 , o 2 ) in DL(q, q), where o i is the root of T q . In particular, we have h(o 1 ) = h(o 2 ) = 0. For (x 1 , x 2 ) ∈ DL(q, q), we now set, following [START_REF] Brofferio | Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs[END_REF],

|x i | = d(o i , x i ) = d i + u i , h(x i ) = d i -u i and s := u 1 + u 2 = d 1 + d 2 .
The quantities d and u are defined in terms of geometric features of T q , see [BW05, Section 2, Figure 1] for more details. The elements x 1 and x 2 are completely determined by |x 1 |, |x 2 | and h(x 1 ) = -h(x 2 ). Thus, any element (x 1 , x 2 ) is completely determined by u 1 , d 2 and s.

Let us now describe the sphere of radius n in L q . By what precedes,

d(e, x) = |x 1 | + |x 2 | -|h(x 1 )| = u 1 + d 1 + u 2 + d 2 -|d 1 -u 1 |.
We first find the x ∈ S n with h(x 1 ) > 0. For such x,

d(e, x) = 2u 1 + u 2 + d 2 = u 1 + d 1 + 2d 2 = u 1 + d 2 + s.
We write S(n, m) the set of z ∈ T q with |z| = n and h(z) = m, -n ≤ m ≤ n, and so |n-m| needs to be even. Let us compute the cardinality of S(n, m) for small values of n, m, when q = 3, i.e. T q is the 4-regular tree, which is the Cayley graph of F 2 . We write F 2 = a, b and we fix the point at infinity defining the horofunction h to be a ∞ . We have S(1, 1

) = {a -1 , b, b -1 } and S(1, -1) = {a}, so ♯ S(1, 1) = 3, ♯ S(1, -1) = 1. For n = 2, we have S(2, 2) = {a -2 , a -1 b, a -1 b -1 , ba, ba -1 , b 2 , b -1 a, b -1 a -1 , b -2 }, S(2, 0) = {ab, ab -1 } and S(2, -2) = {a 2 }. Therefore, ♯ S(2, 2) = 3 2 , ♯ S(2, 0) = 2, ♯ S(2, -2) = 1.
Similarly, we prove that

♯ S(3, 3) = 3 3 , ♯ S(3, 1) = 2 × 3, ♯ S(3, -1) = 2, ♯ S(3, -3) = 1, ♯ S(4, 4) = 3 4 , ♯ S(4, 2) = 2 × 3 2 , ♯ S(4, 0) = 2 × 3, ♯ S(4, -2) = 2, ♯ S(4, -4) = 1.
In general, we have for 0

≤ k ≤ n ♯ S(n, n) = q n , ♯ S(n, -n) = 1 and ♯ S(n, n -2k) = (q -1) × q n-1-k , 1 ≤ k ≤ n -1. Note that if z ∈ S(n, n -2k), then u = k and d = n -k.
In fact, u is the number of steps upward in direction to a ∞ and d is the number of steps downward.

We now consider the set A(i, j, k) = {(x 1 , x 2 ), u 1 = i, d 2 = j, s = k}, with i ≤ k, j ≤ k and i < k -j (the last condition being equivalent to h(x 1 ) > 0). Then, by what precedes, for 0 < j < k, ♯A(0, j, k) = (q -1)q k-1 , ♯A(k, j, k) = (q -1)q k-1 and for 0 < i < k, ♯A(i, j, k) = (q -1) 2 q k-2 . Now, for j = 0, we have

♯A(0, 0, k) = q k , ♯A(k, 0, k) = 1 and for 0 < i < k, ♯A(i, 0, k) = (q -1)q k-1 .
Finally, for j = k, we have

♯A(0, k, k) = (q -1)q k-1 , ♯A(k, k, k) = q k , and for 0 < i < k, ♯A(i, k, k) = (q -1)q k-1 .
We are now ready to prove Theorem 4.1.

Proof. The following asymptotics of the Green function are proven in [BW05, Theorem 4.2]. We have, as |x| tends to infinity,

(4.1) G(e, x) ∼ C s 4 q s q + 1 q -1 u 1 (s -d 2 ) + (s -u 1 )d 2 + su 1 d 2 + s(s -u 1 )(s -d 2 ) .
We fix (x 1 , x 2 ) ∈ S 2n and h(x 1 ) > 0, so 2n = s + d 2 + u 1 and d 2 + u 1 < s. In particular, s > n. Also, since d 2 , u 1 ≥ 0, we have s ≤ 2n. Conversely, choose any couple (d 2 , s)

satisfying n + 1 ≤ s ≤ 2n and 0 ≤ d 2 ≤ 2n -s. Set u 1 = 2n -s -d 2 . Note that s > n implies that 2n -s ≤ s -1, so 0 ≤ u 1 ≤ s -1 -d 2 and 0 ≤ d 2 < s.
We find that u 1 < sd 2 and so any such triple (u 1 , d 2 , s) defines a point (x 1 , x 2 ) with h(x 1 ) > 0. By (4.1), setting u 1 = i, d 2 = j, s = k we get the following. The sum of the Green function along points x in the sphere S 2n satisfying h(x 1 ) > 0 can be written as

(x1,x2)∈S2n, h(x 1 )>0 G(e, x) ∼ 2n k=n+1 2n-k j=0 C k 4 q k ♯A(i, j, k) q + 1 q -1 i(k -j) + (k -i)j + kij + k(k -i)(k -j) .
Thus, replacing u 1 with 2nsd 2 , we find

(x1,x2)∈S2n, h(x 1 )>0 G(e, x) ∼ 2n k=n+1 2n-k j=0 C k 4 q k ♯A(2n -k -j, j, k) q + 1 q -1 (2n -k -j)(k -j) + (2k + j -2n)j + k(2n -k -j)j + k(2k + j -2n)(k -j) .
Since the dominant term in ♯A(i, j, k) is q k , we find

(x1,x2)∈S2n, h(x 1 )>0 G(e, x) ∼ C 1 2n k=n+1 2n-k j=0 1 k 4 (2n -k -j)(k -j) + (2k + j -2n)j + k(2n -k -j)j + k(2k + j -2n)(k -j) ∼ C 2 n.
By symmetry, we have the same asymptotics for h(x 1 ) < 0. Now, if h(x 1 ) = 0, then u 1 = sd 2 . Combining this with u 1 + d 2 + s = 2n, we get s = n, so the sum of the Green function along S 2n , assuming further h(x 1 ) = 0 is asymptotic to a constant C 3 . Thus, we find that x∈S2n G(e, x) is linear in n. The same proof with more delicate sums to handle, when considering the integer part of n/2, shows that the same is true for S 2n+1 . This concludes the proof of Theorem 4.1.

Lamplighter groups are solvable and thus amenable. They are actually classical examples of non-polycyclic solvable groups, see for instance the comments at the end of [DK18, Chapter 13]. In light of the discussion in Section 3.3, this raises the following question.

Question 4.2. Is it true that x∈Sn G(e, x) ≍ n holds for every symmetric finitely supported admissible probability measure on a finitely generated amenable group ? If not, can a counter-example be found among finitely generated solvable groups ? Also, let us conclude this section with further comments on horocycle products. We refer to [START_REF] Woess | What is a horocyclic product, and how is it related to lamplighters?[END_REF] for a more complete exposition. Given two hyperbolic spaces X 1 , X 2 , one can perform a construction similar to that of DL(q, q) by choosing two Busemann functions h 1 , respectively h 2 , based at infinity on X 1 , respectively X 2 . The horocycle product of X 1 and X 2 is the set of pairs (

x 1 , x 2 ) ∈ X 1 × X 2 with h 1 (x 1 ) + h 2 (x 2 ) = 0.
Interesting examples of such spaces are the horocycle product HT(p, q) of H(p) with a homogeneous tree of degree q + 1 and the horocycle product Sol(p, q) of H(p) and H(q). In both cases, H(p) is the standard Poincaré upper halfspace with suited rescaling of the hyperbolic metric. Amenable Baumslag-Solitar groups BS(1, q) act properly discontinuously and co-compactly via isometries on HT(q, q), see [START_REF] Farb | A rigidity theorem for the solvable Baumslag-Solitar groups[END_REF]. On the other hand, the spaces Sol(p, q) are classical examples of solvable Lie groups and play an important role in Thurston's geometrization theorem. We refer to [START_REF] Brofferio | Brownian motion and harmonic functions on Sol(p, q)[END_REF] and references therein for further details. A next subject of interest would be the study of H 1 (n) on amenable Baumslag-Solitar groups and on lattices of Sol(p, q). Note that the later are examples of polycyclic groups.

Cartesian products of trees

In this section, we study the behavior of H r (n) for random walks on T × T ′ , where T, T ′ are regular trees. The asymptotics for the Green functions are given by the work of Picardello and Woess [START_REF] Picardello | The full Martin boundary of the bi-tree[END_REF], see also [Woe00, Section 28] and references therein for the particular case of T × Z.

Let T 1 , T 2 be regular trees of degree l 1 , l 2 ≥ 3. We consider the lazy simple random walk µ i on T i whose transition kernel p i (x, y) is defined by

p i (x, y) =    1 2li if x, y are connected with an edge in T i , 1 2 if x = y, 0 otherwise.
In particular, µ i is an admissible symmetric finitely supported probability measures on T i . For every α 1 , α 2 ≥ 0, α 1 + α 2 = 1, we let µ be the probability measure on T 1 × T 2 given by (5.1)

µ = α 1 µ 1 + α 2 µ 2 .
In terms of Markov operators, this means that

P µ = α 1 P µ1 ⊗ I + α 2 I ⊗ P µ2 .
As noted in [PW94, Section 3], the lazy simple random walk on T 1 × T 2 with µ(x, x) = 1/2 is given by

α i = li l1+l2 . Set ρ i = 1 2 + √ li-1 li and R = 1 α1ρ1+α2ρ2 .
Then, ρ i is the spectral radius of µ i , see [START_REF] Picardello | The full Martin boundary of the bi-tree[END_REF](2.2)] and ρ = R -1 is the spectral radius of µ, see [PW94, Section 3]. We prove here the following.

Theorem 5.1. If l 1 = l 2 , then for every r < R, we have H r (n) ≍ e nωΓ(r) . If l 1 > l 2 , then there exists a phase transition at some r 0 ∈ (1, R) such that the following holds.

• For every r < r 0 , we have H r (n) ≍ e nωΓ(r) .

• At r = r 0 , we have H r (n) ≍ n -1 e nωΓ(r) .

• For every r 0 < r < R, we have H r (n) ≍ n -3/2 e nωΓ(r) .

The remainder of the section is devoted to the proof of this theorem. By [PW94, Theorem 3.1], for every r < R, for every λ 0 ≥ 0, there exist r 1 , r 2 such that as

x = (x 1 , x 2 ) ∈ T 1 × T 2 tends to infinity and |x 2 |/|x 1 | = λ converges λ 0 , we have G(e, x|r) ∼ G 1 (e, x 1 |r 1 )G 2 (e, x 2 |r 2 ) |x 1 | + l 1 l 1 -2 |x 2 | + l 2 l 2 -2 1 |x 1 | 5/2 C(λ),
where C(λ) is a continuous positive function.

The numbers r 1 and r 2 are the unique solutions of the system (5.2)

α 1 r -1 1 + α 2 r -1 2 = r -1 α 2 (r -1 2 -1 2 ) 2 -l2-1 l 2 2 = λα 1 (r -1 1 -1 2 ) 2 -l1-1 l 2 1
By symmetry, the same holds when |x 1 |/|x 2 | = λ ′ converges to λ ′ 0 ∈ [0, +∞), switching the indices 1 and 2 and replacing the function C with a function C ′ which is also continuous and positive.

Set

β i = √ li-1 li and F i (r) = l i l i -1   r -1 - 1 2 - r -1 - 1 2 2 -β 2 i   , G i (r) = r -1 r -1 -(1/2) (1 + F i (r))
.

By [PW94, (2.4)], we have that

G i (e i , x i |r) = G i (r)F i (r) |xi| , hence in particular G i (e i , e i |r) = G i (r). Since 1 ≤ G i (r) ≤ G i (ρ -1 i ), we have (5.3) H i n (r) = xi∈Ti : |xi|=n G i (e i , x i |r) = l i (l i -1) n-1 G i (r)F i (r) n ≍ e nωT i (r) ,
where ω Ti (r) = log(l i -1) + log F i (r).

We now fix r < R and we consider n ≥ 0. The sphere S n in T 1 × T 2 can be decomposed as

S n = n k=0 S 1 k × S 2 n-k .
Then, for every k ≤ n, there exists a unique couple (r 1 (λ), r 2 (λ)) satisfying (5.2)

with λ = n-k k . Moreover, 1 |x 1 | 5/2 C(λ) = 1 (|x 1 | + |x 2 |) 5/2 (1 + λ) 5/2 C(λ)
and for k ≥ n/2, λ ≤ 1, hence by the continuity of C(λ),

1 |x 1 | 5/2 C(λ) ≍ 1 (|x 1 | + |x 2 |) 5/2 . Similarly, 1 |x 2 | 5/2 C ′ (λ ′ ) = 1 (|x 1 | + |x 2 |) 5/2 (1 + λ ′ ) 5/2 C ′ (λ ′ ) and so for k ≤ n/2, 1 |x 2 | 5/2 C ′ (λ ′ ) ≍ 1 (|x 1 | + |x 2 |) 5/2 . Setting κ i = li li-2 , we thus have x∈Sn G(e, x|r) ≍ 1 n 5/2 n k=0 x1∈S 1 k x2∈S 2 n-k G 1 (e, x 1 |r 1 (λ))G 2 (e, x 2 |r 2 (λ)) (k + κ 1 )((n -k) + κ 2 ) ≍ 1 n 5/2 n k=0 (k + κ 1 )((n -k) + κ 2 )H 1 k (r 1 (λ))H 2 n-k (r 2 (λ)).
Applying (5.3), we see that

(5.4) H n (r) ≍ 1 n 5/2 n k=0 (k + κ 1 )((n -k) + κ 2 ) exp (nΨ(λ)) , with λ = n-k k and Ψ(λ) = 1 1 + λ ω T1 (r 1 (λ)) + λ 1 + λ ω T2 (r 2 (λ)).
In order to find the asymptotics of H n (r), we thus need to find where the function Ψ(λ) takes its maximum value. Now let t = r -1 -1 2 and t i = t i (λ) = r i (λ) -1 -1 2 . Then (t 1 , t 2 ) solves the system of equations (5.5)

α 1 t 1 + α 2 t 2 = t, α 2 t 2 2 -β 2 2 = λα 1 t 2 1 -β 2 1 .
Lemma 5.2. The functions λ → t 1 (λ) and λ → t 2 (λ) are continuously differentiable. Furthermore,

t ′ 1 (λ) = - λα 1 (t 2 1 -β 2 1 ) α 2 t 2 + λ 2 α 1 t 1 , t ′ 2 (λ) = - α 1 α 2 t ′ 1 (λ) = λ -1 α 2 t 2 2 -β 2 2 α 2 t 2 + λ 2 α 1 t 1 . Proof. Let U be the open set (β 1 , +∞) × (β 2 , +∞) × (β, +∞) × (0, +∞) with β = ρ -1 2 . We set Υ : (t 1 , t 2 , t, λ) ∈ U → α 1 t 1 + α 2 t 2 -2t, α 2 t 2 2 -β 2 2 -λα 1 t 2 1 -β 2 1 .
Then ∂Υ ∂t = (-2, 0)

and

∂Υ ∂λ = 0, -α 1 t 2 1 -β 2 .
For t 1 > β 1 , the matrix -2 0 0 -α 1 t 2 1 -β 2 is invertible. The implicit function theorem shows that the solution (t 1 , t 2 ) of (5.5) is continuously differentiable in the variables (t, λ). The formulas for t ′ 1 (λ) and t ′ 2 (λ) are then derived from (5.5).

Define

ϕ i (t) = log l i + log t -t 2 -β 2 i . Then Ψ(λ) = 1 1 + λ ϕ 1 (t 1 (λ)) + λ 1 + λ ϕ 2 (t 2 (λ)). Since (5.6) ϕ ′ i (t) = - 1 t 2 -β 2 i , we have that λϕ ′ 2 (t 2 (λ)) = α 2 α 1 ϕ ′ 1 (t 1 (λ)),
and hence

Ψ ′ (λ) = ϕ ′ 1 (t 1 (λ)) 1 + λ t ′ 1 (λ) + λϕ ′ 2 (t 2 (λ)) 1 + λ t ′ 2 (λ) + ϕ 2 (t 2 (λ)) -ϕ 1 (t 1 (λ)) (1 + λ) 2 = α 1 t ′ 1 (λ) + α 2 t ′ 2 (λ) α 1 (1 + λ) ϕ ′ 1 (t 1 (λ)) + ϕ 2 (t 2 (λ)) -ϕ 1 (t 1 (λ)) (1 + λ) 2 = ϕ 2 (t 2 (λ)) -ϕ 1 (t 1 (λ)) (1 + λ) 2 .
(5.7) Furthermore,

(5.8)

Ψ ′′ (λ) = - 2 (1 + λ) 3 [ϕ 2 (t 2 (λ)) -ϕ 1 (t 1 (λ))] - α 1 t 2 1 -β 2 1 (1 + λ) (α 2 t 2 + λ 2 α 1 t 1 )
.

By Lemma 5.2 and (5.6), we see that ϕ 1 (t 1 (λ)) (resp. ϕ 2 (t 2 (λ))) is strictly increasing (resp. decreasing) in λ. It follows that there is at most one

λ 0 ∈ [0, +∞) such that Ψ ′ (λ 0 ) = 0. Note that t 2 (0) = β 2 , t 1 (0) = α -1 1 (t -α 2 β 2 ) > β 1 , and 
ϕ 2 (t 2 (0)) = 1 2 log (l 2 -1) .
On the other hand, lim λ→+∞ t

1 (λ) = β 1 , lim λ→+∞ t 2 (λ) = α -1 2 (t -α 1 β 1 ) > β 2 , and lim λ→+∞ ϕ 1 (t 1 (λ)) = 1 2 log (l 1 -1) . Assume l 1 = l 2 = l. Then for λ 0 = α2 α1 we have that t 1 (λ 0 ) = t 2 (λ 0 ) = t and Ψ ′ (λ 0 ) = 0. Note that Ψ ′′ (λ 0 ) = - α 2 1 t 2 -β 2 α 2 t < 0
by Lemma 5.2 and (5.6). By Lemma 5.3 (ii) below, we can deduce that (5.9)

H n (r) ≍ e nΨ(λ0) = e n log l r -1 -1 2 -(r -1 -1 2 ) 2 -β 2 .
This concludes the proof of Theorem 5.1 for the case l 1 = l 2 .

Assume now that l 1 > l 2 . Then, we have that β 1 < β 2 and ϕ 1 (β 1 ) > ϕ 2 (β 2 ). Since lim s→+∞ ϕ 1 (s) = -∞, there exists

t 0 > α 1 β 1 + α 2 β 2 > β 1 such that ϕ 1 α -1 1 (t 0 -α 2 β 2 ) = ϕ 2 (β 2 ). If t < t 0 , then ϕ 1 (t 1 (0)) = ϕ 1 α -1 1 (t -α 2 β 2 ) > ϕ 1 α -1 1 (t 0 -α 2 β 2 ) = ϕ 2 (t 2 (0)
) and hence Ψ ′ (λ) < 0 for all λ ≥ 0. It follows that Ψ(λ) takes its unique maximum at λ = 0. By Lemma 5.3 (i) below, (5.10)

H n (r) ≍ n -3/2 e n log ϕ1(α -1 1 (t-α2β2)) . Similarly, if t = t 0 , then 0 is also the unique maximum point of Ψ(λ), and we have further that Ψ ′ (0) = 0,

Ψ ′′ (0) = - (t 0 -α 2 β 2 ) 2 -α 1 β 2 1 α 2 β 2 < 0.
Thus, Lemma 5.3 (iii) below shows that

(5.11) H r (n) ≍ n -1 e nΨ(0) = n -1 e n log ϕ1(α -1 1 (t-α2β2)) .
It remains to consider the case that t > t 0 . Since

t 0 > α 1 β 1 + α 2 β 2 we have lim λ→+∞ ϕ 2 (t 2 (λ)) = ϕ 2 α -1 2 (t -α 1 β 1 ) < ϕ 2 (β 2 ) < ϕ 1 (β 1 ) = lim λ→+∞ ϕ 1 (t 1 (λ)),
and

ϕ 1 (t 1 (0)) = ϕ 1 α -1 1 (t -α 2 β 2 ) < ϕ 1 α -1 1 (t 0 -α 2 β 2 ) = ϕ 2 (t 2 (0)
). Thus there exists λ 0 > 0 such that ϕ 1 (t 1 (λ 0 )) = ϕ 2 (t 2 (λ 0 )). By (5.8), Ψ ′′ (λ 0 ) < 0, and we see from Lemma 5.3 (ii) below that (5.12)

H r (n) ≍ e nϕ1(t1(λ0)) .

To conclude, what is left to do is proving that r 0 > 1, i.e. t 0 < 1/2. Lengthily computations would prove that

ϕ 1 α -1 1 1 2 -α 2 β 2 < ϕ 2 (β 2 ),
hence we necessarily have t 0 < 1/2. However, we see that at t 0 , we have by (5.11)

H r (n) ≍ n -1 e nΨ(0) = n -1 e n log ϕ1(α -1 1 (t-α2β2)) . In particular, ω Γ (r 0 ) = log ϕ 1 α -1 1 (t 0 -α 2 β 2 ) = log ϕ 2 (β 2 ) > 0.
Since ω Γ (1) = 0 and ω Γ is increasing, we see directly that r 0 > 1. This ends the proof of Theorem 5.1.

Lemma 5.3. Assume that Φ ∈ C 2 ([0, +∞)) is eventually decreasing and has a unique maximum point at 0 ≤ λ 0 < ∞. Define

f (n) = n k=0 k(n -k)e nΦ( n-k k ) . (i) If λ 0 = 0 and Φ ′ (0) < 0, then f (n) ≍ ne nΦ(0) .
(ii) If λ 0 > 0 and Φ ′′ (λ 0 ) < 0, then f (n) ≍ n 5/2 e nΦ(λ0) .

(iii) If λ 0 = 0, Φ ′ (0) = 0 and Φ ′′ (0) < 0, then

f (n) ≍ n 3/2 e nΦ(0) . Proof. (i) For any 0 < ε < -Φ ′ (0), there exists δ > 0 such that |Φ ′ (λ) -Φ ′ (0)| < ε for every 0 ≤ λ ≤ δ.
By the mean value theorem, for λ ≤ δ,

(Φ ′ (0) -ε) λ ≤ Φ(λ) -Φ(0) ≤ (Φ ′ (0) + ε) λ. If n-k k ≤ δ, then we have k ≥ (1 + δ) -1 n. Thus f (n) ≥ k≥(1+δ) -1 n k(n -k)e nΦ( n-k k ) ≻ne nΦ(0) k≥(1+δ) -1 n (n -k)e n(Φ ′ (0)-ε) n-k k ≥ne nΦ(0) k≤ δ 1+δ n ke (Φ ′ (0)-ε)k ≻ne nΦ(0) .
Since 0 is the unique maximum point of Φ(λ), there exists η > 0 such that Φ(λ) ≤ Φ(0) -η for all λ ≥ δ. Thus

k<(1+δ) -1 n k(n -k)e nΦ( n-k k ) ≤ n 3 e n(Φ(0)-η) .
Also,

k≥(1+δ) -1 n k(n -k)e nΦ( n-k k ) ≤ne nΦ(0) k≥(1+δ) -1 n (n -k)e n(Φ ′ (0)+ε) n-k k ≤ne nΦ(0) k≤ δ 1+δ n ke (Φ ′ (0)+ε)(1+δ) -1 k ≤ne nΦ(0) ∞ k=0 ke (Φ ′ (0)+ε)(1+δ) -1 k
Combining the last two displays yields the desired upper-bound. (ii) For 0 < c 1 < -Φ ′′ (λ0) 2 < c 2 , there exists δ > 0 such that

(5.13) -c 2 (λ -λ 0 ) 2 ≤ Φ(λ) -Φ(λ 0 ) ≤ -c 1 (λ -λ 0 ) 2 for |λ -λ 0 | ≤ δ.
Clearly, we have that

k : | n-k k -λ0|>δ k(n -k)e nΦ( n-k k ) ≺ n 3 e n(Φ(λ0)-η)
for some η > 0. Now,

k : | n-k k -λ0|≤δ k(n -k)e nΦ( n-k k ) ≺n 3 e nΦ(λ0) k : | n-k k -λ0|≤δ 1 n e -c1n( n k -1-λ0) 2 ≍n 3 e nΦ(λ0) (1+λ0-δ) -1 (1+λ0+δ) -1 e -c1n(x -1 -1-λ0) 2 dx.
By a change of variables, we get

k : | n-k k -λ0|≤δ k(n -k)e nΦ( n-k k ) =n 3 e nΦ(λ0) δ -δ e -c1ny 2 dy (y + 1 + λ 0 ) 2 ≍n 5/2 e nΦ(λ0) δ √ n -δ
√ n e -c1z 2 dz ≍n 5/2 e nΦ(λ0) .

The lower bound can be proved by the same arguments, changing c 1 with c 2 . (iii) The proof of (iii) is similar to that of (ii), except that we need to replace (5.13) with

-c 2 λ 2 ≤ Φ(λ) -Φ(0) ≤ -c 1 λ 2
and the order of magnitude is not n-k k ≍ λ 0 ± δ anymore, but k ≥ (1 + δ) -1 n as in (i).

Twisted Patterson-Sullivan measures

In this and next sections, we will give applications of our results to relatively hyperbolic groups. We start here by investigating the properties of Patterson-Sullivan like measures on the Bowditch boundary of such groups, which we define by using suited Poincaré series.

6.1. Some background on relatively hyperbolic groups. Since their introduction by Gromov, relatively hyperbolic groups were studied by many authors through several equivalent definitions. We will mainly use the viewpoint of Bowditch [START_REF] Bowditch | Relatively hyperbolic group[END_REF] and Gerasimov-Potyagailo [START_REF] Gerasimov | Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups[END_REF], [START_REF] Gerasimov | Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity[END_REF], [START_REF] Gerasimov | Quasiconvexity in relatively hyperbolic groups[END_REF] in the sequel. Consider a finitely generated group Γ acting properly via isometries on a proper geodesic Gromov hyperbolic space X. Define the limit set Λ Γ as the closure of Γ in the Gromov boundary ∂X of X, that is, fixing a base point x 0 in X, Λ Γ is the set of all possible limits of sequences g n •x 0 in ∂X, g n ∈ Γ. The proper action of Γ on X by isometries extends to a convergence group action on Λ Γ by homeomorphisms, which means that the induced action on the space of distinct triples is properly continuous (see [Bow99, Proposition 1.11] for example). If Λ Γ contains at least three points, then Γ acts minimally on Λ Γ .

A loxodromic element x ∈ Γ is an infinite order element with exactly two fixed points x -= x + in Λ Γ . Moreover, x acts via North-South dynamics on Λ Γ in the sense that for any ξ = x ± , x ∓n ξ converges to x ∓ as n goes to +∞. Then x + is called the attracting fixed point of x and x -is called its repelling fixed point. The fixed points of any two loxodromic elements are either the same or disjoint. So Γ contains infinitely many loxodromic elements with pairwise disjoint fixed points.

A point ξ ∈ Λ Γ is called conical if there is a sequence g n of Γ and distinct points ξ 1 , ξ 2 in Λ Γ such that g n ξ converges to ξ 1 and g n ζ converges to ξ 2 for all ζ = ξ in Λ Γ . A point ξ ∈ Λ Γ is called parabolic if its stabilizer in Γ is infinite, fixes exactly ξ in Λ Γ and contains no loxodromic element. If, in addition, its stabilizer in Γ acts co-compactly on Λ Γ \ {ξ}, then ξ is called bounded parabolic. Say that the action of Γ on X is geometrically finite if the induced convergence group action on the limit set Λ Γ is geometrically finite: Λ Γ only consists of conical limit points and bounded parabolic limit points. See [START_REF] Bowditch | Convergence groups and configuration spaces[END_REF] for more general facts on convergence groups.

A group Γ is called relatively hyperbolic with respect to a collection of subgroups P if it acts geometrically finitely on a proper geodesic hyperbolic space X such that the stabilizers of parabolic limit points are exactly the conjugates of the elements of P. Elements of P are called maximal parabolic subgroups. We will write P 0 for the choice of a set of representatives of conjugacy classes of elements of P. By [Bow12, Proposition 6.15], such a set P 0 is finite.

The limit set Λ Γ in the Gromov boundary of X is called the Bowditch boundary of Γ. By [Bow12, Theorem 9.4], it is unique up to equivariant homeomorphism and in particular does not depend on the choice of a proper geodesic Gromov hyperbolic space X on which Γ acts geometrically finitely. We will write ∂Γ for the Bowditch boundary of Γ in the sequel. A relatively hyperbolic group is called non-elementary if its Bowditch boundary is infinite; equivalently, ♯∂Γ > 2.

We now fix a finite set P 0 of representatives of conjugacy classes of maximal parabolic subgroups. When P ∈ P 0 and g ∈ Γ, we call gP a maximal parabolic coset. Definition 6.1. Let gP be a maximal parabolic coset and η, L > 0 be fixed constants. A point p on a geodesic α is called (η, L)-deep in gP if

B(p, 2L) ∩ α ⊆ N η (gP ).
It is called an (η, L)-transition point if it is not (η, L)-deep in any maximal parabolic coset gP .

The following set of inequalities is called weak relative Ancona inequalities and will be helpful below. They extend similar inequalities proved for hyperbolic groups by Ancona [START_REF] Ancona | Positive harmonic functions and hyperbolicity[END_REF] for r = 1, by Gouëzel-Lalley [START_REF] Gouëzel | Random walks on co-compact Fuchsian groups[END_REF] on co-compact Fuchsian groups for r ≤ R and by Gouëzel [START_REF] Gouëzel | Local limit theorem for symmetric random walks in Gromovhyperbolic groups[END_REF] in full generality for r ≤ R. The version for relatively hyperbolic groups that we use here were first proved for r = 1 by Gekhtman-Gerasimov-Potyagailo-Yang [START_REF] Gekhtman | Martin boundary covers Floyd boundary[END_REF] and then by Dussaule-Gekhtman [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF] for r ≤ R. Lemma 6.2. [GGPY21, Theorem 1.1][DG21, Theorem 1.6] Let Γ be a relatively hyperbolic group and let µ be a finitely supported admissible and symmetric probability measure on Γ. Then, for every c, η, L ≥ 0 there exists C > 0 such that for every r ≤ R, the following holds. For every x, y, z ∈ Γ, if y has a distance at most c to an (η, L)-transition point on a geodesic from x to z, then 1 C G(x, y|r)G(y, z|r) ≤ G(x, z|r) ≤ CG(x, y|r)G(y, z|r).

Note that the constant C is independent of r ∈ [1, R]. In other words, the Green function is roughly multiplicative along transition points on a geodesic. In both [START_REF] Gekhtman | Martin boundary covers Floyd boundary[END_REF] and [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF], these inequalities are formulated in terms of the Floyd distance, which is a suited rescaling of the word distance. However, the statement for transition points directly follows from [GP15, Corollary 5.10] which relates transition points with the Floyd distance. We also refer to [GGPY21, Section 9] for more details.

We will also use the following at some point.

Lemma 6.3. [Yan22, Lemma 2.14] There exist universal constants η, L with the following property. Let γ be a geodesic ray ending at a conical point ξ ∈ ∂Γ. Then γ contains a unbounded sequence of (η, L)-transition points x n .

In the remainder of this section, we consider a finitely generated relatively hyperbolic group Γ. When speaking of a transition point, we mean an (η, L)-transition point with (η, L) satisfying Lemma 6.3. We also fix a finitely supported symmetric and admissible probability measure µ on Γ. 6.2. Busemann cocyles. Given x, y, z ∈ Γ, let B z (x, y) := d(x, z) -d(y, z) and K z (x, y|r) = G(x,z|r) G(y,z|r) . The function B z is called the Busemann function associated with the distance d at z.

Following [START_REF] Blachère | Internal diffusion limited aggregation on discrete groups having exponential growth[END_REF], we define the r-Green distance by

d r (x, y) = -log F r (x, y) = -log G(x, y|r)
G(e, e|r) .

Then K z (x, y|r) = e -[dr(x,z)-dr(y,z)] is the exponential of the Busemann function for the r-Green distance. We also write |x -1 y| r = d r (x, y), and |x -1 y| = d(x, y). Consider the distance for x, y ∈ Γ:

d r (x, y) := ω Γ (r)|x -1 y| + |x -1 y| r .
Lemma 6.4. If 1 ≤ r < R, then the distance d r is proper and quasi-isometric to the word distance.

Proof. The proof is standard, but we write a complete argument for sake of completeness. First we prove that for every r < R, there exist C 1 > 0 and α 1 > 0 such that for every x ∈ Γ (6.1) G(e, x|r) ≤ C 1 e -α|x| .

Since µ is finitely supported, there exists c > 0 such that

G(e, x|r) = n≥c|x| r n p n (e, x).
Moreover, by (2.2),

p n (e, x) ≤ R -n . Therefore, G(e, x|r) ≤ n≥c|x| r R n ≤ C 1 r R c|x| .
This proves (6.1). Second, we prove that for every r ≥ 1, there exists C 2 > 0 and α 2 > 0 such that for every x ∈ Γ, (6.2)

G(e, x|r) ≥ C 2 e -α2|x| .

Indeed, since the support of µ generates Γ, there exists a path x 0 = e, x 1 , ..., x n = x such that n ≍ |x| and µ(x -1 k x k+1 ) > 0. In particular, we find that G(e, x|r) ≥ G(e, x|1) ≥ µ(x -1 0 x 1 ) • • • µ(x -1 n-1 x n ), which proves (6.2). We conclude that for 1 ≤ r < R, the Green distance is quasiisometric to the word distance and that G(e, x|r) vanishes at infinity. Consequently, the distance d r also is quasi-isometric to the word distance and satisfies that as x goes to infinity, d r (e, x) tends to infinity. In particular, any ball for d r is contained in a larger ball for the word distance and thus is finite, so d r is proper. Remark 6.5. According to [GL13, Lemma 2.1], for any non-amenable group Γ and any finitely supported symmetric admissible probability measure µ, G(e, x|R) converges to 0 as |x| goes to infinity. As a consequence, the distance d R is proper, although it might not be quasi-isometric to the word distance.

Define the corresponding Busemann cocycle

(6.3) B ξ (x, y; r) = ω Γ (r)B ξ (x, y) -log K ξ (x, y|r)
Lemma 6.6. There exists a constant C > 0 with the following property. Let ξ ∈ ∂Γ be a conical point, and x, y ∈ Γ. There exists a neighborhood V = V (x, y) of ξ in Γ ∪ ∂Γ such that for any z ∈ V ∩ Γ:

|B ξ (x, y) -B z (x, y)| ≤ C, | log K ξ (x, y|r) -log K z (x, y|r)| ≤ C.
Proof. The statement for B ξ is proved in [Yan22, Lemma 2.20]. Also, by [DG21, Proposition 4.1], the Martin kernel K z (•, e|r) = G(•, z|r)/G(e, z|r) extends continuously to K ξ (•, e|r) as z converges to a conical limit point ξ. This follows from weak relative Ancona inequalities. In particular, K z (x, y|r) converges to K ξ (x, y|r) as z converges to ξ, so the statement for K ξ also holds.

As a consequence, the Busemann cocyle B z (x, y) extends to a coarse cocycle B ξ (x, y) at a conical point ξ. That is,

B ξ (x, y) := lim sup z→ξ B ξ (x, y)
does not depend on the choice of z → ξ, up to a bounded additive error C independent of ξ. Denote by M(∂Γ) the set of finite positive Radon measures on ∂Γ. Then Γ acts on M(∂Γ) via g * ν(A) = ν(g -1 A) for any Borel set A in ∂Γ. Definition 6.7. We call a map x → ν x equivariant if for every x, g ∈ Γ, we have

6.3. Quasi-conformal densities. A Borel measure µ on a topological Hausdorff space T is regular if µ(A) = inf{µ(U ) : A ⊂ U, U is open} for any Borel set A in T . It is called tight if µ(A) = sup{µ(K) : K ⊂ A, K
ν gx (A) = ν x (g -1 A) for every Borel set A ⊂ ∂Γ. Definition 6.8. Let ω ∈ [0, ∞[. We call a Γ-equivariant map ν : Γ → M(∂Γ), x → ν x
an ω-dimensional quasi-conformal density if for any x, y ∈ Γ the following holds (6.4) dν x dν y (ξ) ≍ e -ωB ξ (x,y) K ξ (x, y|r), for ν y -a.e. points ξ ∈ ∂Γ, where the implicit constant does neither depend on x, y, nor on ξ.

By the equivariant property of µ, we see the following result.

Lemma 6.9. Let {ν x } x∈Γ be a σ-dimensional quasi-conformal density on ∂Γ. Then support of any ν x is ∂Γ.

Proof. By definition, the support supp(µ x ) is a maximal closed subset such that any point in \ supp(µ x ) has an open neighborhood which is ν x -null. It is well-known that ∂Γ is a minimal Γ-invariant closed set, see for instance [Bow99, Section 2]. Thus, it suffices to prove that the support of ν x is G-invariant. This follows from equivariance and quasi-conformality, since ν x (A) = ν gx (gA) for any Borel subset A ⊂ ∂Γ and ν x and ν gx are absolutely continuous with respect to each other.

As explained in the introduction, we associate the following Poincaré series to µ and to the word distance, by setting where we recall that H r (n) = x∈Sn G(e, x|r) and that the critical exponent ω Γ (r) is defined by

ω Γ (r) = lim sup n→∞ 1 n log H r (n).
The group Γ is of divergent (resp. convergent ) type for the Green function if Θ Γ (r, s) is divergent (resp. convergent) at s = ω Γ (r). Recall d r (x, y) := ω Γ (r)|x -1 y| + |x -1 y| r .

Lemma 6.10. The series defined as follows ∀s > 0, P Γ (s) := The left-hand side diverges, so the right-hand side also diverges. Thus, the critical exponent of P Γ (s) is 1. Also, note that P Γ (1) = Θ Γ (r, ω Γ (r)), so the second conclusion of the lemma follows.

Write µ(f ) = f dµ for a continuous function f ∈ C(∂Γ). We endow M(∂Γ) with the weak topology. That is, a sequence µ n ∈ M(∂Γ) converges to µ if µ n (f ) converges to µ(f ) for any f ∈ C(∂Γ). Equivalently, by the Portmanteau Theorem [Bil99, Theorem 2.1], µ n converges to µ if lim inf n→∞ µ n (U ) ≥ µ(U ) for any open set U ⊂ ∂Γ.

We start by constructing a family of measures {ν s x } x∈Γ supported on Γ for any s > 1. First, assume that P Γ (s) is divergent at s = 1. Set

ν s x = 1 P Γ (s) z∈Γ e -sdr (x,z) • Dirac(z),
where s > 1 and x ∈ Γ. Note that ν s x is a probability measure. On the contrary, assume that P Γ (s) is convergent at s = 1, Patterson introduced in [Pat76, Lemma 3.1] a monotonically increasing function H : R ≥0 → R ≥0 with the following property:

(6.5) ∀ǫ > 0, ∃t ǫ , ∀t > t ǫ , ∀a > 0 : H(a + t) ≤ exp(aǫ)H(t).
and such that the following modified series

P ′ Γ (s) := x∈Γ H(d r (x, z)) • e -sdr(x,z)
is divergent for s ≤ 1 and convergent for s > 1. Then define measures as follows:

ν s x = 1 P ′ Γ (s) z∈Γ e -sdr (x,z) • H(d r (x, z)) • Dirac(z),
where s > 1 and x ∈ Γ.

Choose s i ց 1 such that ν si x are convergent in M(∂Γ ∪ Γ) for all x ∈ Γ. Let ν x = lim ν si x be the limit measures, which are called Patterson-Sullivan measures associated with the Poincaré series P Γ . Note that forcing the Poincaré series to be divergent at 1, we have ν x (∂Γ) = 1. In the sequel, we write PS-measures as shorthand for Patterson-Sullivan measures. We also write ∂Γ con for the set of conical limit points in the Bowditch boundary.

Proposition 6.11. The PS-measures {ν x } x∈Γ on the Bowditch boundary are absolutely continuous with respect to each other and satisfy ∀ξ ∈ ∂Γ : dν x dν y (ξ) ≥ e -dr(x,y) , (6.6) ∀ν y a.e. ξ ∈ ∂Γ con : dν x dν y (ξ) ≍ e -ωΓ(r)B ξ (x,y) K ξ (x, y|r), (6.7)

where the implicit constant is independent of x, y and ξ. Remark 6.12. If Γ is of divergent type for Green function, then Theorem 6.17 below says that PS-measures have no atoms on Bowditch boundary and give full measure to conical limit points, so (6.7) holds for ν y -a.e. ξ ∈ ∂Γ. In this case, ν is an ω Γ (r)-dimensional quasi-conformal density.

Proof. Since d r satisfies the triangle inequality and lim t→∞ H(a+t) H(t) = 1, we see that {ν x : x ∈ Γ} are absolutely continuous with respect to each other, e -dr(x,y) ≤ dν x dν y (ξ) ≤ e dr (x,y) .

We now verify the quasi-conformality at conical limit points. We only consider the case where Γ is of convergent type, the divergent type being simpler. Let ǫ > 0 and t ǫ the number be given by (6.5) for the function H. Let φ = dνx dνy be the Radon-Nikodym derivative, uniquely defined up to a ν y -null set. Let ξ ∈ ∂Γ be a conical limit point and consider the open neighborhood V of ξ and the uniform constant C given by Lemma 6.6.

Let f be a continuous function supported in V . One can choose V also such that d r (y, z) > t ǫ for all z ∈ V . If z ∈ V satisfies d r (x, z) > d r (y, z), then we have

H(d r (x, z)) = H(d r (x, z) -d r (y, z) + d r (y, z)) ≤ e ǫ[dr(x,z)-dr(y,z)] • H(d r (y, z)) ≤ e ǫ(C+B ξ (x,y)) • H(d r (y, z)).
Since H is increasing, we have (6.8)

C -1 ǫ H(d r (y, z)) ≤ H(d r (x, z)) ≤ C ǫ H(d r (y, z)),
where C ǫ = e ǫ(C+B ξ (x,y)) > 1 depends on ǫ, C and (x, y), but not on z ∈ V . Note that C ǫ → 1 as ǫ → 0. By symmetry, the conclusion (6.8) also holds if d r (x, z) < d r (y, z) for z ∈ V .

Using (6.8), we get the following estimates. First,

ν s x (f ) = 1 P Γ (s) z∈V e -sdr(x,z) H(d r (x, z))f (z) ≤ C ǫ e -sBz(x,y)) • 1 P Γ (s) z∈V e -sdr(y,z) H(d r (y, z))f (z)
≍ C ǫ e -sB ξ (x,y) ν s y (f ) and second

ν s x (f ) = 1 P Γ (s) z∈V e -sdr (x,z) H(d r (x, z))f (z) ≥ C -1 ǫ e -sBz(x,y)) • 1 P Γ (s) z∈V e -sdr (y,z) H(d r (y, z))f (z)
≍ C ǫ e -sB ξ (x,y) ν s y (f ) where the implicit constants depend only on C but not on ǫ. Letting s → 1, we get

C -1 ǫ e -B ξ (x,y) ν y (f ) ≺ ν x (f ) ≺ C ǫ e -B ξ (x,y) ν y (f ) for any continuous function f supported in V . As ǫ → 0, C ǫ → 1, hence it follows that φ(ξ) ≍ e -B ξ (x,y)
for ν y -a.e. conical limit point ξ ∈ ∂Γ. The partial shadow Ψ C (x) at x is the set of points ξ ∈ ∂Γ such that some geodesic [e, ξ] contains a transition point C-close to x.

We now state the Shadow Lemma in our context, whose proof follows closely the proofs of [Yan22, Lemmas 4.1 & 4.2] with Lemma 6.6 replacing Lemma 2.19 there. Let us denote by Ψ con C (g) the set of all conical limit points in Ψ C (g). Lemma 6.14 (Shadow Lemma). Let {ν x } x∈Γ be an ω Γ (r)-dimensional PS measures on the Bowditch boundary ∂Γ. Then there exists C 0 > 0 such that for any C ≥ C 0 and x ∈ Γ the following two inequalities hold e -ωΓ(r)|x| G(e, x|r) ≺ C ν e (Ψ C (x)) ≤ ν e (Π C (x)), (6.9) ν e (Ψ con C (x)) ≺ C e -ωΓ(r)|x| G(e, x|r). (6.10) Remark 6.15. If ν e has no atoms at parabolic points which form a countable subset of the Bowditch boundary, then we obtain the full strength of the partial shadow lemma without having to restrict our attention to conical points. The upper bound (6.10) for the partial shadow uses the relative Ancona inequalities (Lemma 6.2), while it is unknown whether the upper bound holds for the usual shadow.

Proof. Let F be a set of three loxodromic elements with pairwise disjoint fixed points. For each f ∈ F , let α := ∪ i∈Z f i [e, f ] be an f -invariant quasi-geodesic between two fixed points f -, f + ∈ ∂Γ. Let U f ⊂ ∂Γ be an open neighborhood of f + so that for any η ∈ U f , the projection of η to the axis α has a distance to e at least C. By [DWY22, Lemma 2.4], for any x ∈ Γ, there exists f ∈ F so that [x -1 , η] contains a transition point C-close to e. Thus,

U f ⊂ x -1 Ψ C (x).
As Γ acts minimally with a dense orbit in ∂Γ, the Γ-orbit of any open set U ⊂ ∂Γ covers ∂Γ, so U have positive ν e -measure. Hence, setting

D = min{ν e (U f ) : f ∈ F } > 0 which is independent of x, we have ν e (x -1 Ψ C (x)) ≥ D.
Since ν x is equivariant, the lower bound in (6.6) implies

ν e (Ψ C (x)) = ν x -1 (x -1 Ψ C (x)) ≥ e -ωΓ(r)|x| G(e, x|r)
G(e, e|r)

• ν e (x -1 Ψ C (x)) ≥ De -ωΓ(r)|x| G(e, x|r)
G(e, e|r) .

Since G(e, e|r) is bounded by G(e, e|R), this concludes the proof of the lower bound. For any ξ ∈ x -1 Ψ con C (x), there is a geodesic γ from x -1 to ξ which intersects B(e, C) and contains a transition point. Thus, |B ξ (x -1 , e) -d(x -1 , e)| ≤ 2C. By the relative Ancona inequalities (Lemma 6.2), there is a constant C 1 independent of r such that

K ξ (x -1 , e|r) = lim z→ξ G(x -1 , z|r)
G(e, z|r) ≤ C 1 G(e, x|r).

Also, by (6.7) there is a constant C 2 > 0 such that for ν e -a.e. conical limit point ξ ∈ ∂Γ con , dν x -1 dν e (ξ) ≤ C 2 e -ωΓ(r)B ξ (x -1 ,e) K ξ (x -1 , e|r).

Combining together the above estimates, we have

ν e (Ψ con C (x)) = ν x -1 (x -1 Ψ con C (x)) ≤ C 2 x -1 Ψ con C (x)
e -ωΓ(r)B ξ (x -1 ,e) K ξ (x -1 , e|r)dν e (ξ)

≤ C 1 C 2 e 2CωΓ(r) • e -ωΓ(r)|x| G(e, x|r),
which finishes the proof of the upper bound.

Proposition 6.16. Suppose that ν e gives positive measure to the set of conical limit points. Then Γ is of divergent type for the Green function.

Proof. List Γ = {x 1 , . . . , x i , . . .} such that for all i, |x i | ≤ |x i+1 |. Let C 0 be given by Lemma 6.14. For any C > C 0 , set (6.11)

A C := ∞ n=1 ∞ i=n Ψ con C (x i ).
By Lemma 6.3, we have ∂ con Γ = A C . In other words, any conical limit point is shadowed infinitely many times by elements of Γ. We claim that Θ Γ (r, ω Γ (r)) is divergent. Recall that Θ Γ (r, ω Γ (r)) = x∈Γ e -ωΓ(r)|x| G(e, x|r).

By Lemma 6.14, we see that

|x|≥n e -ωΓ(r)|x| G(e, x|r) ≻ |x|≥n ν e (Ψ con C (x)) ≻ ν e |x|≥n Ψ con C (x) ≻ ν e (A C ) > 0.
This is true for all n > 0 and ν e (A C ) is independent of n. Thus, Θ Γ (r, s) is indeed divergent at s = ω Γ (r).

Theorem 6.17. If Γ is of divergent type for Green function, then ν e has no atoms. Otherwise, ν e is purely atomic and supported on the set of parabolic points.

Proof. First of all, the otherwise statement follows from Proposition 6.16. Indeed, if Γ is of convergent type, then ν e cannot give positive measure to conical limit points, hence it is supported on the set of parabolic limit points. Since this set is countable, ν e is necessarily purely atomic. Assume now that Γ is of divergent type. Let q ∈ ∂Γ be a bounded parabolic point so that the stabilizer P ∈ P acts co-compactly on ∂Γ ∪ Γ \ {q}. Let K ⊂ Γ ∪ ∂Γ \ {q} be a compact fundamental domain. For a point y ∈ Γ, we let π P (y) be the set of nearest point-projections π P (y) = {p ∈ P : d(y, p) = d(y, P )}. Define π P (A) := ∪ a∈A π P (a). As ∂K is disjoint with ∂P = {q}, the shortest projection Z := π P (K ∩ Γ) has bounded diameter by [GP16, Proposition 3.3]. By enlarging Z, assume without loss of generality that 1 ∈ Z.

Note that a maximal parabolic P has the contracting property by [GP16, Proposition 8.5]: any geodesic [x, y] with large projection to P uniformly close to π P (x) and π P (y). Thus, for any y ∈ Γ ∩ K and p ∈ P , any geodesic [e, py] passes within uniformly bounded distance of p ∈ pZ. Consequently, |py| ≃ |p| + |y|. Moreover, [e, py] exits P with bounded distance to pZ, so p is within a bounded distance of a transition point on [e, py]. Now, by the relative Ancona inequalities in Lemma 6.2, G(e, py|r) ≍ G(e, p|r)G(e, y|r). Here the implicit constants in ≃ and ≍ are independent of y and p.

We can estimate the ν s e -measure of an open neighborhood By [DWY22, Corollary 3.9], Θ P (r, ω Γ (r)) is convergent. Also, by the Portmanteau Theorem [Bil99, Theorem 2.1], lim sup s→1 ν s e (K) ≤ ν e (K). Letting s → 1 and then n → ∞, we see that ν e (U n ) → 0. Thus, ν e has no atoms at parabolic limit points. By Lemma 6.3, a conical limit point ξ is contained in infinitely many partial shadows Ψ C (x n ). By Lemma 6.14, as x n → ξ, the ν e -measure of Ψ C (x n ) tends to 0, so conical limit points are not atoms as well.

U n = {q} ∪ {pK : p ∈ P ; |p| ≥ n} as follows ν s e (U n ) ≤ |p|>n ν s e (pK) ≤ 1 P Γ (s) |p|>n y∈K e -sωΓ(r)|py| [G(e, py|r)] s , hence ν s e (U n ) ≺ 1 P Γ (s)

Convergent Poincaré series and applications

This final section is devoted to answering some questions raised in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] where we initiated the study of branching random walks on relatively hyperbolic groups. In particular, we end here the proof of our main result, Theorem 1.1.

One important notion that was coined in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] is the parabolic gap for the Green function whose definition we now recall. Let µ be a probability measure on Γ, let P 0 be a finite set of representatives of conjugacy classes of maximal parabolic subgroups and let P ∈ P 0 . We set

H P,r (n) = x∈Sn∩P G(e, x|r)
and

ω P (r) = lim sup n→∞ 1 n log H P,r (n) 
.

Definition 7.1. If ω P (r) < ω Γ (r), we say that Γ has a parabolic gap along P for the Green function at r. If for every P , for every r ∈ (1, R], ω P (r) < ω Γ (r), then we say that Γ has a parabolic gap for the Green function.

One of the consequences of having a parabolic gap for the Green function is that H r (n) is roughly multiplicative and the Green function has purely exponential growth. Namely, by [DWY22, Theorem 1.8], if Γ is a non-elementary relatively hyperbolic group and if µ is a finitely supported admissible and symmetric probability measure on Γ, then for every 1 < ≤ R, there exist C and C ′ such that for all n, r) . As proved in [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF], these two properties (7.1) and (7.2) hold for all hyperbolic groups. It was proved in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] that if maximal parabolic subgroups are amenable and if r < R, then the parabolic gap condition holds, hence so do the properties (7.1) and (7.2). Under additional assumptions on the random walk, this was also proved at R. Among the unanswered problems in [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] are the following questions. Does the parabolic gap condition holds at R as soon as maximal parabolic subgroups are amenable ? Does there exist examples of relatively hyperbolic groups endowed with a finitely supported admissible symmetric probability measures such that the properties (7.1) and (7.2) fail ? As particular cases of our work, we answer these two questions here. 7.1. First return to maximal parabolic subgroups. We gather the results of Section 2 to prove that whenever maximal parabolic subgroups are amenable, the parabolic gap for the Green functions holds.

(7.1) 1 C H r (n + m) ≤ H r (n)H r (m) ≤ CH r (n + m) and (7.2) 1 C ′ e nωΓ(r) ≤ H r (n) ≤ C ′ e nωΓ(
Consider the first return kernel p r,P to P for rµ defined by p r,P (x, y)

n≥1 z1,...,zn-1 / ∈P r n p(x, z 1 )p(z 1 , z 2 ) • • • p(z n-1 , y).
Denote by p

(n)
r,P the nth convolution power of this transition kernel and by G r,P the associated Green function. As explained in the introduction, for every x, y ∈ P , G r,P (x, y|1) = G(x, y|r) by [DG21, Lemma 4.4]. Set t r,P = x∈P p r,P (e, x). Then t -1 r,P p r,P is a symmetric admissible and P -invariant transition kernel, thus defines a random walk on P . Proposition 7.2. Let Γ be a relatively hyperbolic group and let P ∈ P 0 . Consider an admissible and symmetric probability measure µ on Γ. If t r,P ≤ 1, then we have ω P (r) ≤ 0; in particular, ω P (r) < ω Γ (r).

Proof. Denote t = t r,P for simplicity and let G t be the Green function associated with t -1 p r,P . By Proposition 2.3, x∈P, |x|=n G t (e, x|1) has growth rate at most 0. Since t ≤ 1 we have that G(e, x|r) = G r,P (e, x|1) = G t (e, x|t) ≤ G t (e, x|1).

Therefore ω P (r) ≤ 0.

Proposition 7.3. Let Γ be a relatively hyperbolic group and let P be a maximal parabolic subgroup. Consider an admissible and symmetric probability measure µ on Γ. If P is amenable, then for every r ≤ R, ω P (r) ≤ 0.

Proof. Since G(e, x|r) < ∞, we deduce that the spectral radius of p r,P is at most 1. By [Woe00, Corollary 12.5] and the fact that P is amenable, the spectral radius of t -1 r,P p r,P is 1 and hence t r,P ≤ 1. The result follows from Proposition 7.2. Note that we do not need to assume that µ is finitely supported in this proposition, although we need this assumption in the following corollary, which also relies on [DWY22, Theorem 1.8] mentionned above, where the assumption is crucially used.

Corollary 7.4. Let Γ be a relatively hyperbolic group endowed with a finitely supported admissible and symmetric probability measure µ. Assume that maximal parabolic subgroups of Γ are amenable. Then Γ has a parabolic gap for the Green function and so (7.1) and (7.2) hold.

Note that t 1,P is the probability that the random walk associated to µ eventually returns to P . We see that t 1,P < 1 for all P ∈ P 0 . Otherwise, the random walk would visit P infinitely many times with positive probability, which in turn would imply that it accumulates at the parabolic limit points fixed by P . This would contradict the fact that the random walk almost surely converges to a conical limit point [GGPY21, Theorem 9.14].

More generally, consider a branching random walk on Γ whose step distribution is given by µ and with mean offspring r. Following [START_REF] Candellero | Branching random walks on free products of groups[END_REF], by collecting all particles returning to P , one gets a Galton-Watson process with mean offspring t r,P , see precisely the proof of [CGM12, Proposition 4.3]. Consequently, the branching random walk returns to P infinitely many times if and only if t r,P > 1. In such case, the branching random walk must accumulate in P . Moreover, the same arguments as in [CGM12, Proposition 4.4] show that there are almost surely infinitely many cosets gP , such that the branching random walk accumulates in gP . On the contrary, if t r,P ≤ 1, then for all coset gP , the branching random walk eventually leaves gP . This follows from the fact that g is visited finitely many time almost surely and that starting a branching random walk at g, it comes back to gP only finitely many times, see also [CGM12, Proposition 4.5] for a more detailed proof.

Define now r P = sup{r > 1 : t r,P ≤ 1 for all P ∈ P 0 }. Then for 1 < r ≤ r P , we have ω P (r) ≤ 0 for all P ∈ P 0 , hence Γ has a parabolic gap for the Green function and H r (n) has purely exponential growth. Moreover, r P is the transition for the branching random walk spending infinite times in maximal parabolic subgroups : if r ≤ r P , then the branching random walk eventually leaves every coset gP , P ∈ P 0 , while if r > r P , it accumulates in infinitely many cosets gP for at least one of the P ∈ P 0 .

Recall that the limit set Λ of a branching random walk inside the Bowditch boundary ∂Γ is the set of accumulation points in ∂Γ of the trace of BRW(Γ, ν, µ), which is the set of elements of Γ that are ever visited by the branching random walk. We take the occasion to derive the following consequence which sheds some light on the geometry of the limit set.

Proposition 7.5. Let Γ be a relatively hyperbolic group endowed with a finitely supported admissible and symmetric probability measure µ. Consider a probability measure ν on N with mean r ≤ R. Let Λ be the limit set inside the Bowditch boundary of Γ of the branching random walk associated with µ and ν.

(1) If r < r P , then almost surely, Λ does not contain any parabolic limit point.

(2) If r > r P , then almost surely, Λ contains an infinite number of parabolic limit points.

Note that Λ cannot contain all parabolic limit points in case (2). Otherwise, since parabolic limit points are dense, Λ would coincide with the whole Bowditch boundary, but this is impossible since its Hausdorff dimension with respect to the shortcut distance is at most half the Hausdorff dimension of the whole boundary by

[DWY22, Theorem 1.1, Theorem 1.2].
This result is a consequence of the following one. For x ∈ Γ and C ≥ 0, we denote by Ω(x, C) the partial cone at x of width C, which is the set of points y ∈ Γ such that x is within C of a transition point on a geodesic from e to y. Proposition 7.6. Let Γ be a relatively hyperbolic group endowed with a finitely supported admissible and symmetric probability measure µ. For every r ∈ [1, R], there exist β > 0 with the following property. Consider a probability measure ν on N with mean r ≤ R. For any x ∈ Γ, the probability that the branching random walk visits Ω(x, C) is at most C 1 (1 + |x| β )G(e, x|r), where C 1 is a constant.

The proof of this proposition relies mostly on material from [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] and its proof is postponed to the Appendix.

Proof of Proposition 7.5. As we saw above, if r > r P , then the branching random walk accumulates in infinitely many cosets gP for at least one P ∈ P 0 . In particular, the limit set Λ contains all parabolic limit points fixed by gP g -1 , for every such coset gP . Thus, we only need to prove (1) to conclude and we assume that r < r P .

Recall that a sequence x n in Γ converges to a parabolic limit point ξ fixed by gP g -1 , P ∈ P 0 , if and only if the sequence of projections of x n on gP tends to infinity. Thus, ξ ∈ Λ if and only if the branching random walk visits infinitely many Ω(x, C), with x ∈ gP . Fix g ∈ Γ and P ∈ P 0 . Denote by A n the event

A n = BRW(Γ, ν, µ) visits Ω(x, C) for some x ∈ gP, with |g -1 x| = n .
Then, by Proposition 7.6,

P(A n ) ≤ C 1 (1 + n) β x∈P,|x|=n
G(e, gx|r).

Since g is a transition point on a relative geodesic from e to gx, by relative Ancona inequalities we get

P(A n ) ≤ C 2 (1 + n) β H P,r (n).
Since t r,P < 1, ω P (r) < 0 by Proposition 7.2 and so H P,r (n) decays exponentially fast as n goes to infinity. This proves that

n P(A n ) < ∞.
By the Borel-Cantelli lemma, we deduce that almost surely, the branching random walk only visits finitely many Ω(x, C), x ∈ gP , hence ξ / ∈ Λ. Since parabolic limit points are countable, this settles the proof.

The critical case r = r P remains open. In the context of free products, the branching random walk needs to visit gP infinitely many times in order to accumulate at ξ. As a consequence, the authors of [START_REF] Candellero | Branching random walks on free products of groups[END_REF] prove in Propositions 4.3, 4.4 and 4.5 that for r = r P , almost surely, Λ does not contain any parabolic limit point. However, for arbitrary relatively hyperbolic groups, the branching random walk can visit infinitely many partial cones Ω(x, C), x ∈ gP , without entering gP at all. Thus, we might need new material to figure this critical case. 7.2. Convergent Poincaré series. Let Γ be a relatively hyperbolic group and let µ be a finitely supported symmetric admissible probability measure on Γ. We consider the Poincaré series Θ Γ (r, s) defined above and for P a maximal parabolic subgroup, the Poincaré series Θ P (r, s) defined by (e,x) .

Θ P (r, s) = x∈P G(e, x|r)e -sd
In [DWY22, Example C], we proved that if a finitely generated group Γ 0 can be endowed with a symmetric finitely supported admissible probability measure µ 0 such that Θ Γ0 (r 0 , ω Γ0 (r 0 )) is convergent for some r 0 < R 0 , then the free product Γ = Γ 0 * Z d can also be endowed with a symmetric finitely supported admissible probability measure µ such that Θ Γ (r, ω Γ (r)) is convergent for some r ≤ R depending on r 0 . Here, R 0 denotes the inverse of the spectral radius of µ 0 and R the inverse of the spectral radius of µ.

Note that in this situation, Γ is relatively hyperbolic with respect to the conjugates of Γ 0 and Z d . When considered as a maximal parabolic subgroup of Γ, we will write P for Γ 0 in the sequel, for sake of consistency with the previous sections.

The question of whether such a couple (Γ 0 , µ 0 ) exists was left unanswered, but we announced that it was possible to construct one. We provide the details of this construction here and prove a more precise result.

Let F n be the free group with n generators and let Γ 0 = F n × F m , n = m. The Cayley graph of Γ 0 is a Cartesian product of two regular trees T l1 , T l2 with respective degrees l 1 = 2n and l 2 = 2m. We consider the measure µ 0 on Γ 0 defined by (5.1). We deduce the following from Theorem 5.1.

Proposition 7.7. There exists 1 < r 0 < R 0 such that for r ≤ r 0 , the Poincaré series Θ Γ0 (r, ω Γ0 (r)) is divergent and for r 0 < r < R 0 , it is convergent.

We now recall how the measure µ is constructed on the free product Γ = Γ 0 * Γ 1 where Γ 1 = Z d . Let µ 1 be any finitely supported symmetric admissible probability measure on Z d . Following [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF], we assume that d ≥ 3 for convenience, so that the random walk associated with µ 1 is transient at the spectral radius, i.e. the Green function G µ1 (e, e|R 1 ) is finite, where R 1 is the inverse of the spectral radius of µ 1 .

For 0 ≤ α ≤ 1, we set µ α = αµ 1 + (1 -α)µ 0 . For simplicity, we write µ = µ α below. We write G for the Green function associated with µ and G i for the Green function associated with µ i . By [DWY22, (10),(11)], there exist two numbers w 0,α,r and w 1,α,r and continuous non-decreasing functions ζ i,α of r ≤ R such that (7.3)

G(e, x|r) = 1 1 -w 0,α,r G 0 (e, x|ζ 0,α (r)), x ∈ Γ 0 and (7.4)

G(e, x|r) = 1 1 -w 1,α,r G 1 (e, x|ζ 1,α (r)), x ∈ Γ 1 = Z d .
Furthermore, we have ζ α,0 (r) = (1-α)r 1-w0,α,r , and (7.5) w 0,α,r = n≥1 P (X n = e, X k = e, 1 ≤ k < n, first step chosen using αµ 1 ) r n .

Similar expressions hold for w 1,α,r and ζ α,1 (r).

Lemma 7.8. For fixed α, the functions w i,α,r and ζ α,i (r) are (strictly) increasing in r.

Proof. The functions w i,α,r are power series in r with positive coefficients, so they are increasing. It follows from the above expression of ζ α,i that these functions are increasing too.

We prove here the following.

Theorem 7.9. If α is small enough, then there exist r * (α) < r ♯ (α) < R so that the following holds. For r ≤ r * (α), the Poincaré series Θ Γ (r, ω Γ (r)) is divergent and Γ has a parabolic gap for the Green function. On the other hand, at r = r ♯ (α), it is convergent and ω P (r) = ω Γ (r), where P = Γ 0 .

In the proof of Theorem 7.9, we shall also use the following result which is an enhanced version of [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF](14)].

Lemma 7.10. For every ǫ > 0, there exists α 0 such that for α ≤ α 0 , the following holds. For every r ∈ [0, R] and for every x ∈ Γ 1 \ {e}, we have G(e, x|r) ≤ ǫ.

Proof. By [DWY22, Lemma 3.15], if α ≤ α 0 , then w 1,α,r stays bounded away from 1 and ζ 1,α (r) converges to 0 as α tends to 0 uniformly over r ≤ R. We conclude from (7.4) that for small enough α, independently of r, for every x = e ∈ Γ 1 we have

G(e, x|r) ≤ G 1 (e, x|ζ 1,α (r)) 1 -w 1,α,r ≤ ǫ.
We are ready to complete the proof of Theorem 7.9. Let us first explain briefly how the quantities α, r * (α) and r ♯ (α) are chosen.

By [DWY22, Lemma 3.14], as α converges to 0, ζ 0,α (R) converges to R 0 . Let us now fix any r 1 > r 0 , where r 0 is given in Proposition 7.7. Thus, there exists α 1 so that ζ α,0 (R) > r 1 holds for any α ≤ α 1 . Since ζ 0,α (r) is increasing in r, there exist r * < r ♯ < R depending on α such that ζ α,0 (r * ) = r 0 and ζ 0,α (r ♯ ) = r 1 .

We will also need to choose some ǫ > 0 only depending on µ 0 , µ 1 and r 1 such that Equation (7.10) holds below. Then, we choose α small enough such that the conclusions of Lemma 7.10 holds for such ǫ and such that there exist r * < r ♯ < R with ζ α,0 (r * ) = r 0 and ζ 0,α (r ♯ ) = r 1 .

Proof of Theorem 7.9. The proof follows the lines of [DWY22, Example C]. We will write as announced above P for Γ 0 when it is considered as a maximal parabolic subgroup of Γ. In particular, we write for the growth rate of the Green function G associated with µ, induced on P . By (7.3), we see that

(7.6) ω P (r) = ω Γ0 (ζ 0,α (r)).
We will also write Θ Γ0 (r, s) for the Poincaré series associated with µ 0 on Γ 0 and Θ P (r, s) for the Poincaré series associated with µ induced on P , defined as above by Θ P (r, s) = x∈P G(e, x|r)e -s|x| .

If α is small enough, there exist r * < r ♯ < R with ζ α,0 (r * ) = r 0 and ζ 0,α (r ♯ ) = r 1 . First, if r ≤ r * , then ζ 0,α (r) ≤ r 0 . By Proposition 7.7, Θ Γ0 (ζ 0,α (r), ω Γ0 (ζ 0,α (r))) diverges, hence Θ P (r, ω P (r)) also diverges. Consequently, according to [DWY22, Corollary 3.9], ω P (r) < ω Γ (r). Moreover, since Γ 1 is amenable, we also deduce from Proposition 7.3 that the induced growth rate on Γ 1 considered as a maximal parabolic subgroup is smaller than ω Γ (r). In other words, Γ has a parabolic gap for the Green function on (0, r * ]. Therefore, [DWY22, Lemma 3.7] yields that the Poincaré series Θ Γ (r, ω Γ (r)) is divergent for r ≤ r * .

Next, fix r = r ♯ so that ζ 0,α (r) = r 1 > r 0 . According to [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF](15) 

Γ0 (r 1 , ω Γ0 (r 1 )) < ∞.
Also, Z d has polynomial growth and so by (7.7) (7.9)

y∈Γ1\{e} 1 -w 1,α,r G(e, e|r) e -ωΓ(r)|y| ≤ 1 G 1 (e, e|ζ 1,α (r ♯ )) y∈Γ1\{e} e -c|y| ≤ C 1 .
We then choose ǫ > 0 such that (7.10)

C 2 := ǫ 1 G 0 (e, e|r 1 ) Θ Γ0 (r 1 , ω Γ0 (r 1 ))C 1 < 1.
Note that ǫ does not depend on µ but only on C 1 , µ 0 and r 1 .In particular, it does not depend on α and so by Lemma 7.10, we can choose α small enough so that for every y ∈ Γ 1 \ {e}, G(e, y|r) ≤ ǫ.

Combining (7.8), (7.9), (7.10) and (7.2), we get

Θ Γ (r, ω Γ (r)) ≤ G(e, e|r) k≥0 ǫ 1 G 0 (e, e|ζ 0,α (r)) Θ Γ0 (ζ 0,α , ω Γ0 (ζ 0,α (r)))C 1 k ≤ G(e, e|r) k≥0 C k 2 , so that Θ Γ (r, ω Γ (r)) is finite.
Finally, we deduce from [DWY22, Lemma 3.7] that at r = r ♯ , Γ does not have a parabolic gap for the Green function. Since Γ 1 is amenable, we necessarily have ω Γ (r) = ω P (r) by Proposition 7.3. This concludes the proof.

Remark 7.11. In the proof of Theorem 7.9, note that we can choose r 1 arbitrarily close to r 0 . Unfortunately, as r 1 goes to r 0 , Θ Γ0 (r 1 , ω Γ0 (r 1 )) tends to infinity, so ǫ satisfying (7.10) converges to 0. Consequently, the parameter α also tends to 0. In other words, as r 1 tends to r 0 , we need to choose a measure µ that tends to the measure µ 0 distributed on Γ 0 . Now, since the functions ζ α,i of r depend on α, we cannot guarantee that r ♯ tends to r * . In particular, we cannot prove that there is a true phase transition for the convergence of the Poincaré series Θ Γ (r, ω Γ (r)) at r * .

Corollary 7.12. If α is small enough, then the following holds. For r = r ♯ (α), Γ does not have a parabolic gap for the Green function and (7.1) and (7.2) do not hold.

Proof. By Theorem 7.9, if r = r ♯ (α), then the Poincaré series Θ Γ (r, ω Γ (r)) is convergent and Γ does not have a parabolic gap. Assume by contradiction that there exists C such that H r (m + n) ≤ CH r (n)H r (m). Then, the quantity CH r (n) is sub-multiplicative, hence by Fekete's lemma,

ω Γ (r) = lim n→∞ 1 n log CH r (n) = inf n≥1 1 n log CH r (n).
Thus, for every n, we have CH r (n) ≥ e nωΓ(r) . This implies that Θ Γ (r, ω Γ (r)) diverges, which is a contradiction. In particular, we see that (7.1) fails. Now, (7.1) is a direct consequence of (7.2), with C = (C ′ ) 3 , hence (7.2) also fails.

We also deduce the following from Theorem 6.17 and Theorem 7.9.

Corollary 7.13. If α is small enough, then the following holds. For r ≤ r * (α), the measure ν e on the Bowditch boundary has no atom and is supported on the set of conical limit points. For r = r ♯ (α), it is purely atomic and is supported on the set of parabolic limit points.

Remark 7.14. In [START_REF] Candellero | Branching random walks on free products of groups[END_REF], the authors prove that in the context of free products, we always have ω P (r) < ω Γ (r) for every maximal parabolic subgroup P , i.e. Γ has a parabolic gap for the Green function. However, their proof relies on an unproved statement, namely that the quantity H r (n) is sub-multiplicative for every finitely generated group and then apply this property to the maximal parabolic subgroup P , see precisely the proof of [CGM12, Lemma 4.7] and also [DWY22, Remark 3.17]. However, by Theorem 5.1, we see that sub-multiplicativity fails for the Cartesian product of two regular trees if r ≥ r 0 . Moreover, by Corollary 7.12, in the above example, if r = r ♯ (α), then Γ does not have a parabolic gap for the Green function. A nontrivial quotient Γ of Γ means that the kernel of the canonical projection Γ → Γ is an infinite normal subgroup of Γ. We say that Γ is growth tight for the distance d if for every nontrivial quotient Γ of Γ, endowed with the quotient distance d from d, we have δ( Γ, d) < δ(Γ, d).

Let us assume that Γ is a relatively hyperbolic group. Whenever a maximal parabolic group P has growth rate δ(P, d) strictly less than δ(Γ, d), we say that Γ has a parabolic gap along P fir the distance d. When Γ has parabolic gap along every maximal parabolic subgroup, we say that Γ has the parabolic gap property.

Recall that by Lemma 6.4, d r (x, y) = ω Γ (r)|x -1 y| + |x -1 y| r is quasi-isometric to the word distance for r < R. By Lemma 6.10, we have δ(Γ, d r ) = 1. The following result relates the gap property for Green functions to the gap property for the distance δ(Γ, d r ).

Proposition 7.15. Let Γ be a group endowed with a probability measure µ such that the µ-random walk is transient at the spectral radius, i.e. G(e, e|R) is finite. Let A ⊂ Γ be any subset. If ω A (r) < ω Γ (r) for some 1 < r ≤ R, then δ(A, d r ) < 1.

We need the following lemma, which generalizes [Tan17, Lemma 3.1] in hyperbolic groups with a similar proof. Then ω A,r (θ) is a convex function on R. If Γ is a relatively hyperbolic group, then ω Γ,r (θ) is a true limit.

Proof. Denote H θ r (n) := x∈A,|x|=n [G(e, x|r)] θ . For θ 0 , θ 1 ∈ R and 0 < t < 1, by the Hölder inequality,

H tθ0+(1-t)θ1 r (n) ≤ (H θ0 r (n)) t (H θ1 r (n)) 1-t . Thus ω A,r is convex: ω A,r (tθ 0 + (1 -t)θ 1 ) ≤ tω A,r (θ 0 ) + (1 -t)ω A,r (θ 1 ).
If Γ is a relatively hyperbolic group, the same proof as in [DWY22, Lemma 3.2] shows (there with θ = 1) that for A = Γ, the sequence

H θ r (n) is sub-multiplicative, that is, H θ r (n + m) ≤ CH θ r (n)H θ r ( 
m) for some C > 0 . Thus, the limit exists by Feketa's lemma.

As a convex function on R, ω Γ,r (θ) is a continuous function of θ ∈ R, and is differentiable, except maybe at countably infinitely many points.

Proof of Proposition 7.15. To show δ(A, d r ) < 1, it suffices to find some ǫ > 0 such that

x∈A e -(1-ǫ)dr(e,x) = x∈A e -(1-ǫ)ωΓ(r)|x| [G(e, x|r)] 1-ǫ < ∞.
By Lemma 7.16, the function ω A,r (θ) is continuous in θ ∈ R. If ω A (r) < ω Γ (r), we can choose ǫ, η > 0 small enough so that

ω A (r) + η < (1 -ǫ)ω Γ (r),
and at the same time, by continuity of ω A,r (θ) at θ = 1, the following holds : for large enough n,

x∈A,|x|=n [G(e, x|r)] 1-ε ≤ e n(ωA,r(1)+η) .
By definition, ω A,r (1) = ω A (r), so the two inequalities above yield x∈A e -(1-ǫ)ωΓ(r)|x| G(e, x|r) 1-ǫ < ∞, which is the desired inequality.

Given f ∈ Γ and ǫ > 0, let V ǫ,f be the set of barrier-free elements x ∈ Γ, that is, elements for which the ǫ-neighborhood of some geodesic [e, x] contains a geodesic segment representing f . The following is analogous to [Yan19, Theorem C].

Lemma 7.17. Let Γ be a relatively hyperbolic group with parabolic gap property for Green function. Then there exists some ǫ > 0 such that the set V := V ǫ,f has growth rate strictly less than 1 for any element f ∈ Γ: δ(V, d r ) < 1.

Proof. By Proposition 7.15, it suffices to prove ω V (r) < ω Γ (r). Set

a ω (n) = e -ωn x∈V,|x|=n
G(e, x; r).

Assume that ω V (r) > ω P (r) for every maximal parabolic subgroup P ; otherwise the parabolic gap concludes the proof. If ω V (r) > ω > ω P (r), one obtains

a ω (n + m) ≤ c 0 1≤i≤n a ω (i) 1≤j≤n a ω (j)
by the same argument of [DWY22, Lemma 3.7] where a ω (n) is summed up over Γ instead of V. This implies via a variant of Feketa's lemma in [DPPS11, Lemma 4.3] that the series x∈V e -s|x| G(e, x; r) diverges at s = ω V (r).

Fix any L > 0. We choose an L-separated net A ⊂ V in word distance: if for any x, y ∈ A we have |x -1 y| > L and for any y ∈ V, there exists x ∈ A such that |x -1 y| ≤ L. Note that if |x -1 y| ≤ L, then G(e, x; r) ≍ L G(e, y; r). Since any ball of radius L in word distance contains a fixed number of elements, we deduce that Θ A (r, s) ≍ L Θ A (r, s) whenever they are finite. Thus, ω A (r) = ω V (r).

Following [Yan19, Section 4.2], we use a ping-pong argument to construct a free product of sets inside Γ: if L is large enough, there exist a finite set of elements B ⊂ Γ such that the set W(A, B) of alternating words over A and B embeds into Γ as a free semi-group under the evaluation map. This construction uses only the word distance. Now, by [DWY22, Lemma 3.8], we have ω A (r) < ω Γ (r) and then δ(V, d r ) < 1 by Proposition 7.15.

Proposition 7.18. If a relatively hyperbolic group Γ has parabolic gap for the Green function, then it is growth tight for the distance d r . Otherwise, there exists a nontrivial quotient Γ such that δ( Γ, dr ) = δ(Γ, d r ).

Proof. (1). We follow the proof of [Yan19, Corollary 4.6] in our setup. Let N be the infinite kernel of Γ → Γ. We form a set A by choosing a shortest representative h ∈ hN for each hN ∈ Ḡ so that d r (e, h) = d r (e, hN ). By definition of the quotient distance, the growth rate of the set A for d r is exactly the growth rate of Γ for dr .

We now choose a sufficiently long loxodromic element f ∈ N , which exists since N is infinite. If |f |/ǫ is large enough, we see that any geodesic [e, h] cannot contain f in its ǫ-neighborhood. Indeed, if not, the loxodromic element f produces two transition points on some [e, h] with a distance comparable with |f |. Now, we use the following fact given by Lemma 6.2: if u, v are two transition points in this order on a word geodesic [x, y], then In other words, we proved that A ⊂ V ǫ,f . Hence, δ(A, d r ) ≤ δ(V ǫ,f , d r ) < 1 by Lemma 7.17. The growth tightness follows.

(2). Assume that ω P (r) = ω Γ (r) for a maximal parabolic subgroup P . Then, x∈P e -dr(e,x) = x∈P e -ωP (r) G(e, x|r) hence, we see that the growth rate for d r induced on P equals 1.

Fix a loxodromic element f ∈ G. For any large enough n, the quotient group Γ defined as G/ f n is again a relatively hyperbolic group, and P ∩ f n is trivial (see [START_REF] Yang | Patterson-Sullivan measures and growth of relatively hyperbolic groups[END_REF]Lemma 8.9]). Thus, the set of elements in P embeds into Γ whose image we denote by P , so δ( P , dr ) ≥ δ(P, d r ) = 1. Therefore, δ( Γ, dr ) = 1.

Relatively hyperbolic groups endowed with a word distance are always growth tight by [START_REF] Yang | Growth tightness for groups with contracting elements[END_REF][START_REF] Goulnara | Growth tight actions[END_REF]. In fact, any co-compact action of a relatively hyperbolic group on a proper geodesic space contains a contracting element and thus is growth tight. Here, the existence of a contracting element in the co-compact action follows from the fact that in a relatively hyperbolic group, a loxodromic element is contracting with respect to all word quasi-geodesics: any c-quasi-geodesic outside the C-neighborhood of the axis has C-bounded projection for some C = C(c). See [GP16, Proposition 8.5].

On the contrary, as a corollary of Theorem 7.9 and Proposition 7.18, growth tightness for d r may fail and depends on r.

Theorem 7.19. There exists a relatively hyperbolic group Γ endowed with a finitely supported symmetric and admissible probability measure µ such that the following holds. There exist 1 < r * < r ♯ < R such that Γ endowed with the distance d r is growth tight for r ≤ r * , but is not for r = r ♯ .

Note that the proper distance d r is quasi-isometric to any word distance for r < R by Lemma 6.4. We say that a metric space (X, d) is D-coarsely geodesic for some D > 0 if for any two points x, y ∈ X, there exists a (1, D)-quasi-isometric embedding φ : [0, l] → X for l := d(x, y) so that φ(0) = x, φ(l) = y, and |d(φ(m), φ(n)) -|m -n|| ≤ D for any 0 ≤ m ≤ n ≤ l. It is an open question whether the Green distance is a geodesic distance on hyperbolic groups, see [BHM11, Section 1.7]. We shall however derive the following corollary from Theorem 7.19.

Corollary 7.20. For r = r ♯ , (Γ, d r ) is not a coarsely geodesic metric space.

The proof requires the following observation of independent interest. Recall that an element of infinite order g in a finitely generated group Γ is called contracting for a distance d on Γ if any d-metric ball in Γ disjoint with the subgroup g has C-bounded projection to g for some universal constant C > 0. In a D-coarsely geodesic metric space, this is equivalent to the bounded image property: there exists C = C(D) > 0 such that any D-coarse geodesic outside the C-neighborhood of g has shortest projection of diameter at most C to it. For simplicity, we can take the same C for both statements.

Lemma 7.21. Any loxodromic element in a relatively hyperbolic group is contracting with respect to d r where 1 ≤ r ≤ R.

Proof. By (7.11), the proper distance d r is coarsely additive along the set of transition points on the word geodesic. That is, if z is a transition point on [x, y] we have d r (x, y) ≥ d r (x, z)+d r (z, y)-D for some universal D > 0. Let γ be a quasi-geodesic Given a subset A of Γ, we write G(x, y; A|r) for the Green function restricted to paths staying in A, expect maybe the first and last point. That is, G(x, y; A|r) = n≥0 z1,...,zn-1∈A r n µ(x -1 z 1 )µ(z -1 1 z 2 )...µ(z -1 n-1 y). It is clear that Ω(x, C) is contained in U (x). Fix ǫ ∈ (0, 1/2). Let U ǫ (x) be the set of points z ∈ U (x) such that [x, z] contains a transition point w being at distance at least ǫd(x, z) to one of the endpoints: max{d(w, x), d(w, z)} ≥ ǫd(x, z).

For any m ≥ 1, let U ǫ (x, m) be the set of elements z ∈ U ǫ (x) such that d(x, z) ≥ m.

We now consider a finitely supported symmetric and admissible probability measure µ on Γ and a probability measure ν on N. We denote by BRW(Γ, ν, µ) the branching random walk associated with ν and µ. In what follows, we shall often use the following estimates proved in (6.2). There exists α > 0 such that for any x ∈ Γ, for every r ≥ 1, G(e, x|r) ≥ e -α|x| . (A.1) Also, by Lemma 7.2 there exists c 1 > 0 such that for any n ≥ 1, ♯S n ≤ c 1 e vn (A.2) Lemma A.1. For any ǫ ∈ (0, 1/2), there exists κ 0 > 0 such that for every κ ≥ κ 0 , the following holds. For all but finitely many x ∈ Γ: the following event Choose κ so that n κǫ1 > αn holds for any n > n 0 . Then, P(E 1 ) ≤ E(♯Z ≥ 1) ≤ e -n ǫ 1 κ ≤ e -αn ≤ G(e, x|r)

where the last inequality uses (A.1).

Similarly, we prove the following.

Lemma A.2. For every K ≥ 1 and Ĉ ≥ 0, there exists κ 0 > 0 such that for all κ ≥ κ 0 , the following holds. For any sufficiently large n ≥ 1, the following event Choose κ, n 0 > 0 so that c 2 m δκ -vKm > αm holds for any m ≥ n 0 . The conclusion follows again.

Lemma A.3. For any K > 1, there exist ǫ 0 , κ 0 such that for all ǫ ≤ ǫ 0 and κ ≥ κ 0 , the following holds. There exists c < 0 such that for all but finitely many x ∈ Γ, the following event 1) is impossible for sufficiently large |x|. Thus, it suffices to consider the case (2). Set K 1 = ǫ(1 + 1/K) and K 2 = (1 -2ǫ)(1 -1/K). By [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF] 
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  the first return Green function [Woe00, Lemma 1.13]. Define the growth function associated with the Green function H r (n) as H r (n) = x∈Sn G(e, x|r) and the growth rate of the Green function ω Γ (r) as ω Γ (r) = lim sup n→∞ 1 n log H r (n).

rr

  k p k (e, x).Now for 0 < s < r ≤ R -δ, H n (s) ≥ x∈Sn c2n k=0 s k p k (e, x) k p k (e, x),

Θ

  Γ (r, s) := x∈Γ G(e, x|r)e -s|x| = n≥0 H r (n)e -sn = G(e, e|r) • x∈Γ e -s|x|-|x|r

x∈Γe

  -sdr(x,y) has critical exponent 1, and the divergence of P Γ (s) at s = 1 is equivalent to that of Θ Γ (r, s) at s = ω Γ (r). Proof. By [GL13, Lemma 2.1], G(e, x|R) goes to 0 as |x| to infinity. Thus, G(e, x|r) ≤ G(e, x|R) ≤ 1 for large enough x. In particular, we see that for s > 1, x∈Γ G(e, x|r) s e -sωΓ(r)|x| ≤ C x∈Γ G(e, x|r)e -sωΓ (r)|x| . The right-hand side converges, so the left-hand side also converges. Conversely, for s < 1, x∈Γ G(e, x|r)e -sωΓ(r)|x| ≤ C x∈Γ G(e, x|r) s e -sωΓ(r)|x| .

6. 4 .

 4 Shadow Lemma. The key observation in the theory of PS-measures is the Sullivan Shadow Lemma shedding some light on the relation between the PSmeasure and the geometric properties of the boundary.Recall that ∂Γ is a visual boundary for the Cayley graph Cay(G, S): any two distinct points x, y ∈ Cay(G, S) ∪ ∂Γ can be connected by a geodesic. See [GP13, Proposition 2.4]. Definition 6.13. Let C > 0 and x ∈ Γ. The shadow Π C (x) at x is the set of points ξ ∈ ∂Γ such that there exists some geodesic γ = [e, ξ] intersecting B(x, C).

  |p|>n y∈K e -sωΓ(r)|p| e -sωΓ(r)|y| [G(e, y|r)] s [G(e, p|r)] s ≺ ν s e (K) |p|>n e -sωΓ(r)|p| [G(e, p|r)] s .

G 0

 0 (e, x|s) for the growth rate of the Green function G 0 associated with µ 0 and ω P (r) = lim sup n→∞ 1 n log x∈P,|x|=n G(e, x|r)

7. 3 .

 3 The growth tightness property. Let d be a proper left invariant distance on Γ. The growth rate of Γ for d is defined as follows: δ(Γ, d) := lim sup n→∞ log ♯{x ∈ Γ : d(e, x) ≤ n} n

Lemma 7. 16 .

 16 Under the assumption of Proposition 7.15. For any θ ∈ R, r ≤ R and A ⊂ Γ, define ω A,r (θ) := lim sup n→∞ 1 n log x∈A,|x|=n [G(e, x|r)] θ .

  d r (x, y) ≃ d r (x, u) + d r (u, v) + d r (v, y) (7.11)where ≃ denote the equality up to a uniform additive constant. We could then shorten d r (e, h) by an amount d r (e, f ) = ω Γ (r)|f | + |f | r , giving a contradiction with the above choice of h ∈ hN as the shortest one.

Fix C > 0

 0 and x ∈ Γ. The C-partial cone Ω(x, C) consists of points z ∈ G such that x is within C of an (η, L)-transition point on the geodesic [e, z]. Let C > 0 be any sufficiently large constant given by [DWY22, Lemma 2.9] so that the relative thin triangle property holds for (η, L)-transition points : for every triple (x, y, z) of Γ, any (η, L)-tranition point on [x, y] is within C of either an (η, L)-transition point on [x, z] or an (η, L)-transition point on [y, z]. Let B([x, z]) be the ball centered at the middle point of [x, z] of radius d(x, z)/2. Define U (x) to be the union of the balls B([x, z]) for all geodesics [x, z] between x and z ∈ Ω(x, C). That is, U (x) := {B([x, z]) : ∀[x, z], ∀z ∈ Ω(x, C)} .

E 1 :

 1 = {BRW(Γ, ν, µ) first enters U (x) at a point z ∈ U ǫ (x, κ log |x|)} has probability at most G(e, x|r). Proof. Let us freeze all particles of BRW(Γ, ν, µ) when the event E 1 happens, and denote by Z the collection of frozen particles. Set m := κ log n for simplicity, where n = |x|. Then for z ∈ Z we have (1) d(x, z) ≥ m, (2) max{d(y, x), d(y, z)} > ǫd(x, z) -3C where y is an (η, L)-transition point on [e, z] given by [DWY22, Lemma 6.6]. As the genealogy path from e to z does not intersect B(y, ǫd(x, z) -3C), the expected number of particles frozen at z ∈ U ǫ (x) is upper bounded by G(e, z; [U ǫ (x)] c |r) ≤ G(e, z; [B(y, ǫd(x, z) -3C)] c |r) ≤ e -e δ[ǫd(x,z)-3C] . where δ = δ(η, L) be given by [DG21, Proposition 3.5]. As a consequence, there exist ǫ 1 = ǫ 1 (ǫ, δ, v) and n 0 > 0 such that for any m > κ log n 0 , we have by (A.2) that E[♯Z] ≤ z∈Uǫ(x,m) G e, z; [B(y, ǫd(x, z) -3C] c r ≤ ∞ k=m c 1 • e kv-e δ(ǫk-3C) ≤ e -e ǫ 1 m .

E 2 :

 2 = {BRW(Γ, ν, µ) eventually visits a point z ∈ Ω(x, Ĉ) with d(e, z) ≤ Kd(e, x) but without entering B(x, κ log |x|) where |x| ≥ n} has probability at most G(e, x|r). Proof. We freeze particles when the event E 2 happens and denote by Z the set of frozen particles. By [DWY22, Lemma 2.11], if y ∈ [e, z] is a transition point Ĉ-close to x, the expected number of particles frozen at z ∈ B(e, K|x|) is upper bounded by G(e, z; [B(y, κ log |x| -Ĉ)] c |r) ≤ e -n δκ where c 2 depends on Ĉ, δ. Thus, we have E[♯Z] ≤ m≥n z∈SKm G(e, z; [B(y, κ log m -Ĉ)] c |r) ≤ m≥n c 1 e vKm e -c2m δκ .

E 3 :

 3 = {BRW(Γ, ν, µ) first enters U (x) at a point z ∈ U (x) \ U ǫ (x, κ log |x|) with |z| ≥ K|x|} has probability at most c • G(e, x|r). Proof. Let V be the set of z ∈ U (x) \ U ǫ (x,κ log |x|) satisfying |z| ≥ K|x|. By definition, (1) either d(z, x) ≤ κ log |x|, (2) or the [ǫ, 1 -ǫ]-percentage of [x, z] does not contain any (η, L)-transition point. If K and κ are fixed, noticing that (K -1)|x| ≤ d(x, z) ≤ (1 + 1/K)|z|, the case (

  d ≥ 3 then there exists C > 0 such that

	Proof. Classical estimates show that G(e, x) ∼ C 0 x -d+2 , see [Woe00, Theo-rem 25.11]. Here, x is the norm of x given by the inverse of the covariance
	matrix, which is symmetric and defines a positive definite quadratic form Q asso-
	ciated with the random walk. These asymptotics actually hold in a more general
	setting, namely it is only required that µ has suited finite polynomial moments
	related to the dimension d, as proved by Uchiyama, see in particular [Uch98, The-
	orem 2]. The function x → x -d+2 is (-d + 2)-homogeneous in the sense that for a > 0, ax -d+2 = a -d+2 x -d+2 . Let us fix a generating set S for Z d . Then,
	letting S n be the sphere of radius n centered at e with respect to S, we have by
	[DLM12, Theorem 1.1]	
	x∈Sn	G(e, x) ∼ Cn.
	3.1. Random walks in Z d . We start with the following result.
	Proposition 3.2. Let µ be a finitely supported symmetric admissible probability
	measure on Z d , d ≥ 3. Endow Z d with a finite generating set S. Then, there exists C > 0 such that
	x∈Sn	G(e, x) ∼ Cn.

  • 1 -norm {x, |x i | ≤ 1}, ∂B 1 is the unit sphere {x, |x i | = 1}and µ 1 is the uniform measure on ∂B 1 .

	Also, the constant in
	[DLM12, Theorem 1.4] is given by d • vol(C) and the volume of the ball B 1 is given by 2 d d! , see for instance [Bal97, Lecture 1]. We finally get
	x∈Sn

  is compact} for any Borel set A in T . A finite Borel measure is called Radon if it is tight and regular. It is well-known that all finite Borel measures on compact metric spaces are Radon, see [Bil99, Theorem 1.1, Theorem 1.3].

  P (r) = ω Γ0 (ζ 0,α (r)) = ω Γ0 (r 1 ) and so ω Γ (r) ≥ ω Γ0 (ζ 0,α (r)). Moreover, by Theorem 5.1, r 0 > 1, so that r 1 > 1 and so we deduce from Lemma 2.1 and Proposition 2.6 that ω Γ0 (r 1 ) ≥ c > 0. Therefore,

											],
											k 		k
	Θ Γ (r, s) ≤ G(e, e|r)	k≥0	 x∈Γ0\{e}	G(e, x|r) G(e, e|r)	e -s|x|		 y∈Γ1\{e}	G(e, y|r) G(e, e|r)	e -s|y|	
	By (7.6), ω (7.7)				ω Γ (r) ≥ c > 0.	
	Using (7.3) and Proposition 7.7, we see that	
	(7.8)	x∈Γ0\{e}	G(e, x|r) G(e, e|r)	e -ωΓ(r)|x| ≤	1 G 0 (e, e|r 1 )	Θ

preserved by a loxodromic element g. Then γ is C 0 -contracting with respect to word distance for some C 0 > 0. We claim that the shortest projection z of any point x to γ for the distance d r is D 0 -close to the shortest projection w of x to γ for the word distance. Indeed, as w is uniformly close to a transition point on [x, z], we see that d r (x, z) + D 0 ≥ d r (x, w) + d r (w, z) for some D 0 = D 0 (C 0 ) > 0. By the definition of d r -shortest projection, we have d r (x, z) ≤ d r (x, w) and thus the claim follows.

We now prove that γ is contracting for d r . Pick any d r -distance ball B centered at x disjoint with γ. Let y ∈ B so that the projections denoted by u, v respectively of x, y to γ realizes the d r -diameter of that of B to γ. By Lemma 6.4, d r is quasiisometric to word metric for 1 ≤ r < R.

We can thus choose d r (u, v) large enough so that |u -1 y| ≥ C 0 , hence the contracting property of γ in word distance implies that u, v are uniformly close to transition points on [x, y]. By the additive property of d r (x, y) along transition points, we obtain

We then obtain a contradiction if d r (u, v) > D 1 . Thus, the contracting property for d r follows.

Proof of Corollary 7.20. Assume on the contrary that d r is a coarsely geodesic distance for r > r ⋆ . By Lemma 7.21, the axis of any loxodromic element satisfies the bounded image property for coarse geodesics, so any loxodromic element is contracting in the sense of [START_REF] Yang | Growth tightness for groups with contracting elements[END_REF]. As the action on Γ is co-compact, the same argument as in [START_REF] Yang | Growth tightness for groups with contracting elements[END_REF] holds verbatim by replacing word geodesics with coarse d rgeodesics and we can show that d r on Γ is growth tight. However, this contradicts Theorem 7.19. Thus the corollary follows.

In [ACT15, Question 1], Arzhantseva-Cashen-Tao asked whether growth tightness is invariant among cocompact actions on geodesic metric spaces. Cashen-Tao [START_REF] Christopher | Growth tight actions of product groups[END_REF] showed the first examples of product groups with growth tightness for one generating set but not for another generating set. Examples of non-growth tight relatively hyperbolic groups with non-cocompact actions were already considered in [ACT15, Obs. 7.9]. As the action is not-cocompact, the induced pseudo-distance on the group pulled back from the action is not quasi-isometric to the word distance. It is natural to ask the following variant of Arzhantseva-Cashen-Tao's question for relatively hyperbolic groups about quasi-isometry invariance of growth tightness : if a proper (pseudo-)distance d on Γ is quasi-isometric to the word distance, does the growth tightness for d hold ? In our last corollary, we produce examples of non-geodesic distances on relatively hyperbolic groups Γ that answer negatively this question.

Corollary 7.22. There exists a relatively hyperbolic group with a proper left invariant distance quasi-isometric to the word distance which does not have the growth tightness property.

Appendix A. Probability that the branching random walk visits partial cones

We consider a relatively hyperbolic group Γ. Our goal is to prove Proposition 7.6. The proof basically consists of a reorganization of arguments of [START_REF] Dussaule | Branching random walks on relatively hyperbolic groups[END_REF]. We first recall some notations and definitions. Lemma 6.1], there exist a unique coset P z ∈ P such that if y 1 , y 2 are the entrance and exit points of [x, z] in N η (P z ), then max{d(x, y 1 ),

Before moving on, we need the following facts about y 1 . By relative thin triangle property, there exists a constant Ĉ1 depending only on C so that x is Ĉ-close to a transition point on [e, y 1 ]. Moreover, there exists Ĉ2 depending on C, η so that the projection π Nη(Pz ) (e) of e to N η (P z ) is within Ĉ2 of y 1 and y 1 is Ĉ2 -close to a transition point on [e, w] for any w ∈ N η (P z ). For given P ∈ P, let P (y 1 ) denote the set of w ∈ N η (P ) with d(w, y 1 ) ≤ d(e, y 1 ), where y 1 is Ĉ2 -close to π Nη(P ) (e).

Consider first the sub-event E 30 of E 3 , where BRW(Γ, ν, µ) enters N η (P z ) at a point w ∈ P z (y 1 ). Thus, d(e, w) ≤ d(w, y 1 ) + d(e, y 1 ) ≤ 2|y 1 |. The same proof of [DWY22, Lemma 6.6] implies that B(y 1 , d(y 1 , x) -3C) is contained in U (x). Thus, the particle does not visit B(y 1 , d(y 1 , x) -3C). Assume first that 1 | > 2|x|. Note that there exists n 0 , κ 0 > 0 so that for any |x| ≥ n 0 , we have

In particular, the branching random walk does not visit B(y 1 , κ 0 log |y 1 |) before arriving at w. Now, if |y 1 | ≤ 2|x|, then d(e, w) ≤ 2|y 1 | ≤ 4|x|. By definition of E 3 , the branching random walk does not visit B(x, κ 0 log |x|). In summary, this sub-event E 30 is included into the event E 2 in Lemma A.2 with constants Ĉ and K = 4, so there exists κ 0 ≥ κ > 0 so that the probability of E 30 is at most G(e, x|r). Now, it remains to consider the particles of BRW(Γ, ν, µ) in the event E 3 that do not enter N η (P z ) at some point w ∈ P z (y 1 ). Then, we have the following two sub-events denoted by E 31 and E 32 respectively: the particles either do not visit N η (P z ) at all or do visit N η (P z ) but at a first entrance point w not in P z (y 1 ). Let us denote by W the set of points w ∈ N η (P ) \ P (y 1 ) for all P ∈ P where y 1 is Ĉ2 -close to π Nη (P ) (e) and |y 1 | > |x|. In the first case, we freeze particles when they first enter the set V . In the second case, we freeze particles when they first enter the set W . We denote by Z 31 and Z 32 respectively the sets of frozen particles. We have

We first bound E[♯Z 32 ] in (A.6). Recall that π Nη(Pz) (e) is Ĉ2 -close to y 1 . If BRW(Γ, ν, µ) enters N η (P z ) \ P z (y 1 ) at a point w, by [DWY22, Lemma 2.12], for every M ≥ 0, there exists η 0 such that for all η ≥ η 0 , G e, w; [N η (P z )] c r ≤ e -Md(π Nη (Pz ) (e),w) ≤ c 0 e -Md (w,y1) for some c 0 = c 0 ( Ĉ2 ) > 0. Using (A.1), we first sum up over y 1 with |y 1 | > |x| and then w ∈ P z (y 1 ) with d(y 1 , w) > d(e, y 1 ):

where c depends on c 0 , thus on η.

We are left to bound E[♯Z 31 ] in (A.5). As the support of µ is finite, we can replace each edge in the geodesic from z to y 2 ∈ N η (P z ) by a µ-trajectory with uniformly bounded length. Moving possibly the endpoint y 2 up to a bounded distance depending on supp(µ), this produces a trajectory outside N η (P z ) for the µ-random walk from z to y 2 so that its length is bounded above by a linear function of d(y 2 , z). This implies the existence of a positive β independent on z, y 1 , y 2 and η such that G z, y 2 ; [N η (P z )] c r ≥ e -βd(y2,z) ≥ e -βK1|z| .

Taking into account that G e, z; [N η (P z )] c r • G z, y 2 ; [N η (P z )] c r ≤ G(e, e|r) • G e, y 2 ; [N η (P z )] c r we obtain

As above, the projection π Nη (Pz) (e) has a distance at most Ĉ2 depending on η to y 1 . By [DWY22, Lemma 2.12], for every M ≥ 0, there exists η 0 such that for all η ≥ η 0 , G e, y 2 ; [N η (P z )] c r ≤ e -Md(π Nη (Pz ) (e),y2) ≤ c 0 e -Md(y2,y1) ≤ c 1 e -K2M|z|

for some c 0 = c 0 (η) > 0. Summing over z ∈ V with |z| > K|x|, choosing M > 0 so that M K 2 > βK 1 + v + α, we have by (A.7) and (A.1) that for η ≥ η 0 ,

where c depends on c 0 , c 1 . The lemma is proved.

We can now finish the proof of Proposition 7.6.

Proof of Proposition 7.6. Using the thin-triangle property, we see that if z is contained in U (x) \ U ǫ (x, κ log |x|), then z ∈ Ω(x, Ĉ) for some uniform Ĉ. Fix any K > 1. Let ǫ be small enough and κ be large enough such that the conclusions of Lemmas A.1, A.2 and A.3 hold. Using (A.1), the probability that the branching random walk visits B(x, κ log |x|) is bounded by for some β depending on α, κ and v. Now assume that the branching random walk visits U (x) through paths outside B(x, κ log |x|). If the events E 1 and E 3 do not happen, then the event E 2 happens: BRW(Γ, ν, µ) first visits U (x) at a point z ∈ U (x) \ U ǫ (x, κ log |x|) with |z| < K|x|, without entering B(x, κ log |x|). Therefore, P(BRW(Γ, ν, µ) visits Ω(x, C)) ≤ P(BRW(Γ, ν, µ) visits U (x)) ≤P(BRW(Γ, ν, µ) visits B(x, κ log |x|)) + P(E 1 ∪ E 2 ∪ E 3 ) ≤C(1 + |x| β )G(e, x|r)