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Summary. Chaos is a phenomenon describing the complex dynamics of many systems, from the evolution of the weather to the dynamics of 
cosmic entities. Since a few decades, generating chaos from a physical system has triggered a lot of research, especially in the optical domain. 
In the mechanical domain, chaos generation has been investigated mainly with buckled structures. These bistable systems enter in a chaotic 
regime upon the application of a strong enough alternative force. However, in the micromechanical domain, buckling a structure is 
demanding and typically requires a large voltage, incompatible with available technology. In this paper, we describe a new way of generating 
chaos from a Micro Electro-Mechanical System (MEMS) using the dynamical bistability of a nonlinear system, activated by a modulated 
signal within the resonance of the system. We measured the generated chaos experimentally with a microresonator, and characterized it with 
Poincaré sections and Lyapunov exponent measurements. In our case, the chaos generation does not need any specific requirement, and it is 
readily applicable in many structures, opening a new path for MEMS-based chaos generators. 
 

Introduction 
 
For half-a-century, chaos has triggered a lot of research around the world, both for fundamental and applied research. 
Chaos is characterized mainly by a non-periodic regime whose evolution is extremely sensitive to initial conditions. 
However, it is a deterministic system: an absolute knowledge of these initial conditions would enable to fully describe 
the system evolution, without the need to introduce any form of randomness. In practice, the knowledge of the initial 
conditions is limited by the precision of the measurement, such that the long-term prediction of the evolution of a chaotic 
system diverges, giving the illusion of a random system. This property is at the core of many researches, such as fluid 
mixing [1] or noiseless sensing [2]. 
Since the discovery of chaos synchronization [3], a tremendous amount of work has been dedicated to physical chaos 
generation, using either electronic [4] or optical [5] approaches. However, in the mechanical domain, chaos generation 
has mainly been limited to theoretical studies [6]–[8] since its experimental implementation is usually too complex, 
especially in micromechanical systems. Indeed, a common way to generate chaos consists in the realization of a bistable 
system, which is usually obtained by buckling the structure. However, the force required to perform the necessary 
buckling is typically generated through an electrostatic coupling, with an applied voltage ranging from a few tens to 
hundreds of volts [9], [10]. In this paper, we present an original way of generating chaos with a nonlinear non-buckled 
MEMS structure, requiring low voltages. 
 

Methodology and results 
 
We performed our experiment using a thin disk of radius of 400 µm and thickness of 10 µm. Using a piezoelectric 
transduction, the device is driven by applying a voltage between the bottom and the outer top electrode, and the 
mechanical displacement is then measured through the inner top electrode (Fig. 1 a). For small displacements, the device 
being in a linear regime, the amplitude varies proportionally with the driving force. The structure has a resonant frequency 
of 71.5 kHz and a quality factor of 1100 at low pressure (≈ 1 mbar). By increasing the driving force beyond the regime 
of small displacements, the MEMS will gradually enter in a nonlinear regime, mainly due to a cubic nonlinearity known 
as the Duffing nonlinearity. In this regime, for a positive nonlinearity, the shape of the resonance line bends towards 
higher frequencies, creating a hysteresis. In this frame, the resonator experiences a dynamical bistable regime similar to 
the one induced by buckling (Fig. 1 b).  
 

 
Figure 1: Dynamically bistable chaos. a) The microphotograph of the MEMS showing the outer and inner electrodes (the 
common bottom electrode covers the opposite side). b) At low amplitudes (grey), the MEMS response is linear, but as the drive 
amplitude increases, its resonance bends to form a hysteresis (black) with two available states (low and high amplitude) for a large 
frequency range. c) Applying a modulation on the driving signal, the system switches between the two states, and at a high enough 
modulation frequency the system’s response displays a chaotic pattern. Grey dashed lines highlight the periodicity of the applied 
modulation, demonstrating no correlated periodicity in the output signal. 

 
By driving the structure with an amplitude-modulated signal within its hysteresis, the system switches from one to the 
other state, namely high and low amplitude, and at a sufficiently high modulation frequency this switching becomes 
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erratic and the MEMS response exhibits a chaotic signal (Fig. 1 c). In our case, we used a modulation frequency of three 
times the bandwidth of the system, corresponding to 195 Hz. 
Because of both non-periodic and non-reproducible features, specific tools are used to study the chaotic regime. In order 
to characterize the complexity of a chaotic regime, a common approach consists in a stroboscopic analysis of the generated 
signal, called the Poincaré section. This is performed by sampling a temporal signal at regular intervals defined by the 
modulation frequency (grey dashed lines in Fig. 1 c) and plotting the results in the phase space (Fig. 2 a). The generated 
Poincaré section presents the structure of the non-periodic chaos, extracting order from the apparent noise of the signal. 
Although a chaotic signal is unique, its Poincaré section represents a reproducible signature testifying the complexity of 
the generated chaos. 
 

 
Figure 2: Poincaré section and Lyapunov exponent measurement. The chaotic signals are generated at a modulation 
frequency of 195 Hz with a driving voltage of 1 V. a) By sampling the chaotic signal every 1/195 second, a specific signature 
emerges from the chaos, forming a Poincaré section. b) In the chaotic regime, two measurements (orange and red) with extremely 
close initial conditions will tend to diverge in the chaotic regime (starting at the time 𝑡 = 0). c) From the difference between the 
two trajectories, the Lyapunov exponent is extracted using an exponential fit.    

 
Another interesting property of chaos lies in how sensitive to the initial conditions the system is. This property is 
characterized by the Lyapunov exponent, which describes how two initially close trajectories of the same system converge 
or diverge after some time. For a positive Lyapunov exponent, the trajectories diverge, which is the main property of 
chaotic systems, and its absolute value characterizes how fast the divergence is: it describes the memory of the system. 
The precision with which the Lyapunov exponent can be experimentally measured directly depends on how precisely the 
system can be set at similar initial conditions, ultimately limited by the noise of the system. In our case we were able to 
get initial conditions as close as 100 ppm, enabling to fit correctly the Lyapunov exponent, which we find to be 171 rad/s 
for our system (Fig. 2 b, c). 

Conclusion 

We demonstrated a new technique for MEMS-based chaos generation, using the dynamical bistability of the nonlinear 
system combined with an amplitude modulated driving force. We characterized the generated chaos with Poincaré 
sections and Lyapunov exponent measurements, giving information about the complexity and the memory of the system, 
essential to understand the behavior of the chaotic system. 
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