
HAL Id: hal-04163732
https://hal.science/hal-04163732v1

Submitted on 17 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Adaptive Consumption by Continuous Negotiation
Ellie Beauprez, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier

To cite this version:
Ellie Beauprez, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier. Adaptive Consumption
by Continuous Negotiation. 21th International Conference on Practical Applications of Agents and
Multi-Agent Systems (PAAMS), PAAMS, Jul 2023, Guimarães, Portugal. pp.28-39, �10.1007/978-3-
031-37616-0_3�. �hal-04163732�

https://hal.science/hal-04163732v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Adaptive consumption by continuous negotiation

Ellie Beauprez, Anne-Cécile Caron[0000−0001−6672−5686], Maxime
Morge�[0000−0003−2139−7150], and Jean-Christophe Routier[0000−0001−8032−6323]

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
maxime.morge@univ-lille.fr

Abstract. In this paper, we study the problem of allocating concurrent jobs com-
posed of situated tasks, underlying the distributed deployment of the MapReduce
design pattern on a cluster. In order to implement our multi-agent strategy which
aims at minimising the mean flowtime of jobs, we propose a modular agent archi-
tecture that allows the concurrency of negotiation and consumption. Our exper-
iments show that our reallocation strategy, when executed continuously during
the consumption process: (1) improves the flowtime; (2) does not penalise the
consumption; (3) is robust against execution hazards.

Keywords: Distributed problem solving, Agent cooperation and negotiation

1 Introduction

Data sciences exploit large datasets on which computations are performed in parallel
by different nodes. These applications challenge distributed computing in terms of task
allocation and load-balancing. This is the case for the practical application that we con-
sider in this paper: the most common model for processing massive data on a cluster,
i.e. the MapReduce design pattern [8]. The execution of jobs, that need be completed as
soon as possible, consists of processing resources located on nodes. Since multiple re-
sources are required to perform a task on a node, its execution may require the retrieval
of resources available on other nodes, thereby incurring additional cost.

Many works adopt the multi-agent paradigm to address the problem of task reallo-
cation and load-balancing [9]. The individual-centred approach allows the distribution
of heuristics for problems that are impractical due to the combinatorial scheduling,
thus allowing for scaling. Moreover, multi-agent reallocation methods are inherently
reactive and adapt to imprecise estimates of runtimes and to perturbations (e.g. node
slowdowns).

In [2], we have proposed a multi-agent reallocation strategy for a set of jobs to be
executed as soon as possible. In order to minimise the flowtime, the agents, which are
cooperative, negotiate to determine the next tasks to delegate or even swap. This strat-
egy requires the distributed deployment of autonomous agents that consume tasks and
continuously exchange some of them to balance the current allocation. In this paper,
we formalize the task consumption and reallocation operations and we propose a mod-
ular agent architecture that allows for the concurrency of negotiation and consumption.

According to the principle of separation of concerns, a first component agent is dedi-
cated to the consumption (i.e. the execution) of tasks, a second to the negotiations and
a third one to the local coordination of these operations through the management of the
task bundle. The difficulty lies in designing the behaviour of agents that do not share
a global state of the system (e.g. allocation) but they have local and partial knowledge.
Our experiments show that our reallocation strategy, when executed continuously dur-
ing the the consumption process, does not penalise consumption and it can improve
the flowtime by up to 37%, even when the agents have an imperfect knowledge of the
environment, such as execution hazards.

After a review of related work in Section 2, we recall in Section 3 the formaliza-
tion of the problem of job allocation composed of situated tasks. Section 4 formalizes
the consumption/reallocation operations. Then, we describe in Section 5 how the con-
sumption and reallocation processes are intertwined. We detail our agent architecture
in Section 6. Section 7 presents our experimental results. Section 8 summarises our
contribution and presents our perspectives.

2 Related work

Many papers have addressed the problem of task reassignment. The individual-centred
approach overcomes the limitations of centralised solutions: the impossibility of solv-
ing large-scale problems and the low responsiveness to changes [9]. In particular, the
dynamic task allocation problems require to propose processes that continuously adapt
to changes in the execution environment or the performance of the executors [10]. Most
of these works are based on the consensus-based bundle algorithm [5] which is a multi-
agent task assignment method that: (a) selects the tasks to be negotiated through an
auction process; (b) determines the bids that win these auctions by resolving potential
conflicts. In particular, our modular agent architecture is largely inspired by [1]. How-
ever, our agents do not aim at minimising the makespan but the flowtime. Furthermore,
we prefer here a bilateral protocol which allows, through the choice of the interlocutor,
to make targeted proposals and thus to reduce the computational and communication
costs associated with the negotiation. Finally, the simulation of the execution environ-
ment allows us to control its perturbations.

Chen et al. consider dynamic task allocation problems where tasks are released at
uncertain times [4]. They propose to continuously adjust the task allocation by combin-
ing the local rescheduling of agents with task reallocation between agents. Similarly, our
multi-agent strategy relies on a consumption strategy to define the local task scheduling
and on a negotiation strategy for the tasks to be reallocated. Contrary to [4], we assume
that the set of jobs is initially known, but our agents may have imperfect knowledge of
the execution environment.

Most of the work, that considers that perturbations in the execution environment
vary the task costs, rely on operations research techniques such as sensitivity analy-
sis to assess the robustness of optima to perturbations, incremental methods to repair
the initial optimal allocation when costs change, or combinatorial optimisation to ex-
ploit the measures of degradation [12]. Similarly, our strategy measures the gap be-

tween expected and observed progress in order to modify the allocation. However, our
individual-centred approach allows us to solve large-scale problems.

Creech et al. address the problem of resource allocation and task hierarchy in dis-
tributed multi-agent systems for dynamic environments [6]. They propose an algorithm
that combines updating and prioritisation algorithms, as well as reinforcement learn-
ing techniques. Contrary to learning techniques, our solution requires no prior model
of either the data or the environment, and no exploration phase as this would not be
relevant for the practical applications we are concerned with. In fact, the volume of
data makes preprocessing and exploration too expensive. Moreover, the variability of
the data makes it quickly obsolete.

Our previous experiments have shown that the flowtime achieved by our strategy is
better than that achieved with distributed constrained optimisation (DCOP) techniques
and remains close to that obtained with a classical heuristic, with in all cases a signifi-
cantly reduced rescheduling time [2]. In this paper, we show how to deploy this strategy
in a continuous way during the consumption process.

3 Problem

This section recalls the formalisation introduced in [2] of the task allocation problem
with concurrent jobs composed of situated tasks. A distributed system consists of a set
of computing nodes. These tasks require transferable and non-consumable resources
that are distributed among different resource nodes.

Definition 1. A distributed system is quadruple D= ⟨P,Nr,E,R⟩ where:

– P is a set of p computing nodes;
– Nr is a set of de r resource nodes;
– E : P×Nr →{⊤,⊥} is a neighborhood property that evaluates whether a comput-

ing node of P is local to a resource node in Nr;
– R = {ρ1, . . . ,ρk} is a set of resources of size |ρi|. The location of resources, which

are eventually replicated, is determined by the function l : R→ 2Nr .

A resource can be local or remote to a computing node, depending on whether it is
present on a resource node in the vicinity of the node. From this, we define the local-
ity predicate: ∀νc ∈ P,∀ρ ∈ R, local(ρ,νc) iff ∃νr ∈ l(ρ) s.t. E(νc,νr). Resources are
accessible to all computing nodes, including those on remote resource nodes.

A job is a set of independent, non-divisible and non-preemptible tasks. The execu-
tion of each task requires access to resources distributed on the nodes of the system.
The execution of a job (without a deadline) consists of the execution all its tasks.

Definition 2. Let D be a distributed system. We consider a set of ℓ jobs J= {J1, . . . ,Jℓ}.
Each job Ji, with the release time t0

Ji
, is a non-empty set of ki tasks Ji = {τ1, . . . ,τki}.

We denote T= ∪1≤i≤ℓJi the set of n tasks for J and Rτ ⊆R the set of resources required
by the task τ. For the sake of brevity, we note job(τ) the job containing the task τ. We
assume that that the number of jobs is negligible compared to the number of tasks,
|J|<< |T|.

The cost of a task for a node νi is an estimate a priori of its runtime.

Definition 3. Let D be a distributed system and T be a set of tasks. The cost function
c : T×N 7→R∗

+ is such that:

c(τ,ν j) = ∑
ρ j∈Rτ

c(ρ j,ν j) with c(ρ j,νi) =

{
|ρ j| if local(ρ j,νi)

κ×|ρ j| with κ > 1 otherwise.
(1)

Since gathering remote resources is an additional cost, a task is more expensive if the
resources required are ”less local”. The cost function can be extended to a set of tasks :
∀T ⊆ T, c(T,νi) = Στ∈Tc(τ,νi).

Essentially, we consider the problem of allocating jobs consisting of situated tasks.

Definition 4. A situated task allocation problem is a quadruple STAP = ⟨D,T,J,c⟩
where:

– D is a distributed system of m computing nodes;
– T = {τ1, . . . ,τn} is a set of n tasks;
– J= {J1, . . . ,Jℓ} is a partitioning of tasks in ℓ jobs;
– c : T×N 7→R∗

+ is the cost function.

A task allocation is an assignment of sorted bundles to different nodes.

Definition 5. An allocation for a STAP problem at time t is a vector of m sorted bundles−→
At = ((B1,t ,≺1), . . . , (Bm,t ,≺m)) where each bundle (Bi,t ,≺i) is the set of tasks (Bi,t ⊆
T) assigned to the node νi at time t, associated with a strict and total scheduling order
(≺i⊆ T×T). τ j ≺i τk means that if τ j,τk ∈ Bi,t then τ j is executed before τk by νi. The
allocation

−→
At is such that:

∀τ ∈ T, ∃νi ∈N, τ ∈ Bi,t (2)
∀νi ∈N,∀ν j ∈N \{νi}, Bi,t ∩B j,t = /0 (3)

All the tasks are assigned (Eq. 2) and each task is assigned to a single node (Eq. 3). For
the sake of brevity, we denote

−→
Bi,t = (Bi,t ≺i), the sorted bundle of νi; min≺i Bi,t , the

next task to be executed by νi; and ν(τ,
−→
At), the node whose bundle contains τ in

−→
At .

In order to assess the quality of a job allocation, we consider the mean flowtime
which measures the average time elapsed between the release date of the jobs and their
completion date.

Definition 6. Let STAP be a problem and
−→
At be an allocation at time t. We define :

– the waiting time of the task τ in the bundle
−→
Bi,t ,

∆(τ,νi) = ∑τ′∈Bi,t |τ′≺iτ c(τ′,νi)

– the completion time of the task τ ∈ T for the allocation
−→
At ,

Cτ(
−→
At) = ∆(τ,ν(τ,

−→
At))+ t − t0

job(τ)+ c(τ,ν(τ,
−→
At))

– the completion time of the job J ∈ J for
−→
At ,

CJ(
−→
At) = maxτ∈J{Cτ(

−→
At)}

– the mean flowtime of J for
−→
At ,

Cmean(
−→
At) =

1
ℓ

C(
−→
At) with C(

−→
At) = ΣJ∈JCJ(

−→
At) (4)

The waiting time measures the time from the current time t until the task τ is executed.

4 Operations

Here we formalise the operations of task consumption and reallocation. A task con-
sumption by a node consists in the latter removing this task from its bundle to execute
it. The completion of a task is a disruptive event that changes not only the allocation of
tasks but also the underlying problem.

Definition 7. Let STAP = ⟨D,T,J,c⟩ be a problem and
−→
At be an allocation. The con-

sumption at time t by the node νi, whose bundle is not empty (Bi,t ̸= /0), leads to the
allocation

−→
At

′ = λ(νi,
−→
Bi,t) for the problem STAP′ = ⟨D,T′,J′,c⟩ where:

T′ = T \{min
≺i

Bi,t} (5)

J′ =

{
J\{job(min≺i Bi,t)} if job(min≺i Bi,t) = {min≺i Bi,t}
J otherwise

(6)

In the latter case:

∀J j ∈ J ∃J′j ∈ J′ s.t. J′j =

{
J j \{min≺i Bi,t} if job(min≺i Bi,t) = J j

J j otherwise
(7)

and
−→
At

′ = (
−→
B1,t

′, ...,
−−→
Bm,t

′) with
−→
B j,t

′ =

{−−−−−−−−−−→
Bi,t ⊖min≺i Bi,t if j = i
−→
B j,t otherwise

(8)

When a task is consumed, it is removed not only from the resulting problem in the
task set but also from the corresponding job. The latter can also be removed if the task
was the only (last) task in the job. The resulting allocation is also changed. The task is
removed from the bundle it was in. The tasks are intended to be consumed one by one
until the empty allocation is reached.

A task consumption causes the flowtime to decrease locally, at time t:
ΣJ∈JCJ(λ(νi,

−→
Bi,t)) < ΣJ∈JCJ(

−→
Bi,t). This is not always the case over time since the

effective costs of tasks may differ from the estimated costs. If a task turns out to be
more expensive than expected when it is performed, the flowtime may increase after a
task has been consumed, as in Ex. 1.

Example 1. Let STAP = ⟨D,T,J,c⟩ be a problem with:

– D = ⟨P,Nr,E,R⟩, a distributed system with a single computing node P = {ν1}
associated with a single resource node Nr = {νr

1}, such that E(ν1,νr
1) = ⊤ and a

single resource R= {ρ1} over the resource node νr
1;

– two tasks T = {τ1,τ2};
– a single job J= {J1} released at t0

J1
= 0 composed of the two tasks J1 = {τ1,τ2};

– the cost functions c such that c(τ1,ν1) = 2 and c(τ2,ν1) = 4.

The allocation
−→
A0 = (

−→
B1,t) with

−→
B1,t = (τ1,τ2). According to Eq. 4, the flowtime is

Cmean(
−→
A0) = CJ1(

−→
A0) = Cτ2(

−→
A0) = ∆(τ2,ν1) + t + t0

J1
+ c(τ2,ν1) = c(τ1,

−→
At) + 0+

0+ c(τ2,ν1) = 2+ 4 = 6.
If the consumption of τ1 ends at time t1 = 3, it means that this task turns out to be
more expensive than expected when running. Therefore, the flowtime of

−→
At1 = (

−−−→
Bν1,t1)

with Bν1,t1 = (τ2) is Cmean(
−→
At1) = CJ1(

−→
At1) = t1 + t0

J1
+ c(τ2,ν1) = 3+ 0+ 4 = 7 >

Cmean(
−→
A0).

We consider an operation where some tasks are moved from one bundle to another.

Definition 8. Let
−→
At = (

−→
B1,t , . . . ,

−−→
Bm,t) be an allocation of the problem STAP= ⟨D,T,J,c⟩

at time t. The bilateral reallocation ot the non-empty list of tasks T1 assigned to the pro-
poser νi in exchange for the list of tasks T2 assigned to the responder ν j in

−→
At (T1 ⊆ Bi,t

and T2 ⊆ B j,t) leads to the allocation γ(T1,T2,νi,ν j,
−→
At) with m bundles s.t.:

γ(T1,T2,νi,ν j,
−→
Bk,t) =

−−−−−−−−−→
Bi,t ⊖T1 ⊕T2 if k = i,
−−−−−−−−−→
B j,t ⊖T2 ⊕T1 if k = j,
−→
Bk,t otherwise

(9)

If T2 is empty, the reallocation is called a delegation. Otherwise, it is a swap.

We restrict ourselves here to bilateral reallocations, but multilateral reallocations de-
serve to be explored.

Contrary to most other works (e.g. [7]), our agents are not individually rational
but they have a common goal that overrides their individual interests: to reduce the
flowtime.

Definition 9. Let
−→
At be an allocation at time t for the problem STAP = ⟨D,T,J,c⟩. The

bilateral reallocation γ(T1,T2,νi,ν j,
−→
At) is socially rational iff the flowtime decreases,

C(γ(T1,T2,νi,ν j,
−→
At))< C(

−→
At).

An allocation is said to be stable if there is no socially rational reallocation. In [2], we
have shown the termination of the process that iterates this type of reallocation.

5 Process

In order to carry out the consumption and reallocation processes simultaneously, we
consider two types of agents: (a) node agents, each of which represents a computing
node (cf Section 6); (b) the supervisor, which synchronises the phases of the negotiation
process.

The consumption process consists of the concurrent or sequential execution of the
different tasks by the computing nodes under the supervision of their agent. The real-
location process consists of multiple local reallocations that are the results of bilateral
negotiations between node agents, performed sequentially or concurrently. These pro-
cesses are complementary. While consumption is continuous, agents negotiate their task

bundles up to the point where a stable allocation is reached. A task consumption can
make an allocation unstable and thus trigger new negotiations. The consumption pro-
cess ends when all tasks have been executed. It is worth noting that this multi-agent
system is inherently adaptive. Indeed, if a task turns out to be more expensive than ex-
pected, because the runtime was underestimated or the running node is slowed down,
then the reallocation process, which runs continuously, allows the allocation to be bal-
anced by taking into account the actual cost of the task.

The consumption strategy of node agents, detailed in [2], specifies the scheduling
of tasks executed by the node for which they are responsible. In order to reduce the
flowtime, this strategy executes the tasks of the least expensive jobs before those of the
most expensive jobs.

The negotiation strategy of node agents, also detailed in [2], which is based on a
peer model, in particular a belief base built from the messages exchanged, determines
whether a reallocation is socially rational according to the agent’s beliefs. The agents
have: (a) an offer strategy which proposes bilateral reallocations; (b) an acceptance rule
that evaluates whether a proposal is socially rational before accepting or rejecting it;
and (c) a counteroffer strategy that selects a counterparty to a delegation to propose a
task swap.

The negotiation process consists of two successive stages: (1) agents propose the
delegations which they consider socially rational and which are accepted or rejected by
their peers; (2) agents propose delegations which are not necessarily socially rational
but which are likely to trigger counter-offers and thus socially rational swap. The stages
of negotiation alternate successively in a way that is concurrent with consumption.

6 Architecture

For the design of a node agent, we adopt a modular architecture that allows concur-
rent negotiation and consumption. A node agent is a composite agent consisting of 3
component ones (cf Fig. 2a), each with a limited role: the worker executes (consumes)
tasks; the negotiator updates a belief base for negotiating tasks with peers; the man-
ager handles the task bundle of the computing node to schedule the worker by adding
or deleting tasks according to the bilateral reallocations bargained by the negotiator.

In order to prioritise task consumption, as soon as the manager is informed that
the worker is free, the manager gives to the worker the next task to run in accordance
with the consumption strategy, even if this means cancelling the reallocation of this task
during the negotiation. This task is then no longer eligible for a potential reallocation.

We represent here the interactions between the component agents with interaction
diagrams where solid arrow heads represent synchronous calls, open arrow heads rep-
resent asynchronous messages, and dashed lines represent reply messages.

After the manager has given to the worker a task, the worker informs the manager
when it has been completed (cf Fig. 1a). In order to give priority to the consumption
over the negotiation, the query of the worker for the next task to run takes priority and
preempts the manager’s interactions with the negotiator. To refine its estimate of the
waiting time for the tasks in its bundle, the manager can ask the worker for an estimate
of the remaining runtime for the current task (cf Fig 1a).

Manager Worker

1 Perform(task)

2 Done

Manager Worker

1 QRC(task)

2 RC(cost)

(a) manager/worker

Proposer Responder

Manager Negotiator Negotiator Manager

1 Propose(delegation)

alt [The delegation is acceptable]

2 Accept(delegation)

alt [The delegation is up to date]

3 Remove(task)

QRC

4 GiveUpdatedBundle(B1)

5 Confirm(delegation)

6 Add(task)

QRC

7 GiveUpdatedBundle(B2)

[The delegation is deprecated]

8 Withdraw(delegation)

[The delegation is not acceptable]

9 Reject(delegation)

(b) manager/negotiator

Fig. 1: Interactions between the manager, the worker and the negotiator

In a first negotiation stage, the agents negotiate delegations (cf Fig. 1b). To confirm
such a bilateral reallocation, the proposer’s negotiator synchronously asks the manager
to update the task bundle so that it can update its belief base before engaging in new
negotiations. After this confirmation, the responder’s negotiator does the same. The
QRC tag indicates that the manager interacts with the worker according to the protocol
in Fig. 1a in order to take into account the remaining runtime for the current task. In
a second negotiation stage, the agents bargains task swapping and the interactions are
similar.

Despite our modular architecture, the main difficulty lies in the design of the be-
haviours of the agents, which are specified in [3] by automata 1, and whose complexity
is measured in Tab. 2b with the number of states, transitions and lines of code.

The worker is either free or busy to run a task and it can therefore estimate the
remaining runtime of the current task.

The manager handles the task bundle and coordinates the task consumptions of
the worker with the reallocations bargained by the negotiator. When the latter informs
the manager that there is no more socially rational delegations to propose and that the
negotiator is waiting for proposals from peers, the manager informs the supervisor.
The manager also continues to distribute tasks to the worker until the bundle is empty.
Informed that no node agent detects a reallocation opportunity, the supervisor triggers
the next negotiation stage. Finally, the supervisor completes the process when it learns
from the managers that all tasks have been consumed.

The negotiator responds to the proposals of its peers and updates its belief base,
which make it possible to detect reallocation opportunities. After proposing a delega-

1 https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/worker/doc/specification

Node Agent

Supervisor

NegotiatorNegotiator

Manager

Bundle

Proposal

Task

Worker

(a) Component agents

Agent States Transitions Lines
worker 2 7 173

manager 5 23 465
negotiator 9 74 1306
supervisor 9 69 626

(b) Behaviour Complexity

Fig. 2: Node Agent Architecture

tion, the negotiator waits for an acceptance, a rejection or a counter-proposal before
a deadline. When the negotiator has accepted a proposal or made a counter-proposal,
its waits for a confirmation or a withdrawal from its interlocutor (if the task has been
consumed). When the negotiator has confirmed its acceptance of a counteroffer, it also
waits for a double-confirmation. When the offer strategy does not suggests delegation,
the belief base is updated until a new opportunity is found.

7 Experiments

Our experiments aim to validate that the strategy of reallocation, when applied contin-
uously during the consumption: (1) improves the flowtime; (2) does not penalise the
consumption; (3) is robust against execution hazards (i.e. node slowdowns). We present
here our metrics, our experimental protocol and our results2.

Instead of the expected execution time (Eq. 1), we consider here cS(τ,ν), the effec-
tive cost for the node ν to perform the task:

– with a perfect knowledge of the computing environment, cSE (τ,νi) = c(τ,νi)
– with the slowing down of half of the nodes,

cSH (τ,νi) =

{
2× c(τ,νi) if i mod 2 = 1
c(τ,νi) otherwise (10)

Therefore, we distinguish: the simulated flowtime CS
mean(

−→
At) according to the effective

costs; the realised flowtime CR
mean(

−→
At) according to the task completion times which

are measured. We define the rate of performance improvement: Γ= CR
mean(

−→
A0)−CR

mean(
−→
Ae)

CR
mean(

−→
A0)

where
−→
Ae is the allocation when the tasks are performed and

−→
A0 is the initial allocation.

2 The experiments are reproducible using the following instructions:
https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/master/doc/experiments

The rate of performance improvement is positive if the realised flowtime obtained by
the reallocation process is better (i.e. lower) than that of the initial allocation.

Our prototype [3] is implemented using the Scala programming language and the
Akka library [11] which is suitable for highly concurrent, distributed, and resilient
message-driven applications. Experiments have been conducted on a blade with 20
CPUs and 512Go RAM. The fact that, in our experiments, the difference between
the realised flowtime and the simulated flowtime of the initial allocation (CR

mean(
−→
A0)−

CS
mean(

−→
A0)), which measures the cost of the infrastructure, is negligible supports this

technological choice.

0

0.5

1

1.5

2

2.5

3

3.5

4

50 100 150 200 250 300

M
ea

n
flo

w
tim

e
(m

in
s)

Number of tasks

CR
mean(

−→
Ae) CR

mean(
−→
A0) CSE

mean(
−→
Ae)

(a) From a random allocation

0

0.5

1

1.5

2

2.5

3

3.5

4

50 100 150 200 250 300

M
ea

n
flo

w
tim

e
(m

in
s)

Number of tasks

CR
mean(

−→
Ae) CR

mean(
−→
A0) CSE

mean(
−→
Ae)

(b) From a stable allocation

0

1

2

3

4

5

6

7

50 100 150 200 250 300

M
ea

n
flo

w
tim

e
(m

in
s)

Number of tasks

CR
mean(

−→
Ae) CR

mean(
−→
A0) CSH

mean(
−→
Ae)

(c) With execution hazards

Fig. 3: The strategy of reallocation improves the flowtime

The experimental protocol consists of randomly generating 25 initial allocations for
different STAP problems. We have empirically chosen κ = 2 as a realistic value to cap-
ture the overhead of fetching remote resources in a homogeneous network. We consider
m = 8 nodes, l = 4 jobs, n ∈ [40;320] tasks with 10 resources per task. Each resource
ρi is replicated 3 times and |ρi| ∈ [0;500]. In order to avoid unnecessary negotiations
due to the asynchronicity of the consumption operations, we assume in our experiments

that a bilateral reallocation is socially rational if it decreases the flowtime by at least
one second.

Hypothesis 1: The reallocation strategy improves the flowtime. We assume here
that the initial allocations are random and that agents have perfect knowledge of the
environment (cSE). Fig. 3a shows the medians and standard deviations of our metrics
as functions of the number of tasks. We observe that the realised flowtime of the real-
location is better than the realised flowtime of the initial allocation and it is bounded
by the simulated flowtime of the reallocation (if an oracle computes the reallocation
in constant time). Our strategy improves the flowtime by continuously reallocating the
remote tasks whose delegation reduces their costs during the consumption process. The
rate of performance improvement (Γ) is between 20 % and 37 %.

Hypothesis 2: The reallocation strategy does not penalise the consumption. We
assume here that the initial allocations are stable. In Fig. 3b, the realised flowtime of
the reallocation is similar to the realised flowtime of the initial allocation. The negoti-
ation overhead is negligible since no negotiation is triggered if the agents consider the
allocation to be stable.

Hypothesis 3: The reallocation strategy is robust against execution hazards.
We consider here the effective cost of the tasks, which simulates the slowing down of
half of the nodes, cSH . In Fig. 3c, the flowtimes have doubled due to execution hazards.
Furthermore, the realised flowtime of the reallocation remains better than the realised
flowtime of the initial allocation despite imperfect knowledge of the computing envi-
ronment. Taking into account the effective runtimes of the tasks already executed, the
rate of performance improvement (Γ) is between 30 % and 37 %.

8 Discussion

In order to design autonomous agents that simultaneously perform consumption and
reallocation, we have proposed a modular agent architecture composed of three com-
ponent agents: the worker which performs the tasks; the negotiator which bargains re-
allocations with peers; and the manager which locally coordinates these operations by
managing the task bundle. Without knowing the global state of the system, i.e. the al-
location, these agents have local knowledge (e.g. the current task, the task bundle) and
beliefs that guide their behaviour.

Our experiments show that the rate of performance improvement due to our real-
location strategy, when used continuously during the consumption process, can reach
37 %. Furthermore, the negotiation overhead is negligible since it is suspended when
the allocation is stable. Finally, even if some nodes are slowed down, our strategy of
reallocation adapts to the execution context by distributing more tasks to the nodes that
are not slowed down since it takes into account the effective runtime of the tasks already
executed, without requiring a learning phase.

A sensitivity analysis of the influence of the replication factor, of the remote re-
source fetch overhead (κ) and of the negotiation timeout is beyond the scope of this
article, but would deserve a thorough study. We would also like to evaluate the respon-
siveness of our strategy to the release of jobs over time.

More generally, our future work will focus on integrating task reallocation into a
provisioning process that adds or removes computing nodes at runtime according to
user needs in order to propose an elastic multi-agent strategy for scalability.

References

1. Baert, Q., Caron, A.C., Morge, M., Routier, J.C., Stathis, K.: An adaptive multi-agent system
for task reallocation in a MapReduce job. Journal of Parallel and Distributed Computing 153,
75–88 (2021)

2. Beauprez, E., Caron, A.C., Morge, M., Routier, J.C.: Task Bundle Delegation for Reducing
the Flowtime. In: Agents and Artificial Intelligence, 13th International Conference, ICAART
2021, Online streaming, February 4-6, 2021, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 13251, pp. 22–45. Springer International Publishing (2022)

3. Beauprez, E., Morge, M.: Scala implementation of the Extended Multi-agents Situated Task
Allocation. https://gitlab.univ-lille.fr/maxime.morge/smastaplus (2020)

4. Chen, Y., Mao, X., Hou, F., Wang, Q., Yang, S.: Combining re-allocating and re-scheduling
for dynamic multi-robot task allocation. In: Proc. of SMC. pp. 395–400 (2016)

5. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task
allocation. IEEE transactions on robotics 25(4), 912–926 (2009)

6. Creech, N., Pacheco, N.C., Miles, S.: Resource allocation in dynamic multiagent systems.
CoRR abs/2102.08317 (2021)

7. Damamme, A., Beynier, A., Chevaleyre, Y., Maudet, N.: The power of swap deals in dis-
tributed resource allocation. In: Proc. of AAMAS. pp. 625–633 (2015)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: Proc.
of OSDI. pp. 137–150 (2004)

9. Jiang, Y.: A survey of task allocation and load balancing in distributed systems. IEEE Trans-
actions on Parallel and Distributed Systems 27(2), 585–599 (2016)

10. Lerman, K., Jones, C., Galstyan, A., Matarić, M.J.: Analysis of dynamic task allocation in
multi-robot systems. The International Journal of Robotics Research 25(3), 225–241 (2006)

11. Lightbend: Akka is the implementation of the actor model on the JVM. http://akka.io (2020)
12. Mayya, S., D’antonio, D.S., Saldaña, D., Kumar, V.: Resilient task allocation in heteroge-

neous multi-robot systems. IEEE Robotics and Automation Letters 6(2), 1327–1334 (2021)

