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Abstract: ‘Dysbiosis’ of the adult gut microbiota, in response to challenges such as infection, al-
tered diet, stress, and antibiotics treatment has been recently linked to pathological alteration of
brain function and behavior. Moreover, gut microbiota composition constantly controls microglia
maturation, as revealed by morphological observations and gene expression analysis. However,
it is unclear whether microglia functional properties and crosstalk with neurons, known to shape
and modulate synaptic development and function, are influenced by the gut microbiota. Here, we
investigated how antibiotic-mediated alteration of the gut microbiota influences microglial and
neuronal functions in adult mice hippocampus. Hippocampal microglia from adult mice treated
with oral antibiotics exhibited increased microglia density, altered basal patrolling activity, and im-
paired process rearrangement in response to damage. Patch clamp recordings at CA3-CA1 synapses
revealed that antibiotics treatment alters neuronal functions, reducing spontaneous postsynaptic
glutamatergic currents and decreasing synaptic connectivity, without reducing dendritic spines
density. Antibiotics treatment was unable to modulate synaptic function in CX3CR1-deficient mice,
pointing to an involvement of microglia–neuron crosstalk through the CX3CL1/CX3CR1 axis in the
effect of dysbiosis on neuronal functions. Together, our findings show that antibiotic alteration of
gut microbiota impairs synaptic efficacy, suggesting that CX3CL1/CX3CR1 signaling supporting
microglia is a major player in in the gut–brain axis, and in particular in the gut microbiota-to-neuron
communication pathway.
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1. Introduction

The influence of the gut–brain axis in maintaining brain homeostasis has long been
appreciated. However, in past years the role of the microbiota has emerged as one of the
key regulators of gut–brain function, leading to the definition of a novel microbiota–gut–
brain axis (MGBA; [1]). This axis, and in particular the gut microbiota composition, has
been linked to the biological and physiological basis of psychiatric, neurodevelopmental,
age-related, and neurodegenerative disorders [1]. The microbiota–brain communication en-
compasses several possible routes, such as the immune system, the tryptophan metabolism,
the vagus nerve and the enteric nervous system, involving microbial metabolites such
as short-chain fatty acids, branched chain amino acids, and peptidoglycans [2]. The ma-
nipulation of gut microbiota in animal models has become a paramount paradigm for
disclosure of the causative factors linking the microbiota composition to the regulation of
neural and cognitive processes. In addition, ongoing clinical trials are investigating the role
of MBGA manipulation for the treatment of brain disorders (Clinical trials.gov Identifier:
NCT03237078; NCT04366401 studies). During life, many factors can influence microbiota
composition, including infection, mode of birth delivery, use of antibiotic (ABX) medica-
tions, nutritional supplements, environmental stressors, host genetics and aging. Moreover,
microbiota and its metabolites have been suggested to be involved in the modulation of
brain functions, such as emotional behaviors [3] stress-related responsiveness [4], pain [5],
and food intake [6]. Consequently, alterations of the “healthy” microbiota, referred to as
dysbiosis, might drive functional and behavioral changes in animals and humans [7,8].

In this context, preclinical studies have demonstrated that ABX administration has
long-lasting effects on the brain, the spinal cord, and the enteric nervous system [9]. Indeed,
ABX are known to profoundly alter gut microbiota, possibly resulting in detrimental
effects on brain function and behavior, such as memory impairment in object recognition
associated with changes in the expression of related signaling molecules (i.e., BDNF,
GRIN2B, 5-HT transporter, and NPY) [10,11]. Similarly, chronic long-term ABX treatment
was found to induce memory deficits and to decrease hippocampal neurogenesis in adult
mice [12,13], while acute treatments were ineffective in rats’ early life [14]. In addition,
microbiota depletion due to ABX has been shown to impact stress-related behaviors,
although the mechanism is still not clear [10,15,16].

Despite the huge amount of data pointing to the role of MGBA in modulating brain
functions, there is an urgent need to understand the intricate processes and the cellular and
molecular events involved. A possible mechanism linking MGBA and neuronal functions
arises from the data showing that microbiota composition constantly controls microglia
maturation [17]. In germ-free (GF) mice, microglia display an immature phenotype which
can also be observed after four weeks of an ABX cocktail treatment of adult microbial
colonized mice [17]. The reported microbiota modulation of microglia phenotype may
underlie the effect of MGBA on brain function.

Microglia (the CNS tissue macrophages) are crucial not only for the maintenance of
brain homeostasis during development and adulthood, but also exert a profound effect
on neurons, refining the neuronal network in physiological and pathological conditions,
both directly through physical contacts or soluble factors release [18–20] and indirectly,
modulating astrocytic beneficial or detrimental activity [21]. One of the key elements in the
microglia–neuron crosstalk, deeply linked to the synaptic refinement and modulation, is the
CX3CL1/CX3CR1 axis. Indeed, the disruption of this neuron–microglia signaling causes
several alterations in brain connectivity [22] and cognitive functions [23] associated with
an impairment in glutamatergic synaptic transmission [22–26]. These effects have been
generally ascribed to the roles exerted by microglia during brain development, due to the
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ability of these cells to foster synaptic pruning [24], likely by contacting and phagocyting
synaptic elements [19,27,28].

Given the impact of microbiota composition on microglia signature, and the role
of microglia in tuning synaptic transmission, we explored the possibility that microglia,
orchestrating the bidirectional crosstalk between the gut and the brain, might be the
missing key element in the MGBA modulation of neuronal functions. For this purpose, we
altered gut microbiota composition, treating mice with two non-absorbable ABX, and we
evaluated the impact of two weeks of treatment on microglia and synaptic function. We
demonstrated that ABX treatment profoundly affects the ability of microglia in monitoring
brain parenchyma homeostasis and impairs the efficacy of hippocampal glutamatergic
synaptic transmission. In addition, we showed that ABX did not alter glutamatergic
function in CX3CR1-deficient mice, highlighting the involvement of the neuron to microglia
CX3CL1/CR3CR1 axis in the microbiota-to-neuron communication pathway.

2. Materials and Methods
2.1. Animals

All procedures performed using laboratory animals were in accordance with the Italian
and European guidelines and were approved by the Italian Ministry of Health in accordance
with the guidelines on the ethical use of animals from the European Communities Council
Directive of September 20, 2010 (2010/63/UE). All efforts were made to minimize suffering
and number of animals used. Mice were housed in standard cages in a group of a maximum
of 5 animals, with light–dark cycles of 12 h at 22±2 ◦C. Mice were divided into two
experimental groups, control (CTRL) and antibiotic-treated (ABX). To avoid stress induced
by oral gavage [29], ABX were administered in the drinking water and bottles were changed
every second day. Both groups had sterile food and water ad libitum. Gentamicin (Gibco
15750037) and Vancomycin (Sigma V2002-1G), 0.5 mg/mL were administered starting
from P28 for two weeks, 3 times a week, using sterile water feeders in a mix containing
50% sterile water and 50% sterile water plus sugar. The dose of antibiotics was adjusted
according to the mean volume of water consumed on each day per mouse. Water was
autoclaved and water intake was monitored daily. CTRL mice received only water solution
(50% sterile water and 50% sterile water plus sugar) for two weeks. The ABX treatment
was performed as in D’Alessandro et al., 2020 in the same animal facility, and with the
same conditions. Mice were sacrificed at P40.

For electrophysiological and time-lapse recordings, Cx3cr1+/gfp and Cx3cr1gfp/gfp

mice were used; Cx3cr1gfp/gfp mice were purchased from The Jackson Laboratory company
(B6.129P2(Cg)-Cx3cr1tm1Litt/J); the colony was established in our animal facility, and pro-
genitors were bred to C57BL6J to obtain Cx3cxr1+/gfp mice as we previously reported [30].
Wild type C57BL-6J were purchased from Charles River and used for Nanostring and
RT-PCR analysis. Thy1::EGFP-M21 mice, used for spine density analysis, were purchased
from The Jackson Laboratory company. All experiments were performed on male mice.

2.2. Electrophysiological Recordings

Acute hippocampal slices were obtained from Cx3cxr1+/gfp and Cx3cr1gfp/gfp mice
sacrificed at P40. Mice were decapitated under halothane anesthesia (Sigma Aldrich, Co.,
St. Louis, MO, USA). Whole brains were removed from the skull and rapidly placed for
10 min in ice-cold artificial cerebrospinal fluid (ACSF) containing (in mM): KCl 2.5, CaCl2
2.4, MgCl2 1.2, NaHSO4 1.2, glucose 11, NaHCO3 26 and glycerol 250 (Sigma Aldrich),
300 mOsm. ACSF was under continuous oxygenation (95% O2 and 5% CO2) to maintain
the physiological pH. Horizontal 250-µm-thick slices were cut at 4 ◦C using a Ted Pella
vibratome and placed in a chamber filled with oxygenated ACSF containing (in mM):
NaCl 125, KCl 2.5, CaCl2 2, MgCl2 1, NaHSO4 1.2, NaHCO3 26 and glucose 10, 300 mOsm.
Slices were left to recover for at least 1h at room temperature until use (24 ± 1 ◦C). All
the experiments were performed at room temperature on slices submerged in ACSF and
perfused with the same solution in the recording chamber. Spontaneous currents (sPSC) and
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excitatory postsynaptic currents were recorded from CA1 pyramidal neurons at −70 mV,
using a patch clamp amplifier (Axopatch 200 A, Molecular Devices). Data were acquired
using pClamp 10.0 software (Molecular Devices), filtered at 2 kHz, digitized (10 kHz), and
analyzed offline using Clampfit10 (Molecular Devices). For spontaneous and evoked EPSC
recordings, patch pipettes (3–5 MΩ) were filled with intracellular solution containing (in
mM): Cs-methane sulfonate 135, HEPES 10, MgATP 2, NaGTP 0.3, CaCl2 0.4, MgCl2 2, QX-
314 2, and BAPTA 5 (pH adjusted to 7.3 with CsOH). In order to block GABAA receptors,
10 µM Bicuculline methochloride was added to the extracellular solution. Stimulation
electrodes used to evoke EPSCs were placed inside a theta glass tube and filled with
ACSF (tip 15–20µm), positioned onto a manual manipulator connected to the unit of
stimulation (Iso-stim A320, WPI) to control the quantity of the current applied to stimulate
the presynaptic fibers. The stimulation electrode was placed in the stratum radiatum (around
80 µm toward CA2), to activate the Schaffer collaterals projecting to CA1 neurons. To
obtain the input/output curves (I/O), Schaffer collaterals were stimulated with currents of
increasing intensity (0.1, 0.5, 1, 3, 7, 10 mA), holding the potential at −70 mV, to observe the
AMPAR-mediated responses. Each stimulus lasted for 0.1 ms and was given 6 times, one
every 10 s. The amplitude of around 6 responses for each stimulation was then averaged to
obtain the I/O curve.

Patch clamp recordings of CTRL and ABX microglia were performed in whole cell
configuration exploiting the GFP expression by microglial cells, in the CA1 stratum radia-
tum at 50 µm under the slice surface, in order to avoid potentially activated microglia by
the slicing procedure. Moreover, experiments were performed from 1 to 7 h after slicing
at room temperature. Slices were perfused with ACSF as already described. The ACSF
was continuously oxygenated with 95% O2, 5% CO2 to maintain physiological pH. Patch
pipettes (4–5 MΩ) were filled with an intracellular solution containing the following com-
position (in mM): KCl 135, EGTA 0.5, MgCl2 2, CaCl2 0.011, HEPES 10 e Mg-ATP 2 (pH
7.3 adjusted with KOH, osmolarity 290 mOsm; Sigma Aldrich). Voltage-clamp recordings
were performed using an AxonMulticlamp 700B (Molecular Devices, LLC, Sunnyvale, CA,
USA). Currents were filtered at 2 kHz, digitized (10 kHz) and collected using Clampex
10 (Molecular Devices); the analysis was performed off-line using Clampfit 10 (Molecular
Devices). To determine the current/voltage (I/V) relationship of each cell, voltage steps
from −170 to +70 mV (V = 10 mV) for 50 ms were applied, holding the cell at −70 mV
between steps. Resting membrane potential and membrane capacitance were measured
at the start of recording. Data of both outward and inward rectifier K+ current amplitude
were assessed after subtraction of the leak current by a linear fit of the I/V curve between
−100 and −50 mV. Only cells whose current showed a rectification above −30 mV and the
amplitude measured at 0 mV was at least 10 pA, after leak subtraction, were considered as
expressing the outward rectifier K+ current; similarly, cells which showed a small inward
rectification below −100 mV were classified as expressing the inward rectifier K+ current
when subtracted current amplitude was at least 5 pA at −150 mV.

2.3. Time-Lapse Imaging

The rearrangement of microglia processes towards a local injection of ATP [31] was
evaluated on acute hippocampal slices acquiring time-lapse images, after at least 2 h of
recovery. Slices were constantly kept in oxygenated ACSF during all the stages of the
experiment at room temperature. Images were acquired every 10 s for 50 min, (exposure
time of 200 ms) using a BX51WI microscope (Olympus Corporation, Tokyo, JP equipped
with two objectives: LUMPlanF N 10×/0.10, air, and 40×/0.80, water immersion, Olympus
Corporation). An Optoscan monochromator (Carin Research, Facersham, UK) was used
to excite the GFP at 488 nm. Light was generated by a xenon lamp Optosource (Cairn
Research). A micropipette of borosilicated glass was filled with ACSF supplemented
with Mg-ATP 2 mM (Sigma Aldrich), and moved via a micromanipulator MP-225 (Sutter
Instruments, Novato, CA, USA) to reach the core of the field recording, around 50 µm
beneath the surface of the slice. The basal fluorescence was assessed for 5 min, then a small
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volume of Mg-ATP solution was puffed at the core of recording field via a pneumatic pico-
pump (PV820; World Precision Instruments, Inc., Sarasota, FL, USA) with a brief pressure
(8 psi; 100 ms). The images, collected with a camera CCD CoolSnap MYO (Photometrics,
Tucson, AZ, USA), were analyzed using MetaFluor software as fluorescence variation
measured into five concentric circular regions (regions of interest, ROI) positioned from
the tip of the ATP pipette, with a diameter of 10, 20, 40, 80, and 120 µm. To determine the
signal, the formula (F-F0)/F0 was used, where F0 matches the average fluorescence before
the ATP application and F refers to the average fluorescence after the ATP application.
To find out the effect of ABX treatment on microglia processes recruitment, we evaluated
the increase in fluorescence in concentric regions of interest positioned around the tip of
the ATP-containing pipette [30,32]. Measurements were collected after a brief puff of ATP
(2 mM, 100 ms) in hippocampal slices from CTRL and ABX-treated mice.

2.4. Tracking Analysis of Microglia Dynamics

Microglia basal motility was observed taking advantage of an upright microscope
(Olympus BX51WI) with a 40 × 0.8 NA water immersion objective. GFP was excited
at 488 nm, with a 150 W lamp and a monochromator. Stack images were acquired at
room temperature (24–25 ◦C), on slices perfused with oxygenated ACSF for 30 frames at
0.1 frames/sec, using a CoolSnap Myo camera and MetaFluor software (Molecular Devices,
Foster City, CA, USA). Microglia dynamics were, thus, tracked using ImageJ processing
package Fiji and the tracking plugin MTrackJ, as previously reported [30]. Once tracked,
a custom-written script, implemented in Matlab, was used for correcting the minimum
spatial resolution of the tracks within the acquired image [26].

In brief, tracks were traced and transferred into a new coordinate system in which
the origin (x = 0, y = 0) was set as the starting position of each process. Consequently, the
tracks were processed with the Matlab script in order that the distance of each point of
tracking was set to the minimum resolution distance between the points (i.e., d = 0.61 *
wavelength/numerical aperture = 0.37 mm). Tracks that endured more than 2 min with a
distance less than 2d were excluded. The customized tracks obtained were subsequently
analyzed to obtain the displacement, length, and instantaneous speed.

2.5. Morphology and Microglia Density Analysis

Cx3cr1+/gfp and Cx3cr1gfp/gfp mice were transcardially perfused with PBS and 4%
PFA; whole brains were maintained in 4% PFA overnight and then incubated in 30%
sucrose PBS solution overnight at 4 ◦C. Brains were stored at −80 ◦C until sectioning.
Frozen brains were cut into 50-µm-thick horizontal slices (Leica cryostat) and stored at 4◦

until use. Images from Cx3cr1+/gfp and Cx3cr1gfp/gfp mouse slices were acquired exploiting
a Nikon Eclipse Ti equipped with X-Light V2 spinning disk (CrestOptics), LDI laser source
(89 North) and Prime BSI Scientific CMOS (sCMOS) camera, 6.5 µm pixels (Photometrics)
with a 10×/0.25 Plan E air objective and a 60×/1.4 PlanApo l oil objective. Moreover,
Metamorph software version 7.10.2 (Molecular Devices) was used to acquire GFP signal
with a step size of 3 µm (for 10×) and 0.1–0.3 µm (for 60×). Through ImageJ software,
maximal intensity z projections were obtained in order to get representative images of
the acquired fields. All the cells that appeared entire within each acquired stack were
subjected to the analysis. Microglia density was evaluated by counting the number of
cell bodies totally contained within the z-projection, taking advantage of the endogenous
GFP expression. The obtained number was normalized on the acquired volume in each
acquisition field. For microglia morphometrical analysis, all the entirely visible cells inside
the acquisition field were analyzed. Cells were then skeletonized on the binary images,
using the ImageJ dedicated plug-in.

2.6. Dendritic Spine Density Analysis

Dendritic spine density analysis in the hippocampal stratum radiatum was performed
from 60-µm-thick coronal brain slices of Thy1::EGFP-M21 perfused mice. Images were
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acquired as previously described, using a 100× PlanApo l oil objective (1.45 numerical
aperture). The slices in Z were sliced with a step size of 0.1 µm. Signal deconvolution was
applied through Huygens software (Huygens professional, Scientific Volume Imaging).

The analysis was performed on secondary and tertiary dendrites starting from maxi-
mum z-projection of the planes containing the dendrite segment of interest (ImageJ soft-
ware). Four dendritic segments were randomly chosen in the field of view (2 fields per slice,
six slices per mice, two mice for each condition). The dendrite was then reconstructed and
measured to evaluate neurite spine density using NeuronStudio software (version 0.9.92
64-bit, Computational Neurobiology and Imaging Center Mount Sinai School of Medicine,
New York, NY, USA).

2.7. Real Time PCR

Total RNA was extracted from hippocampal tissue with the Quick RNA MiniPrep
(Zymo Research, Freiburg, DE) and retro transcribed with iScript Reverse Transcription
Supermix for Real-time PCR (RT-PCR) (Bio-Rad, Hercules, CA, USA). RT-PCR was carried
out using Sybr Green (Biorad) according to the manufacturer’s instructions. The PCR
protocol consisted of 40 cycles of denaturation at 95 ◦C for 30 s and annealing/extension at
60 ◦C for 30 s. For quantification analysis the comparative Threshold Cycle (Ct) method
was used. The Ct values from each gene were normalized to the Ct value of GAPDH in
the same RNA samples. Relative quantification was performed using the 2−∆∆Ct method
(Schmittgen and Livak, 2008) and expressed as fold change in arbitrary values. Primer
sequences targeted against GAPDH forw: TCG TCC CGT AGA CAA AAT GG, GAPDH
rew: TTG AGG TCA ATG AAG GGG TC; P2Y12 forw CCT GTC GTC AGA GAC TAC
AAG, P2Y12 rew GGA TTT ACT GCG GAT CTG AAA G; P2Y6 forw ATC AGC TTC CTG
CCT TTC C, P2Y6 rew CTG TGA GCC TCT GTA AGA GAG ATC G.

2.8. NanoString nCounter Gene Expression Assay and Data Analysis

Hippocampal hemispheres were isolated from CTRL and ABX-treated mice. To-
tal RNA was extracted with the Quick RNA MiniPrep (Zymo Research, Freiburg, DE,
USA). NanoString nCounter Inflammation panel assays were performed using 50 ng of
purified RNA following manufacturer’s instructions (NanoString Technologies). Sample
preparation and hybridization reactions were performed according to manufacturer’s
instructions (NanoString Technologies). All hybridization reactions were incubated at
65 ◦C for a minimum of 16 h. Hybridized probes were purified and counted on the
nCounter SPRINT Profiler (NanoString Technologies) following the manufacturer’s in-
structions. Data analysis was performed using the nSolver analysis software (NanoString
Technologies) (https://www.nanostring.com/products/analysis-software/nsolver) and
housekeeping genes were used for data normalization. In order to identify the differentially
expressed genes (DEGs), those with an interquartile range (IQR) value that stood under
the 10th percentile of the IQR value distribution were discarded from the datasets. The
expression levels were compared between groups using the paired Wilcoxon rank-sum test
on normalized and log2-transformed data. Genes with p-value < 0.05 and fold change >
1.5 were considered as DEGs. Data analysis of gene expression value was performed using
R (version 3.6.2).

2.9. Statistical Analysis

Statistical analysis was performed using Prism 5.0 and Origin 6.0 software R (version
3.6.2) and SigmaPlot. Data were evaluated for normal distribution and represented in
the figures as mean ± s.e.m. For each figure, n = the number of independent biological
replicates. Neither samples nor animals were excluded from the analyses. Quantitative
RT–PCR, electrophysiological recordings, and time-lapse experiments were replicated
at least four times with similar results. Differences among more than two groups with
only one variable were assessed using one-way ANOVA with Tukey’s or Sidak’s post hoc
test. Comparisons from nanostring gene analysis were analyzed using paired Wilcoxon

https://www.nanostring.com/products/analysis-software/nsolver
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rank-sum test on normalized and log2-transformed data. Two-way ANOVA with Sidak’s
post hoc test was used for comparisons of two or more groups with two variables. Signifi-
cant differences emerging from the above tests are indicated in the figures by * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001. Notable non-significant differences are indicated in
the figures by NS.

3. Results
3.1. ABX Treatment Increases Microglia Density in the Hippocampus without Affecting the
Expression Level of Inflammation-Related Genes

To assess whether the alteration of intestinal microbiota due to oral treatment with
non-absorbable ABX may impact microglia control of brain parenchyma homeostasis, we
treated four-week-old male Cx3cr1+/gfp mice with a mix of two non-absorbable antibi-
otics (ABX: Gentamicin and Vancomycin) in drinking water for two weeks. As recently
described in a report from our laboratory, our protocol of ABX administration induced
mild dysbiosis in treated mice, with an overall reduction in gut microbiota species diversity
and alteration of family abundance in the caeca. Specifically, phylogenetic analysis showed
increase of Burkholderiales families and reduction of the Prevotellaceae, Rikenellacaea, and
Helicobacteraceae families [33]. In accordance, all mice treated with antibiotics used for
the experiments showed an enlargement of the ceaca as macroscopic evidence of dysbiosis.

Confocal 3D scans of stratum radiatum of hippocampal slices from control and ABX-
treated Cx3cr1+/gfp mice showed increased microglia density in ABX-treated mice as the
number of microglia cells in tissue volume (Figure 1A,B).

To assess if ABX treatment might affect brain homeostasis, we analyzed the inflamma-
tory state of brain parenchyma by nanocounter gene expression analysis of total hippocam-
pal RNA extracts from six control and six ABX-treated mice and found that on control and
ABX hippocampal samples only 107 over the 248 genes within the Inflammation mouse
panel were expressed. Among these we did not find any upregulation in transcript expres-
sion as shown by the heat map (Figure 1C), thus indicating the absence of an inflammatory
state in the hippocampus upon ABX treatment. Moreover, we observed downregulation
of Nod1 and Cd86 transcripts, as depicted in the volcano plot (Figure 1D). These results
suggest that ABX treatment, while inducing a significant change of microglia density, did
not modify inflammation-related gene expression in brain parenchyma.

3.2. ABX Treatment Alters Microglia Functional Properties in Acute Hippocampal Slices

We then analyzed the morpho-functional properties of hippocampal microglia in
Cx3cr1+/gfp mice treated with ABX. First, microglia morphology was assessed in confocal
3D scans of stratum radiatum of hippocampal slices from control and ABX mice, showing
that the treatment-induced increase in density was not linked to changes of microglia
morphology. Indeed, the analysis of several morphometric parameters of GFP-positive
cells in stratum radiatum, obtained by the skeletonization of single microglia cells, showed
that they were unaffected by ABX treatment (Figure 2A,B).
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Figure 1. ABX treatment increases microglia density in the hippocampus with no variations in
inflammatory gene expression in hippocampal parenchyma. ABX mice display a significant increase
of hippocampal microglia density compared to control (CTRL) mice. (A) Representative z-stacks
projection showing microglia cells in the hippocampal stratum radiatum of P40 Cx3cr1+/gfp CTRL
and ABX mice (Green= eGFP, scale bar 20 µm). (B) Bar chart showing microglia mean density in
CTRL (10600 ± 600 GFP+ cells/mm3, n = 40 slices/6 mice, black) and ABX mice (12600 ± 600 GFP+
cells/mm3, n = 39 slices/6 mice, grey; * p < 0.05, Student’s t-test). (C) Heat map of unsupervised
hierarchical clustering inflammation genes in CTRL (n = 6) and ABX hippocampus samples (n = 6)
analyzed by NanoString nCounter gene expression assay. Colors in the heatmap indicate log2
counts normalized to housekeeping genes. Note that ABX treatment did not alter the expression of
inflammatory-related genes. (D) Volcano plot showing the downregulation of Nod1 and CD86 in
ABX hippocampus samples.
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Figure 2. ABX treatment alters microglia functional properties in acute hippocampal slices. Quan-
titative morphometric analysis of microglia in CTRL and ABX mice. (A) Representative z-stacks
projection showing GFP+ microglia (top) and tagged skeleton (bottom) of CTRL and ABX mice (scale
bar 10 µm). (B) Bar charts of morphometric parameters: microglial domain (MD, left) is the area
defined by the longest cell processes (CTRL n = 54 cells/ 5 mice; ABX n = 67 cells/5 mice, p = 0.8),
while arborization domain (AD, right) is the area defined by all the cell processes, describing the
overall arborization (CTRL n = 62 cells/5 mice, ABX n = 66 cells/5 mice, p = 0.52, Student’s t-test).
(C) Track analysis of microglia processes basal motility in hippocampal slices from CTRL (left panel)
and ABX-treated mice, measured by time-lapse fluorescence monitoring in acute hippocampal slices
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(15 min). Bar graphs representing spontaneous patrolling activity parameters obtained from track
analysis: (d) ABX treatment increased (D) mean processes velocity and (E) instantaneous microglia
processes displacement compared to CTRL (CTRL n = 22 cells/ 4 mice, ABX n=44 cells/ 3 mice;
Student’s t-test *** p < 0.001). (F) Plot showing time course of instantaneous radial process displace-
ment in slices from ABX (grey circles) and CTRL (dark squares) mice (two-way ANOVA *** p <
0.001). (G) Representative fields of GFP fluorescence measurements in slices from CTRL and ABX
Cx3cr1+/gfp mice at minute 0 and after 45 min of ATP perfusion. The arrow represents the tip of the
ATP puff pipette. After 5 min of basal motility recordings, ATP is applied for 45 min (Mg-ATP 2
mM, 8 psi, 100 ms) as shown in the timeline of the experiment (top). (H) Time course of fluorescence
ratio signal (∆F/F0) measured in a circle (10 µm radius) centered on the tip of the ATP-containing
pipette, from slices of CTRL and ABX-treated Cx3cr1+/gfp mice. (CTRL: black, n = 12 fields/4 mice
and ABX: grey, n = 12 fields /4mice; * p < 0.05, One-way ANOVA at minutes 10, 20 and 30). Note the
fluorescence increase in the area around the pipette tip only in control slices. Scale bar: 20 µm.

In parallel, we analyzed by whole-cell patch clamp recording the electrophysiological
properties of visually identified microglial cells within the stratum radiatum of acute
hippocampal slices from Cx3cr1+/gfp mice. Consistent with the lack of morphological
changes, we observed that ABX treatment left unaltered the pattern of voltage-activated
potassium currents recorded in patch clamped microglia (Supplementary Figure S1).

To further investigate the impact of ABX treatment on microglia functions, we focused
on patrolling activity, analyzing microglia processes movement in acute hippocampal
slices in basal condition and in response to an ATP source. Tracking analysis (Figure 2C)
of spontaneous microglia patrolling indicated that in slices from ABX mice, microglia
constantly moved their processes with an increased mean velocity (Figure 2D); in addition,
measurement of the instantaneous process displacement showed a higher processes dis-
placement in microglia from ABX mice (Figure 2E). This is supported by the instantaneous
process displacement plot (Figure 2F), representing how the displacement of the moving
processes varies over time, showing that the time-dependent increase in radial distance
was higher in hippocampal slices from ABX mice.

Microglia ability to extend processes towards the site of a local ATP application was
assessed by time-lapse acquisition in hippocampal slices from Cx3cr1+/gfp mice. This
procedure typically gives rise to an increase in the fluorescence level around the pipette tip,
due to the extension of microglia processes towards the ATP source. In hippocampal slices
from ABX-treated mice we observed a significant reduction of the fluorescence increase
around the pipette (20 µm radius area; Figure 2G,H), suggesting a reduced ability to
respond to ATP.

Real time PCR evaluation of purinergic receptors transcript levels on total hippocam-
pal RNA extracts from control and ABX-treated mice revealed increased expression of
p2y12 and p2y6 transcripts (see Supplementary Figure S2), as previously reported [33].

Taken together, these data indicate that ABX treatment increases microglia density
and basal motility, likely favoring the homeostatic patrolling of hippocampal parenchyma.
On the other hand, microglia from ABX-treated mice are unable to respond to purinergic
damage signals.

3.3. ABX Treatment Impairs Hippocampal Synaptic Transmission

Considering the deep interplay between neuronal and microglial cells in the mod-
ulation of synaptic activity, we wondered whether ABX-induced functional changes in
microglia could cause changes in synaptic properties. We assessed the excitatory synaptic
transmission of CA1 pyramidal neurons in acute slices from control and ABX-treated
Cx3cr1+/gfp mice, by patch clamp recordings, in order to determine the impact of ABX
treatment on hippocampal synaptic transmission. [26]. Recordings of CA1 pyramidal
neurons from mice treated with ABX showed a significant decrease in the amplitude of
spontaneous excitatory postsynaptic currents (sEPSC), compared to control, without major
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effects on sEPSC frequency (Figure 3A and Supplementary Figure S3A). Consistently, in
ABX-treated mice, excitatory postsynaptic currents (EPSCs) evoked at CA3-CA1 synapses
by Schaffer collaterals stimulation displayed strongly reduced amplitudes compared to
control ones (Figure 3B). This is confirmed by the input/output curve, suggesting that ABX
treatment deeply affects CA3-CA1 functional connectivity.
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Figure 3. ABX treatment impairs hippocampal glutamatergic synaptic transmission in Cx3cr1+/gfp

mice. (A) Left. Cumulative distribution of sEPSCs recorded from Cx3cr1+/gfp CA1 neurons at
−70 mV; CTRL (CTRL mean peak amplitude 8.86 ± 0.3; n = 11 cells/4 mice, black) and ABX (ABX
mean peak amplitude 8.05 ± 0.6; n = 14 cells/4 mice, grey). Right. Representative EPSCs recorded
at −70 mV from CTRL and ABX mice. Note smaller peak amplitudes in ABX compared to CTRL
mice (Kolmogorov-Smirnov test, *** p < 0.05). (B) Left. Plot showing the input–output curve of
evoked EPSC peak amplitudes at CA3-CA1 synapses recorded at −70 mV from CTRL (n = 15 cells/3
mice, black) and ABX mice (n = 14 cells/4 mice, grey). Right. Representative traces of evoked EPSCs
recorded at−70 mV from CTRL and ABX Cx3cr1+/gfp CA1 hippocampal neurons in slices from CTRL
and ABX mice at 0.5 and 7 mA stimulation. Note that in ABX-treated mice, neurons show significantly
lower peak amplitudes compared to CTRL (*** p < 0.001, two-way ANOVA). (C) Representative
confocal images of dendritic segments of CA1 pyramidal neurons in hippocampal slices from CTRL
and ABX-treated Thy1::EGFP-M21 mice (scale bar: 200 µm; zoom scale bar: 3 µm). (D) Bar chart
representing mean dendritic spine density in the two conditions (CTRL 1.76 ± 0.07 spines/µm,
n = 12/2 slices/mice); ABX 1.84 ± 0.08 spines/µm, n = 11/2, Student’s t-test p = 0.45).

To investigate if structural changes may underlie the observed reduced glutamatergic
function, we evaluated the dendritic spine density in ABX-treated and CTRL mice. For this
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set of experiments we took advantage of the Thy1::EGFP-M21 mice, which express EGFP
in sparse subsets of pyramidal neurons, providing a bright, vital Golgi-like staining, thus
allowing dendritic confocal microscopy analysis of dendritic spines. Confocal 3D analysis
of neuronal CA1 dendritic spine showed that the reduction of glutamatergic transmission
was not associated with a change in spine density (Figure 3C,D). These results suggest that
ABX treatment affects the synapse functionality, causing the weakening of glutamatergic
synaptic transmission between Schaffer collaterals and CA1 pyramidal neurons, thus
decreasing functional connectivity, without changes in the number of dendritic spines.

3.4. Microglia–Neuron Crosstalk through the CX3CL1/CX3CR1 Axis Is Required for the ABX
Induced Reduction of Synaptic Transmission

To ascertain whether the effects induced by ABX treatment on glutamatergic synaptic
transmission could be mediated by microglia–neuron crosstalk, we took advantage of a defec-
tive model of microglia–neuron interaction, based on the KO of the fractalkine receptor [26,30].
Indeed, in these mice, the lack of neuron–microglia crosstalk through the CX3CL1/CX3CR1
axis is known to delay synaptic maturation and connectivity [22,24,25,34,35].

It has to be noticed that, while the impairment of synaptic transmission due to the
lack of CX3CL1/CX3CR1 signaling develops in the first postnatal weeks [24], and persists
in the adult [22,26], the alteration of functional properties of microglia cells, such as
ATP processes rearrangement, are only transiently present during the second and the
third postnatal weeks and recover in adulthood [30], thus making this model suitable to
dissect a possible role of microglia–neuron crosstalk in the ABX-induced impairment of
glutamatergic synaptic transmission. We thus treated Cx3cr1gfp/gfp mice with ABX for
two weeks. Figure 4 shows that the absence of the CX3CL1/CX3CR1 axis prevented the
modulation of synaptic transmission caused by ABX treatment.

Specifically, ABX treatment did not affect the amplitude as well as the frequency
of spontaneous excitatory postsynaptic currents (sEPSC; Figure 4A and Supplementary
Figure S3B). Moreover, when we analyzed the CA3-CA1 input/output curve, EPSCs
displayed similar amplitudes in control and ABX-treated mice (Figure 4B), suggesting that
the CX3CL1/CX3CR1 axis is required for the ABX effect on synaptic transmission.

Conversely, ABX treatment profoundly affected hippocampal microglia, reducing their
ability to rearrange their processes towards locally applied ATP (Figure 4C), increasing
microglia density (Figure 4D) and, noticeably, ramification (Figure 4E,F). In addition,
tracking analysis of spontaneous microglia processes movement indicated that in slices
from CX3CR1gfp/gfp mice, ABX treatment reduced the mean velocity of microglia processes
movement, leaving unaltered the instantaneous displacement (Supplementary Figure S4).

Altogether, these data showing that ABX treatment altered microglia structural and
functional characteristics in Cx3cr1 KO mice, leaving unaltered spontaneous and evoked
EPSC, give rise to the idea that ABX effects on gut microbiota alter neuronal function
through microglial dysfunction, thus pointing to a microbiota–microglia–neuronal axis.
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Figure 4. ABX-induced effects on synaptic transmission are absent in mice lacking CX3CR1.
(A) Cumulative distribution of sEPSC current amplitude recorded from Cx3cr1gfp/gfp CA1 pyra-
midal neurons (−70 mV holding potential) in slices from CTRL (mean peak amplitude 6.85 ± 0.1;
n = 8 cells/3 mice, black) and ABX mice (mean peak amplitude 6.56 ± 0.1; n = 10 cells/3 mice, grey;
Kolmogorov–Smirnov test, p = 0.18). Inserts: Representative traces of spontaneous EPSCs recorded
at −70 mV. (B) Input–output curve of evoked EPSC peak amplitudes at CA3-CA1 synapses recorded
at −70 mV from CTRL (n= 9/3, cells/mice, black) and ABX-treated Cx3cr1gfp/gfp mice (n = 12/4,
cells/mice, grey; two-way ANOVA; p = 0.86). Inserts: Sample traces of evoked EPSCs in CA1
pyramidal neurons from CTRL and ABX-treated Cx3cr1gfp/gfp mice. Interestingly, in Cx3cr1gfp/gfp

mice ABX treatment left unaltered both spontaneous and evoked glutamatergic transmission. Note
the reduced amplitudes of spontaneous (p < 0.01, t-test) and evoked EPSCs (two-way ANOVA;
p < 0.05) in Cx3cr1 KO with respect to heterozygous mice. (C) Time course of fluorescence ratio
(∆F/F0), measured at ROI10 (10 µm radius centered on the tip of ATP containing pipette) after
2 mM Mg-ATP solution application (8 psi, 100 ms) on stratum radiatum of acute hippocampal
slices from CTRL and ABX Cx3cr1gfp/gfp mice (one-way ANOVA * p < 0.05, at minute 30). Note that
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ATP-mediated processes rearrangement in untreated mice is similar in both genotypes (one way
ANOVA, Dunn’s multiple comparison test). (D) Left: Representative z-stacks projection of hippocam-
pal stratum radiatum of Cx3cr1gfp/gfp CTRL and ABX mice (scale bar 20 um). Right: bar chart of
mean microglia cell density in both conditions (CTRL 9300 ± 700 cells/mm3; n = 15 fields/2 mice,
black bar; ABX 11700 ±700 cells/mm3; n = 18 fields/2 mice, grey bar; Student’s t-test * p value <
0.05). (E) Representative z-stacks projection of GFP+ microglia (top) and tagged skeleton (bottom)
of CTRL and ABX Cx3cr1gfp/gfp mice. (F) Quantitative morphometric analysis of microglia from
Cx3cr1gfp/gfp CTRL and ABX mice. Left: bar chart of microglia arborization domain in CTRL (36
cells/10 fields/2mice) and ABX (46 cells/12 fields/2mice; Student’s t-test *** p < 0.001); Right: mi-
croglial domain in CTRL (n = 36 cells/10 fields/2 mice) and ABX (n = 46 cells/12 fields/2 mice;
Student’s t-test *** p < 0.001).

4. Discussion

In this study we explored the impact of oral treatment with non-absorbable ABX
on functional properties of hippocampal microglia cells and synaptic transmission. In
particular, we analyzed the effect of chronic non-absorbable ABX treatment on basal and
ATP-induced microglia processes motility and glutamatergic synaptic transmission in
mouse acute hippocampal slices. Indeed, the modulation of these activities, specifically
associated with the resolution of tissue damage and the activity of neuronal networks,
may be relevant for the immunomodulatory role of microbiota–gut–brain axis on neuronal
functions.

Specifically, we report that non-absorbable ABX treatment (i) increases hippocampal
microglia density, without affecting their morphology, (ii) changes the pattern of patrolling
activity, and (iii) impairs the ability to rearrange processes in response to ATP. In addition,
ABX treatment depresses hippocampal glutamatergic spontaneous and evoked synaptic
transmission. Since microglial but not synaptic effects of ABX treatment are observed in
mice lacking CX3CR1, we conclude that the ABX effects on glutamatergic synapses are
mediated by the microglia–neuron crosstalk through the CX3CL1/CX3CR1 axis.

The modulation of microglia patrolling activity by host gut microbes has been demon-
strated by a functional assay, monitoring microglia processes movement in basal conditions
and in response to a local application of ATP, mimicking tissue damage [31]. In particular,
in hippocampal slices from ABX-treated mice, we observed the alteration of basal patrolling
activity and the impairment of ATP-induced processes motility. It has been widely reported
that under physiological conditions, microglia continuously monitor brain parenchyma,
through the extension and retraction of branches [36,37]. This activity is modified in the
presence of an injury when, following ATP release by damaged neurons and the activa-
tion of purinergic receptors P2Y6 and P2Y12 [38,39], microglia rearrange their processes
towards the site of damage [31,38,40,41].

Here, after two weeks of ABX administration, the ATP-mediated processes rearrange-
ment [30,32] is significantly impaired, suggesting a reduced ability of microglia cells to start
a rapid response to tissue damage. Microglia density and morphology as well as ATP sensi-
tivity [30,32] are often involved in reduced ATP-mediated process attraction. However, the
reported ABX effect cannot be ascribed to reduced ramification or downregulation of p2y12
transcript or protein [33], pointing to the involvement of an intermediate amplificatory
step [31,42] or other control steps of either extracellular ATP degradation or the rearrange-
ment process. Indeed the speed of ATP-mediated processes attraction may be influenced
by amplificatory mechanisms, causing ATP release [43] as well as by the degradation of
ATP by extracellular enzymes [44,45] and by the effects of the products of its catabolism
(ADP, adenosine [46–48]). Finally, although, we cannot exclude a reduction of functionality
of ATP receptors, other downstream membrane events could also be responsible for the
reduction of the speed of processes movement [49,50].

On the other hand, we observed significant changes in the pattern of basal processes
motility in slices from ABX-treated mice. Specifically, we report an increase of processes
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displacement and mean velocity, suggesting a larger scanning territory. Based on these
data, we speculate that the ABX treatment could improve the ability of microglia processes
to sample the surrounding brain parenchyma. However, these changes were not asso-
ciated with an increase in cell ramification, but only in cell density. This seems to be in
contrast with recent reports in germ-free or microbiota-depleted SPF adult mice, where
microglia displayed an immature and hyper-ramified phenotype [17,51]. However, it has
to be noted, that our experimental protocol, based on two weeks of administration of two
non-absorbable antibiotics, does not eradicate gut bacteria [33]. Consistently, nanostring
analysis of hippocampal extracts did not show changes in the transcript level of inflamma-
tory genes denoting a relatively mild treatment. Indeed, we found the downregulation of
only 2 over 248 genes, Nod1 and CD86, not allowing gene ontology analysis. However,
Nod1 and CD86 may play a role in the gut–brain axis. Indeed, the expression of Nod1
had been recently reported to regulate central and peripheral serotonergic biology, and
thus to be related to the proper function of gut–brain axis signaling in mice [52]. Moreover,
decreased CD86 gene expression has been reported in microglia isolated from germ-free
mice [17].

We speculate that the alterations of microglia patrolling properties might arise from a
change in the pattern of the tissue molecular cues, like signals from gut bacteria, that are
necessary for proper microglial functions [32,51,53,54]. Possible candidates are short-chain
fatty acids (SCFA), gut bacteria metabolites crossing the gut barrier. SCFAs are reduced in
germ-free and ABX-treated mice, and are able to rescue microglia phenotype in germ-free
mice [17].

The use of ABX to manipulate microbiota confers an experimental advantage repre-
senting a tool to model the clinical scenario in humans and allowing us to determine the
effect of such treatments on brain functions. ABX treatment offers much greater temporal
flexibility and specificity compared to the GF model of microbiota ablation, as ABX can
be delivered acutely or chronically at any life stage. Moreover, the appropriate choice of
the ABX composition and dosage allows for a greater level of control over the extent of
microbiota alteration, from minor perturbations through subtherapeutic doses of a single
antibiotic, to entire microbiota ablation by specific ABX cocktail design. It has to be noticed
that, in respect to the protocol established in Erny et al. (2015), we used only two out
of four oral non-absorbable antibiotics at lower doses (vancomycin and gentamicin 0.5
mg/mL instead of 1 mg/mL) and for shorter time (two weeks instead of four), specifically
to avoid the complete eradication of the intestinal microbiota, as shown in D’Alessandro
et al. (2020). In particular, vancomycin, the drug of choice for gastrointestinal diseases, was
associated with gentamicin, to get rid of the potential development of vancomycin-resistant
enterococci [55–57]

An important consideration in the use of ABX to investigate the MGBA axis is their
systemic entering from the gut. Non-absorbable ABX (i.e., vancomycin, neomycin, and
gentamicin), which do not enter the systemic circulation, can be used to manipulate gut
microbiota, avoiding potential systemic and CNS effects and thus allowing the direct
assessment of MGBA. Conversely, ABX that can potentially enter the CNS, such as metron-
idazole and minocycline, can have direct action on brain and behavior (e.g., the reduction
of microglia pro-inflammatory mediators by minocycline) [11,58,59].

Notably, we report that the impact of a 2-week-long ABX treatment was not confined
to microglia cells. Indeed, in ABX mice we found a functional impairment of adult gluta-
matergic CA1 synaptic function, as revealed by the reduction of the amplitudes of evoked
and spontaneous EPSC. In particular, we observed a reduced efficacy in CA1 glutamater-
gic synapses, without a change in spine number, pointing to a functional reduction of
glutamatergic synaptic transmission.

We also report that ABX treatment, while affecting structural and functional prop-
erties of microglia, did not produce any significant effect on synaptic properties of mice
lacking the fractalkine receptor (Cx3cr1gfp/gfp mice), a well-assessed model of dysfunc-
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tional neuron–microglia signaling, that displays reduced functionality of glutamatergic
hippocampal transmission [22,24–26].

It has to be noticed that the effect of ABX treatment on the patrolling activity of hip-
pocampal microglia in Cx3cr1gfp/gfp mice, did not reproduce that observed in Cx3cr1+/gfp

mice. However, when interpreting these results, we have to take into account that the
basal motility of microglia processes differs between the two genotypes. Indeed, in control
condition, Cx3cr1gfp/gfp microglia display higher mean velocity and higher instantaneous
displacement (Supplementary Figure S5) in respect to Cx3cr1+/gfp, in accordance with
Basilico et al. (2019); this could be ascribable to differences in sampling efficacy arising
from lower arborization domain in Cx3cr1gfp/gfp mice [26]. Thus, the reduction in microglia
processes motility caused by ABX treatment in Cx3cr1gfp/gfp mice can be explained by a
reduction of the available patrolling area, due to the increased cell density and the larger
arborization domain acquired by these cells [36]. These results also highlight the key role
of CX3CR1 in microglia functional changes induced by gut dysbiosis.

Concerning synaptic regulation, we speculate that the absence of effects in Cx3cr1gfp/gfp

mice is due to the overlap of the CX3CL1/CX3CR1 axis dysfunction with the ABX effect;
indeed, synaptic currents are smaller in Cx3cr1 KO mice [23,24]. However, we would
rule out a possible floor effect, despite the observed difference in EPCS amplitudes, since
glutamatergic currents be further reduced inducing, for instance, long-term depression in
these mice [24]. Thus, we consider the most conservative interpretation of these data, that
ABX effects on glutamatergic EPSC rely on microglia–neuron crosstalk. This is also in line
with the data obtained in a model of pharmacological depletion of microglia, where after
PLX5622 (CSF1R inhibitor) administration, the properties of hippocampal CA1 synapses
closely resemble those observed in Cx3cr1gfp/gfp mice [35]. Indeed, PLX treatment did
not produce synaptic depression in mice lacking CX3CR1, indicating an occlusion effect
between microglia removal and dysfunctional neuron–microglia signaling [26]. Still, it
has to be considered also the possibility that the lack of ABX effects could be due to other
phenotypic features of the Cx3cr1 KO mice, which include differences in basal hippocampal
synaptic properties. On the other hand, the report of a gene dose-dependent phenotype [23]
raises the possibility that Cx3cr1+/− mice represent an intermediate phenotype leading to
an underestimation of ABX effects.

5. Conclusions

In conclusion, our study highlights the importance of microglia in mediating the
gut–brain axis control of synaptic functioning in the adult hippocampus. ABX-induced
microbiota alteration impairs microglia control of brain parenchyma homeostasis and
reduces the efficacy of glutamatergic synaptic transmission. Furthermore, the lack of ABX
impairment of synaptic transmission in Cx3cr1 KO mice point to a pivotal role of microglia
as a mediator in gut neuronal signaling in MGBA.
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