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Abstract

Marked point process and Bayesian inference are powerful tools for analysing spatial data.
Here the work done by Hurtado Gil et al. (2021) is analysed and a new in-homogeneous with
superposed interaction is proposed. The results indicate a correct fit of the model and allow the
study of the significance of the parameter at the corresponding pre-fixed interaction ranges. To this
work in progress, immediate conclusions and perspectives are outlined.

Introduction

Galaxies are not uniformly distributed in the observable Universe. Their positions induce structures
such as filaments, void zones or even clusters of galaxies. The complexity of these structures and
the amount of data available on the subject led to the idea of a probabilistic approach to explain
the characteristics of these structures, based on point process models ((Møller & Waagepetersen,
2004) , (van Lieshout, 2019)). An important part of this probabilistic framework is to use algorithms
able to estimate the parameters of the models proposed to fit the observed data such as Approximate
Bayesian Computation (ABC) algorithms. ( Stoica et al. (2017)).

The paper presents and tries to extend the modelling, simulation and inference approach for point
process models given by ((Hurtado Gil et al., 2021)) while introducing a model based on distance
to galactic filaments.

1 Materials and methods

Let’s assume that a pattern of points x = {x1, ..., xn} is observed in a compact windowW ⊂ Rd. From
now on, we assume that the data we observe have the following properties :

• The Universe can be seen as the representation of a stochastic process where galaxies are ran-
domly located points in space.

• Two such points cannot share the same position: for a given point ξ ∈ W , no other point has
the same coordinates in W .

This means that we can see the galaxies distribution in our Universe as a realisation of a point process
and that we suppose existing an underlying probability density that characterise this point process.
The probability density we’ll consider can be written in the exponential form :

f(x|θ) = exp (⟨t(x), θ⟩)
c(θ)

(1)



with x = {x1, ..., xn} the point pattern, t : Ω → Rd the vector of sufficient statistics, θ ∈ Θ the model
parameters and c(θ) the partition function.

In this section, we first show some examples of point processes and how we can easily create new models
characterised by some unnormalised densities. We then focus on the simulation of these models with
the Metropolis-Hastings algorithm. Finally, we’ll discuss two methods for parameters estimation and
the asymptotic results.

1.1 Some examples of points processes

1.1.1 Poisson point process

This point process exhibit no interactions among points. It’s used in practice as a reference point
process to build probability densities with respect to the standard (homogeneous with unit intensity)
Poisson point process ( Møller and Waagepetersen (2004), Stoica (2014)). For an intensity
function ρ :W → [0,+∞[, the Poisson point process density can be written as :

f(x|ρ) ∝ exp

n(x)∑
i=1

log(ρ(xi))

 (2)

where n(x) is the number of points in x. If ρ is a constant, the point process will be called homogeneous.

1.1.2 Strauss point process

The Strauss point process is a model with interaction that penalise the probability of having two
points at a distance closer to a fixed radius, r. With respect to the standard Poisson point process,
its probability density is given by

f(x|ρ, γs) ∝ exp(n(x) log(ρ) + sr(x) log(γs)) (3)

where sr(x) represent the number of pairs of points closer than the distance r, γs ∈]0, 1] the model
parameter. In this model, n(x) and sr(x) are the sufficient statistics. Note that if γs = 1, the model
boils down to the Poisson process of intensity ρ.

1.1.3 Area Interaction process

The Area Interaction point process is a model with interaction that takes into account the area of
balls of a fixed radius R around the points. This is also a good example to show how to create new
probability densities with respect to the Poisson point process of intensity 1 by introducing a new
sufficient statistic of interest. In the homogeneous case, its density is given by

f(x|ρ, γa) ∝ exp(n(x) log(ρ) + aR(x) log(γa)) (4)

where aR(x) = −| ∪ξ∈x b(ξ,R)| represent the d-volume of the union of balls of radius R attached to
the points, γa ≥ 0 is the model parameter. In this model, n(x) and aR(x) are the sufficient statistic.
Once more, if γa = 1, the model becomes the Poisson process of intensity ρ.

1.1.4 Superposition of two models : Area Interaction and Strauss point process

Another way to create new probability densities is to combine two existing point processes. Here,
we combine the Area Interaction and the Strauss point process : this makes a model that takes into
account the area of the balls, the amount of pairs of points and the number of points. Its density can
be written as

f(x|ρ, γs, γa) ∝ exp(n(x) log(ρ) + sr(x) log(γs) + aR(x) log(γa)) (5)

with the same parameters as in the previous examples.
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1.2 Simulation : the Metropolis-Hastings algorithm

The simulation algorithm has the following pseudo-code :

1) Set x(0), the configuration of points at the beginning, N ∈ N the number of steps and θ the
model’s parameter.

2) For k = 1, ..., N , generate x(k) distributed with density f(xk−1|θ)

3) Set x = x(k)

For the sampling of p(x|θ), the following Metropolis-Hastings procedure is described bellow :

1) Set pb, pd with pb + pd = 1

2) With probability pb choose to add a point (birth) and with probability pd choose to delete a
point (death).

• birth

a) generate a random point ξ on W and set x′ = x ∪ ξ

b) compute rb = min{1, pdpb
f(x∪ξ|θ)
f(x|θ)

|W |
n(x)+1}

• death

a) choose a random point ξ of x and set x′ = x \ ξ

b) compute rd = min{1, pbpd
f(x\ξ|θ)
f(x|θ)

n(x)
|W | }

3) Accept the new configuration x′ with probability rb or rd (depending on the choice of birth or
death). Otherwise, remain in the same state x.

This algorithm generate a Markov Chain that is Φ−irreducible, Harris recurrent and geometric ergodic.
Thus, the algorithm converges toward the distribution of interest given by the density f(x|θ) (Møller
and Waagepetersen (2004) ; Stoica (2014) ; van Lieshout (2019)).

1.3 Statistical inference : the ABC Shadow algorithm

We now turn to the parameters estimation. To do so, we’ll use an Approximate Bayesian Computing
(ABC) algorithm. In the Bayesian framework, this will consists in sampling the following posterior
law :

f(θ|x) ∝ f(x|θ)p(θ) (6)

where p(·) is the prior distribution of the parameters.

Performing such inference from the posterior distribution is a challenging problem in mathematics.
Indeed, the partition function c(θ) isn’t available in analytic closed form for the model class we’re
considering in this article. To bypass this problem, we’ll use the ABC Shadow algorithm (Stoica et
al. (2017)) : the outputs are approximate samples from the posterior distribution of interest.

The algorithm’s pseudo-code is the following :

1) Set δ a perturbation parameter, θ0 an initial condition and m number of iterations. Assume that
a pattern x is observed.

2) With the Metropolis Hastings algorithm, generate y according to f(y|θ0)

3) For k = 1 to m :
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a) Generate a new parameter ψ according to the density Uδ(θk−1 → ψ) defined by Uδ(θ →
ψ) = 1

|b(θ,δ/2)|1b(θ,δ/2{ψ}.

b) The new state θk = ψ is accepted with probability αs(θk−1 → ψ) = min{1, f(x|θk)p(θk)
f(x|θk−1)p(θk−1)

×
f(y|θk−1)
f(y|θk) }

4) Return θm.

5) If more samples are needed, go to step 1 and set θ0 = θm

1.4 Asymptotic errors

The asymptotic normality of the maximum likelihood estimation allows to compute two types of
estimation error. The first one is an approximation of the difference between the unknown exact
maximum likelihood estimator (MLE) and the true parameter value: θ̂ − θ0. The other one is the
difference between the Monte Carlo Maximum Likelihood Estimation and the unknown exact MLE:
θ̂n − θ̂. We can compute an estimation of these errors in order to control the parameter estimation as
done as in Geyer (1994, 1999); van Lieshout and Stoica (2003).

2 Application

2.1 Data presentation

The data set presented here is the cosmological simulation that was used to set up the first filaments
pattern detector based on marked point process Stoica et al. (2005). Here a region from this data
field and the corresponding detected filaments are selected. The aim is to fit a model to the galaxy
distribution conditionally to the observed point field and the attached filaments. The selected sample
and the filaments are shown in Figure 1b

(a) Galaxies pattern (cosmological simu-
lation)

(b) Corresponding detected filaments

2.2 Studied model

Here, the ABC Shadow algorithm was used to fit a superposition of models like (5) with the following
components

• Poisson component : in-homogeneity that takes into account d(ξ, F ), the shortest distance from
a point ξ ∈ W to the the given filament network. This distance is presented in the Figure 2

below. The sufficient statistic attached to this component is:
∑n(x)

i=1 1d(ξi,F )≤0.05(ξ)× 1
1+d(ξi,F ) .
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• Strauss component : the same as the interaction part in (3)

• Area-Interaction component : the same as the interaction part in (4)

0.
05

0.
1

0.
15

0.
2

Figure 2: The shortest distance between any point in the domain to the given filament network.

The observed statistics are given in the table below: this will lead to 6 parameters estimation for
different fixed radius for both Strauss (rS) and Area Interaction (rA) components.

rS , rA 0.01 0.03 0.05

n(x) 334 334 334
srS (x) 71 539 1268
−arA(x) 272 143 83

2.3 Results

For each radius tuple (rS , rA) among (0.01, 0.01) ; (0.01, 0.03) ; (0.01, 0.05) ; (0.03, 0.01) ; (0.05, 0.01),
the ABC Shadow algorithm was initialised with the observed pattern’s sufficient statistics. The prior
density p(θ) is the uniform distribution on the interval [0, 10]× [−10, 0]× [−10, 10]. At every step, the
auxiliary variable was sampled with 250 iterations of the Metropolis-Hastings algorithm. δ was set to
(0.01, 0.01, 0.01), m to 100 and θ0 was set randomly inside the prior density interval. This procedure
was run 104 times, giving us a sample of size 104 of the estimated parameters.

Figure 3a shows the box-plot of the posterior distribution for the model’s parameters for different
values of rS and rA = 0.01, figure 3b shows the box-plot of the posterior distribution for the model’s
parameters for different values of rAS and rS = 0.01.
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(a) Box-plot for parameter estimation
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(b) Box-plot for parameter estimation
with respect to rS = 0.01 and different

rA

Apart for (rS , rA) = (0.01, 0.01), the parameter estimation for the Strauss component is very close to
zero. This leads to consider that, for the considered ranges, there is no repulsion between the galaxies.
For the estimation of the Area Interaction parameter, however, the values are far from 0, this may be
interpreted as a clustering tendency between galaxies.

In the table below, we summarise the parameters inference for the different radius with their standard
error:

Radius Estimates of log(ρ), log(γS) and log(γA)
(rS , rA) log(ρ) log(γS) log(γA)

(0.01, 0.01) 9.04± 0.24 −0.52± 0.16 2.55± 0.28
(0.01, 0.03) 7.19± 0.08 −0.05± 0.12 1.31± 0.32
(0.01, 0.05) 6.83± 0.09 −0.03± 0.17 −1.57± 0.93
(0.03, 0.01) 8.36± 0.20 −0.02± 0.03 1.84± 0.21
(0.05, 0.01) 8.33± 0.21 −0.009± 0.02 1.8± 0.20

We can see that the standard errors are rather smalls except in the (0.01, 0.05) case for log(γA) which
can be explained by the rather high value of the statistic.

Figure 4a shows the simulated pattern with the corresponding estimation for (rS , rA) = (0.01, 0.03).
Figure 5 shows the histogram of the posterior approximation used for parameter estimation for this
specific case. The posterior maximum value are indicated in red.
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(a) Simulated galaxies distribution using
the estimated parameters

(b) Observed galaxies distribution
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Figure 5: Histogram of the posterior approximation used for parameter estimation with
(rS , rA) = (0.01, 0.03).

Conclusions

The presented inference framework allows to study and assess significance of the chosen modelling
components to be fitted to the data. This is work in progress. As perspectives we mention: chose a
random interaction radius for each model component, model validation and 3d data analysis.
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