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A B S T R A C T   

For policy applications, the need to improve the resolution of environmental variables is crucial. Air pollution 
assessment indeed requires the use of air pollutant concentration fields at a high resolution, to better evaluate the 
exposure of citizens. In this paper, we propose a fast proxy-based downscaling strategy, to downscale air quality 
modelling results using the fraction of the pollutant concentration influenced by precursor emissions in a given 
cell. The approach combines in an additive way (i) a classically interpolated background pollutant fraction, with 
(ii) a proxy-based concentration derived from the emissions. The proxy-based pollutant fraction is spread over 
the high resolution mesh into the surrounding cells with a Gaussian approach to account for diffusion effects. The 
evaluation of our approach against observations shows its relevance to create reliable air pollution concentration 
fields at a higher resolution, starting from a coarse resolution modelling results.   

1. Introduction 

In its last report of the European Environment Agency, around 25% 
of the European urban population remains exposed to air quality 
exceeding the European Union air quality standards, leading to about 
400,000 premature deaths yearly (EEA, 2019). To assess air pollutants 
exposure, identify the sources of pollution and develop strategies to curb 
air pollution, air quality models are essential tools, expected to be more 
and more robust and computationally-efficient with time (Denby et al., 
2020; Jiang et al., 2020; Mu et al., 2022; Ramacher et al., 2021; Sokhi 
et al., 2022; Terrenoire et al., 2015). In practice, a chemistry transport 
model generally operates up to 1 km resolution, sufficient to show the 
variability of concentrations over large cities in Europe or district levels 
in Megacities like in China or India, but this resolution is not sufficient 
for many cities of smaller size. Another challenge of working at finer 
scale relates to the availability of fine-scale emissions inventories. While 
the downscaling of large scale emissions using proxy (e.g. population, 
road, large point sources data) approaches as done in the several model 
pre-processing (Binkowski and Roselle, 2003; Menut et al., 2021; 
Ramacher et al., 2021) is a solution, this remains a first guess estimate. 

Modelling outputs statistics (MOS) techniques are common methods 
to adapt CTM outputs to observations and remove the model bias, based 
on functions of diagnostic variables like meteorological data. These 
methods based on kriging algorithms have been used for air pollution 
operational forecasting (Beauchamp et al., 2017, 2018; Malherbe et al., 
2014). These methods can associate ancillary variables like emissions 
inventories to better reallocate the concentrations of primary pollutants. 
However, applying kriging methods can still take several minutes to 
hours on a single processor to generate high-resolution maps over large 
regions. This method is not adapted to online uses or to Personal Com
puters. Recently (Denby et al., 2020; Mu et al., 2022), have developed a 
proxy based downscaling approach for the EMEP model. 

Currently, statistical methods using deep-learning approach (LeCun 
et al., 2015) based on Convolutional Neural Network (CNN) architec
tures can provide a framework to perform quick high-resolution simu
lations (Bessagnet et al., 2019, 2021; Dong et al., 2014; Sorek-Hamer 
et al., 2022; Xing et al., 2020). These methods capture the main patterns, 
as a complex model would do while keeping a sufficient accuracy. These 
methods remain however complex to design and improvements are 
needed to better account for the long-range transport of pollutants and 

Abbreviations: CLC, Corine Land Cover; CNN, Convolutional Neural Network; CTM, Chemistry Transport Model; GNFR, Gridding Nomenclature For Reporting; 
HR, High Resolution; HRG, High Resolution Grid; LR, Low Resolution; LRG, Low Resolution Grid; MOS, Model Output Statistic; MQI, Model Quality Indicator; PM, 
Particulate Matter; PM10, PM with diameter below 10 µm; PM2.5, PM with diameter below 2.5 µm; RMSE, Root Mean Square Error. 
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chemical processes. 
In this study, we present a fast alternative methodology to downscale 

low-resolution (LR) simulation outputs to higher resolution (HR). 
Compared to the approach developed for EMEP as in (Mu et al., 2022) 
this approach can be used to any model outputs and account for mete
orological parameters to better calibrate the Gaussian kernel parame
ters. An application and an evaluation of the methodology is provided. 
Our application focus on NO2, PM2.5 and PM10 concentrations. 

2. The downscaling methodology 

2.1. The method 

The objective is to downscale the 2D air pollutant concentrations of 
the CTM output fields to a finer grid with a given longitude and latitude 
scale ratio. This methodology can be applied to any air quality models. 
The principle of our method is described in the following text, together 
with the required assumptions and more detailed in appendix A.1 and 
A.2 with a glossary of all variables. 

The basis is to define a high-resolution grid (HRG) as a subgrid 
matching the low-resolution grid (LRG) with a constant scale ratio all 
over the domain. In our case, the LRG covers Europe at 0.1◦ × 0.1◦ and 
we use a scale ratio in longitude and latitude of 10 to 1 to get a HRG at 
0.01◦ × 0.01◦ resolution. 

We split the pollutant concentration into two main fractions. One 
that results from longer time-scale processes and is not impacted by 
emissions at coarse resolutions and the second that is governed by faster 
time-scale processes and is strongly dependent on local emissions. For 
particulate matter, this distinction is coherent with the split between 
primary and secondary fractions as well as natural sources. The detailed 
description of this split is provided in Equation (3) of Appendix A. The 
secondary fraction of pollutants shows in general smooth patterns 
compared to the primary fraction (Paolella et al., 2018; Schaap et al., 
2015) but more rigorously the patterns would depend on the wind speed 
and the grid cell size. There is also a limit for the fine scale resolution, 
where CTMs applies parameterisations which not solve the processes at 
the appropriate resolution. This limit depends on the way the CTM 
parameterize these sub-grid processes. For instance (Lin et al., 2022), 

show a large increase of the secondary fraction close to roads due to fast 
chemical processes using CFD (Computational Fluid Dynamic) models. 
However, to refine the calculation, the second fraction related to the 
primary emission can be split into two fractions since primary species 
are also affected by regional transport and natural emissions. Therefore, 
a resulting split into three fractions is considered as (i) non-primary 
fraction, (ii) long range primary fraction and (iii) local primary fraction. 

The sequence of the algorithm can be summarized as follows (see 
appendix A.1 and A.2 for mathematical details and particularly Fig. A1). 
For a coarse cell pollutant concentration C, a percentage Γ of the primary 
fraction which is directly influenced by a primary precursor is rescaled 
using proxy data representative of each emission activity sector over the 
HRG, and then diffused using a Gaussian filtering approach according to 
a methodology described later. The remaining concentration fraction, 
composed of the part of primary dominated by transport, and the non 
primary fraction made of secondary species and including also the 
natural fraction, is interpolated from the LRG to the HRG and added to 
the primary fraction diffused by the previous Gaussian approach. 

Each pollutant is associated to a precursor: nitrogen oxides (NOx =
NO + NO2) for nitrogen dioxides (NO2), PPM10 for the primary fraction 
of PM10 and PPM2.5 for the primary fraction of PM2.5. The downscaled 
proxy-based concentrations is proportional to the ratio χ of the fine 
(HRG) to the mother coarse mesh (LRG) emissions of the precursor 
(Equation (3) of Appendix A1). This step aims at reallocating the load of 
precursor over the fine emissions grid. A minimum value, set as the 
minimum obtained over all coarse interpolated concentrations is fixed to 
avoid zero values. 

Two cases exist to evaluate the proxy-based concentrations:  

(1) we have access to a fine grid emission inventory and this ratio χ is 
directly computed on the basis of the HRG emission inventory, 
the proxy is simply the fine scale emission inventory; 

(2) only the LRG emissions are available and a preliminary down
scaling of the emission inventory is required using adequate ac
tivity specific proxies. 

If the emission ratio χ requires the use of proxy to downscale the LR 
emission inventory (as it is the case in our application), we must first 

Fig. 1. Visual description of the downscaling methodology in six steps at the coarse cell level (LRG) to downscale a coarse grid LRG concentration field to a finer 
mesh HRG (e.g. from a 0.1◦ to a 0.01◦ grid resolution here). 
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calculate an activity specific proxy defined as the ratio between its HR 
value and the sum of all values within a mother coarse grid. Actually, 
any positive number can be assigned to this ratio as it is normalized by 
the coarse grid sum. If the sum is equal to zero we assign a uniform 
value: e.g. 0.01 if 100 fine grid cells are present in the coarse grid cell. 
This method is fully conservative, in the sense that the average of the 
fine resolution equals the coarse value. 

Afterwards, a multi-gaussian filtering technique (See Appendix A.2) 
is applied to diffuse the downscaled concentrations according to the 
annual mean meteorological conditions for the given cell. The vertical 
diffusion (k) and the 10 m wind speed (u) do mostly govern the 
dispersion in our modelling strategy through the product k× u, the 
higher this product is, the higher is the dispersion corresponding to high 
sigma value in the Gaussian filters. This product ranges from 10 to 150 
m3 s− 1 on annual average across the domain from overland surfaces 
(close to the Alps) to coastal and ocean areas in our example presented 
later. It is important to note that the wind direction is not taken into 
account, we consider an isotropic Gaussian dispersion. 

The scheme in Fig. 1 displays the downscaling procedure for a reg
ular coarse grid cell of 0.1◦ resolution downscaled with a scaling factor 
of 10, therefore to a fine mesh of 0.01◦ resolution. Fig. A1 in appendix 
provides a more detailed visualization in 2D of the downscaling 
procedure. 

2.2. Required data 

The proposed method requires first, the annual concentrations 
output fields and associated precursor emissions on a regular grid (LRG) 
from a chemistry transport model (Bessagnet et al., 2016; Binkowski and 
Roselle, 2003; Ciarelli et al., 2017; Menut et al., 2021; Simpson et al., 
2012). From the LRG, we define a HRG grid using a constant scaling 
factor to create a HRG that matches exactly the LRG. For instance, a 
0.10◦ × 0.10◦ resolution grid is downscaled to 0.01◦ × 0.01◦ with a 
scaling factor of 10 in both directions. Two meteorological variables, the 
wind speed and the vertical diffusion coefficient must also be stored over 
the LRG grid and interpolated over the HRG grid to calculate the 
dispersion coefficient (σ) applied in the Gaussian filtering approach. 

Second, because a fine scale emission inventory is not available in 
our application we use a HRG proxy database to refine the emissions. In 
our work, nine proxies differentiate the main activity sectors, based on 
databases described hereafter (Table 1). The Corine Land Cover - CLC 
(for 2018) is one of the datasets produced within the frame of the 
Copernicus Land Monitoring Service referring to land cover/land use 
status. CLC provides consistent and thematically detailed information on 
land cover (e.g. industry, off-road, aviation, harbours, etc.) and land 
cover changes across Europe at 100 × 100 m resolution (CLC, 2020; 
Feranec et al., 2016). The CLC tiff file for 2018 (freely available (CLC, 
2020) is pre-processed with GDAL (GDAL, 2022) procedures using an 
aggregating method based on the median to create ind, off, avi and har 
proxies over the HRG. Indeed, to downgrade the proxy (that has a higher 
resolution than 0.01◦) over the 0.01◦ grid from the 100 m resolution 

database, we select the value which appears most often of all the 
sampled points at 100 m resolution in the 0.01◦ grid. The USGS (US 
Geophysical Survey) world land cover database at 30 s arc (Broxton 
et al., 2014) is used to reallocate agricultural and anthropogenic emis
sions (cro and art). The population density at 30 s arc from the Gridded 
Population of the Word project (CIESIN, 2018) is used to create a pop
ulation density data (pop) and a residential emission proxy (res) based on 
(Terrenoire et al., 2015), this proxy being a function of the logarithm of 
the population density. The traffic proxy (tra) is a mix of a road database 
identifying the major roads complemented by the population density to 
identify the urban areas as explained in (Mailler et al., 2017). A proxy 
derived from the CLC database can only provide an information over the 
main European countries, therefore for other countries like Ukraine, 
Russia, North African countries, the information will be missing and no 
downscaling will be possible over these zones. 

3. Application of the method 

Our test case aims at creating HR concentration maps for NO2, PM10 
and PM2.5 from a CTM simulation at LR for the year 2015. The LR 
domain extends from 15.05◦ W to 36.95◦ E longitude and from 30.05◦ N 
to 71.45◦ N latitude (grid centres) with a horizontal resolution of 0.1◦ ×

0.1◦ (therefore 521 × 415 grid cells). The final HR Grid rigorously covers 
the same area at 0.01◦ × 0.01◦ resolution (therefore 5210 × 4150 grid 
cells). 

3.1. Generation of CTM outputs 

In this study the EMEP off-line regional transport chemistry model 
version rv_34 (Simpson et al., 2012) is used to analyse the relationship 
between air pollutant emissions and concentrations over Europe. The 
vertical structure has 20 levels, with the first located around 50 m. The 
EMEP model is fed with raw meteorological fields from the European 
Centre for Medium Range Weather Forecasting (ECMWF-IFS) for the 
meteorological year 2015 (Owens and Hewson, 2018). The temporal 
resolution of the meteorological input data is daily, with 3-h time step. 
The meteorological fields are retrieved on a 0.1◦ × 0.1◦ longitude lati
tude coordinate projection. Vertically, the 60 eta levels IFS fields are 
interpolated onto the 20 EMEP sigma levels. The MARS equilibrium 
module is used to calculate the partitioning between gas and fine-mode 
aerosol phase in the system of inorganics species sulfate/ni
trate/ammonium (Binkowski and Shankar, 1995). More information on 
the gas and aerosol partitioning, meteorological driver, land cover, 
model physics and chemistry are given in (Simpson et al., 2012). The 
EMEP emission dataset (Mareckova et al., 2019) at 0.1◦ resolution is 
used with a GNFR (Gridding Nomenclature for Reporting) level 1 
breakdown (CEIP, 2019). Emissions vertically redistributed by activity 
sector according to (Bieser et al., 2011; Simpson et al., 2012). The 
simulation grid is a subset of the EMEP grid (perfect coincidence of grid 
cell centres) to avoid undesirable spatial interpolations which could lead 
to some discrepancies. 

Yearly annual concentrations are provided for PM2.5, PM10 and NO2 
over the LRG of 0.1◦ × 0.1◦ together with the annual emissions totals 
detailed by GNFR sectors. To apply the downscaling methodology we 
use the association between the GNFR activity sector and proxy as in 
Table 2. Only the surface emissions below 184 m according to the ver
tical distribution developed by (Bieser et al., 2011) classically used in 
CTM, this fraction is reported in Table 2. 

3.2. Evaluation of the downscaling method 

The AIRBASE dataset (AIRBASE, 2022) is used to evaluate the per
formance of the downscaling for the annual averages of NO2, PM2.5 and 
PM10 in 2015. The EEA’s air quality database consists of a multi-annual 
time series of air quality measurement data and calculated statistics for a 
number of air pollutants. For this evaluation background rural, 

Table 1 
List of proxies and description.  

Name of 
Proxy φ 

Description 

ind Industrial sites: Industrial or commercial units, Port areas, Road 
areas, Road, Railways, Mineral extraction sites 

avi Aviation: Airport areas 
off Off-road: Construction sites, Port areas, Road areas, Road, 

Railways, Mineral extraction sites 
har Harbours: Port areas 
tra Traffic: Roads and urbanized areas (based on population density) 
res Residential: Proxy based on population density 
pop Population: population density 
cro Agricultural areas: crops, grasslands, meadow 
art Impervious/Artificial areas  
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peri-urban and urban stations are selected. The calculated statistics are: 
Bias, RMSE and correlation, as well as the MQI - Model Quality Indicator 
(JRC, 2022; Kushta et al., 2019). For detailed description of the statis
tical indicators see Appendix B. 

As displayed in Table 3 and Fig. 2 the downscaling method leads to 
an overall improvement in terms of statistics at the European level for 
most pollutants. Looking at individual countries the improvement of 
error statistics remains low in the supplementary data of Appendix C 
(Figs. S1–S6). The improvement is usually larger in terms of bias which 
is improved from about 1 to 1.5 μg m− 3 for NO2 and PM in urban areas. 
However, on annual average all statistics improve if we consider all type 
of stations. In general the correlation for NO2 in urban areas slightly 

improved. To obtain a better improvement, an increase of the spatial 
resolution of emissions should be accompanied by an improvement of 
the resolution of meteorology, which is in line with findings of other 
studies (Baertsch-Ritter et al., 2004; Fenech et al., 2018; Jiang et al., 
2020; Mircea et al., 2016). At last, it is important to observe that rural 
concentrations are very slightly influenced since the methodology 
mainly targets an improvement over urbanized and industrialized areas. 
Finally the bias improvement leads to improve the performances on 
MQI. Even if the improvement exists it remains low. As already been 
observed by (Colette et al., 2014) at the European scale with a fine scale 
simulation with a CTM over Europe at 2 km the correlation can even be 
deteriorated if the emission inventory is too inaccurate. Adding a more 
detailed top-down description of emission variability can also introduce 
a noisy signal which can deteriorate the realism of a simulation based on 
physical processes. The choice of proxy is probably crucial and can be 
improved in further developments or other applications. 

Figs. 3 and 4 show the effect of the downscaling methodology on 
concentration maps over two regions in Europe. Particularly for NO2, 
cities and roads appear on the HR maps (see also Fig. S7 in supple
mentary data of Appendix C over the North of Italy). Over the seas, no 
gains are obtained because we do not have implemented a proxy at 30 s 
arc for shipping routes, the only difference is due to the interpolation. 
Regardless of the pollutant, our methodology clearly improves results on 
urban areas. For PM2.5, additional details appear at fine resolution close 
to Lyon in France with small cities appearing in the Functional Urban 
Area. However, also shown in Fig. S8 over the North of Italy, the impact 
of downscaling over areas affected by PM high concentrations the 
improvement is less visible compared to NO2 since PM is driven by large 
scale processes. 

4. Conclusion 

The proposed proxy-based downscaling approach leads to increasing 
the pollutant fraction that is directly related to the local emissions. Its 
application leads to improved concentration maps where details appear 
clearly in vicinity of the sources (close to cities, industries and major 
roads). This improvement could be used for instance to better assess 
population exposure to air pollution. 

When a HR emission inventory is available, the downscaling proxy is 
straightforwardly the HR emission dataset which can be aggregated at 
LR resolution to simulate air pollutant concentrations. Unfortunately, 
this case is not the most frequent, implying to downscale the LR emis
sions with a proxy-based approach (e.g. land-use and other ancillary 
data). Note that this approach can lead to some inconsistencies if proxies 
are not coherent with the LR emission inventory sectors. Our application 
belong to the second case. It highlights the added value of the down
scaling in better estimating concentration fields. 

Table 2 
Description of activity sectors used by EMEP and corresponding proxy applied 
for the downscaling.  

GNFR 
name (ω) 

GNFR usual name Ground 
surface 
fraction 
(F in %) 

Description Proxy 
(φ) 

GNFR1 A_PublicPower 0.25 Public electricity 
and heat 
production 

ind 

GNFR2 B_Industry 97 Petroleum 
refining, 
Manufacture of 
solid fuels and 
other energy 
industries 

ind 

GNFR3 C_OtherStationaryComb 100 Commercial/ 
military/ 
institutional/ 
residential 
Stationary 
combustion 

res 

GNFR4 D_Fugitive 100 Fugitive emissions 
in Industries 

ind 

GNFR5 E_Solvents 100 Solvent use, 
coating, chemical 
production 

ind 

GNFR6 F_RoadTransport 100 Road transport 
including tyres 
and brakes 
emissions: 
Passenger, Heavy 
Duty, Light Duty, 
Moped 

tra 

GNFR7 G_Shipping 100 National 
navigation 
including inland 
waterways 

har 

GNFR8 H_Aviation 100 Domestic and 
International 
aviation 

avi 

GNFR9 I_Offroad 100 Railways, off road 
in Agriculture, 
Forestry, Fishing 
and Industrial 
activities 

off 

GNFR10 J_Waste 41 Waste 
incineration, 
sewage, 
cremation, 
biological 
treatments 

ind 

GNFR11 K_AgriLivestock 100 Manure 
management – 
dairy cattle (beef, 
swine, poultry, etc 
…) 

cro 

GNFR12 L_AgriOther 100 Fertilizer 
spreading, field 
burning, other 
farm operations, 
uses of pesticides 

cro  

Table 3 
Overall statistics in terms of correlation (spatial), bias (μg m− 3), Root Mean 
Square Errors (μg m− 3) and Model Quality Indicator (MQI) between the LR and 
HR with downscaling for NO2, PM10 and PM2.5. Italic-bold character highlight 
the best performance.  

Pollutant Error statistics LR HR Number of stations 

NO2 Cor. 0.687 0.699 1195 
Bias (μg m− 3) − 8.16 − 7.49 
RMSE (μg m− 3) 10.84 10.28 
MQI 0.907 0.833 

PM10 Cor. 0.485 0.485 1439 
Bias (μg m− 3) − 10.73 − 10.51 
RMSE (μg m− 3) 15.01 14.85 
MQI 1.399 1.372 

PM2.5 Cor. 0.652 0.656 763 
Bias (μg m− 3) − 4.38 − 4.24 
RMSE (μg m− 3) 6.59 6.47 
MQI 0.400 0.387  
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One of the main limitations come from the secondary fractions which 
are interpolated at coarse grid level, the assumption being that the 
formation of these species is governed by slow processes (larger time 
scales than those related to the transport from one coarse grid cell to 
another). Therefore, the current downscaling procedure might be less 

effective for very coarse grid cells. On the other hand, the proxy-based 
downscaling procedure relies on the assumption that the pollutant 
concentration of interest mostly depends on local precursor emissions, 
so that a direct relation must exist between the pollutant and its emitted 
precursor. This assumption also depends on the chosen resolution and 

Fig. 2. Averaged performances of HR (red) versus LR (blue) simulations for NO2, PM10 and PM2.5 annual concentrations in terms of bias (μg m− 3), correlation 
(spatial) and Root Mean Square Errors (μg m− 3). The MQI is also added to see the impact of a highest resolution on the quality of models to support the Air 
quality directive. 
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would not work well if a too fine resolution is selected. The quality of the 
downscaling depends on the quality of the full modelling systems, so 
that e.g. if a LR simulation overestimates urban concentrations the 
resulting downscaled will increase this overestimation but still 
improving the spatial correlation if the resulting HR emission inventory 
is of good quality. 

The methodology has been evaluated for all background rural, urban 
and peri urban stations for NO2, PM10 and PM2.5 in Europe. The bias 
improves in most parts of Europe, the spatial correlation is not affected 
although for NO2 the HR spatial correlation is lower. The code runs fast 
and takes about 30 s for one pollutant to downscale a LR simulation field 
on a standard machine under a Linux OS - Intel(R) Xeon(R) Platinum 
8168 CPU @ 2.70 GHz. For a given pollutant, a 90 Mbytes netcdf file is 
produced in our case. A by-product of our methodology is to provide a 
HR emission inventory detailed by activity sectors based on proxies. 

As a perspective of this work, this post-processing modelling meth
odology will also be evaluated with a direct simulation at 0.01◦ reso
lution with the same modelling EMEP set-up at 0.1◦ to evaluate the 
capacity of this method to mimic a HR model simulation with all 
chemistry and physics processes on board. Also, the implementation of 
the mean wind direction to create a fast python module to create an 
asymmetric Gaussian kernel will be investigated to account for a more 
realistic spatial pattern of primary pollutants dispersion. 
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Fig. 3. Impact of the improvement from LR (top) to HR (bottom) resolution over the BeNeLux (left panel) and the south of France (right panel) for NO2 annual mean 
concentrations. 
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Fig. 4. Impact of the improvement from low (LR) to high (HR) resolution over the South of France for PM2.5 annual mean concentrations.  
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Appendix A 

A.1 Detailed description of the Algorithms 

Here below a definition of each variable is provided. Capital letters for indices and variables refer to the LRG (Low Resolution Grid) while lower 
cases are reserved to the HRG (High Resolution Grid). 

(I,J): grid cell coordinates of the LRG (I for longitude, J for latitude). 
Nx, Ny: number of longitude and latitude indexes of the LRG grid, respectively. 
(i,j): grid cell coordinates of the HRG (i for longitude, j for latitude). 
nx, ny: number of longitude and latitude indexes of the HRG grid, respectively 
nsx: scaling factor on longitude (integer) for downscaling 
nsy: scaling factor on latitude (integer) for downscaling. 
C: pollutant concentration over the LRG from the LR simulation 
c: pollutant concentration over the HRG. 
E: pollutant precursor emission over the LRG (Ton per grid cell). 
e: pollutant precursor emission over the HRG (Ton per grid cell). 
F: fraction of ground surface emission 
p,s: indices for primary and non primary fractions (secondary and natural) of the pollutant concentration, respectively 
r: index for the corresponding precursor emission. 
X: virtual primary concentration in a coarse grid influenced for the correspondent emission of the cell evaluate by a box model. 
ω: index for activity sectors 
φ: associated proxy to the activity sector 
Θ: value of 1 to count fine grid cells in a coarse grid cell 
Γ: contribution (fraction between 0 and 1) of the primary fraction due to the cell emission itself. 
σ: sigma parameter (in grid index unit) of the Gaussian filter (σb correspond to a class/bin b). 
χ: ratio of the fine to the mother coarse mesh emissions of the precursor 
The primary concentration with star * exponent represents its value based on the downscaling with the proxy -based approach. The “~” accen

tuation sign is the result of a classic interpolation for a given concentration on the HRG, it corresponds here to a simple linear interpolation from the 
closest LRG concentration (selecting the four LRG grid points surrounding the HRG grid cell centre). The main algorithm is presented in equations (1)– 
(4). 

The entire concentration C is decomposed in its primary and “non primary” (secondary fraction, naturals sources) for PM. For NO2 we assume that 
the “non primary” fraction does not exist, however, natural and agricultural NO emissions exists but cannot be isolated in our calculations. This 
assumption could lead to overestimate the urban concentration of NO2 in urban areas. 

First, we estimate the fraction Γ as detailed in equations (1) and (2) as the fraction of primary fraction influenced by the given coarse cell out of the 
total primary concentration accounting for the influence of the regional transport from neighbouring cells. According to (Bessagnet et al., 2019), for a 
given cell (I,J), the concentration X of a primary fraction due only to its local precursor emission E at the cell is estimated on a yearly average under 
neutral conditions, as: 

X ≅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δx × δy

√

8ku

√

× E (1)   

E: emission flux of the precursor pollutant (μg m− 2 s− 1) 
k: vertical eddy diffusion coefficient of the given cell (m2 s− 1) 
u: wind speed of the given cell (m s− 1) 
δx: x axis dimension of the cell (m) 
δy: y axis dimension of the cell (m) 

Each pollutant is associated to a precursor pollutant r linked to the primary pollutant p: NOx for NO2, PPM10 for the primary fraction of PM10 and 
PPM2.5 for the primary fraction of PM2.5. For NO2, an implicit assumption is that NOx emission is mostly converted in NO2 concentrations for our 
scales using equation (1). In other words, given a “primary” precursor emissions we try to evaluate what should be the concentrations resulting from 
the emission in the cell due to only this emission at the cell thanks to a box model without chemistry. This “virtual” concentration X is used to calculate 
the fraction of the primary fraction which come from outside the cell. 

It comes to calculate Γ over the coarse grid: 

ΓI,J =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δx×δy

√

8ku

√

× EI,J

CI,J
(2) 
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Γ is uniform over the coarse grid and is applied later in the algorithm for all fine cells (i,j) belonging to a coarse grid cell (I,J). 
Second, the concentration c at fine scale is computed as the sum of (i) the fraction Γ from equation (2) of the primary component of C downscaled 

over the HRG, (ii) the “non primary” fraction as well as the remaining fraction (1 − Γ) of the primary component simply interpolated from the LRG to 
the HRG. The downscaled value of the primary fraction is afterwards diffused using a Gaussian filtering approach according a methodology described 
later. The downscaled proxy-based concentrations with proxy c∗,pi,j is proportional to the interpolated coarse concentrations ratio χp→r

i,j which is the 
fraction of fine cell emission of the corresponding coarse cell emission. A minimum value is set to the minimum value of all coarse concentrations 
interpolated over the entire domain to avoid values equal to zero. A multi-gaussian filtering technique Filterσ (see details in the following appendix 
A.2) is applied to diffuse the downscaled concentrations according to the annual mean meteorological conditions for the given cell. 

Two cases are identified: (a) we have access to a fine grid emission inventory and this ratio is directly computed on the basis of the HRG emission 
inventory; (b) only the emissions are available on the LRG and a preliminary downscaling of the emission inventory is required using adequate activity 
specific proxies φ associated to each given activity sector ω. This emission ratio is then multiplied by the total number of fine cells within a mother 
coarse grid cell 

∑
i,j∈(I,J)Θ (equation (3) ). 

CI,J = CI,J
p + CI,J

s

c∼i,j
s
= interp

(
CI,J

s)

c∼i,j
p
= interp

(
CI,J

p) : linear interpolation from LRG to HRG

ci,j = ci,j
p

⏞⏟⏟⏞
primary

+
(

1 − ΓI,Ji,j∈(I,J)

)
× c∼i,j

p
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞

remaining primary

+ c∼i,j
s

⏞⏟⏟⏞
non primary

↓

ci,j
p = Filterσ

(
c∗,i,j

p)

with c∗,i,j
p
= max

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ΓI,Ji,j∈(I,J) × c∼i,j
p
× χp→r

i,j ×
∑

i,j∈(I,J)

Θ ;min 1≤i≤nx

1≤j≤ny

(

c∼i,j
p
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Θ = 1

χp→r
i,j =

∑
ωeω,r

i,j
∑

i,j∈(I,J)
∑

ωeω,r
i,j

(3)  

If the emission ratio χp→r
i,j requires the use of proxy to downscale the LR emission inventory (case (b) discussed before as it is the case in our appli

cation), we must first calculate an activity specific proxy defined as the ratio between its HR value and the sum of all values within a mother coarse grid 
cell as detailed in Eq. (4) Actually, any real positive number can be assigned to this ratio δω→φ

i,j because in fine Yω→φ
i,j is normalized by the coarse grid sum 

over the coarse grid 
∑

i,j∈(I,J)δ
ω→φ
i,j . If the sum 

∑
i,j∈(I,J)δ

ω→φ
i,j is equal to zero we assign a uniform value to Yω→φ

i,j e.g. 0.01 if 100 fine grid cells are present in 
the coarse grid cell. 

if eω,r
i,j does not exist,∀i, j ∈ (I, J) : eω,r

i,j = Yω→φ
i,j × Eω,r

I,J × Fω

if
∑

i,j∈(I,J)

δω→φ
i,j ∕= 0 : Yω→φ

i,j =
δω→φ

i,j∑

i,j∈(I,J)

δω→φ
i,j

if
∑

i,j∈(I,J)

δω→φ
i,j = 0 : Yω→φ

i,j =
Θ

∑

i,j∈(I,J)

Θ
with Θ = 1

∀ω
∑

i,j∈(I,J)

Yω→φ
i,j = 1

(4) 

The emission eω,r
i,j for each grid cell by activity sector ω is actually the ground fraction Fω below 184 m (Table 2) according to the vertical distribution 

used in the EMEP model. The scheme in Fig. A1 visualizes the downscaling procedure for a regular coarse grid mesh of 0.1◦ resolution with scaling 
factors of 10 both in latitude and longitude. This part of the code is written in Python (Van Rossum and Drake, 2009), the use of a regular HRG which 
perfectly matches the LRG with uniform scaling factors allows a very fast computing thanks to the numpy and scipy libraries (Harris et al., 2020; 
Virtanen et al., 2020). 
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Fig. A.1. Visual description of the downscaling methodology applied to grid resolutions corresponding to our application example. The hatched cell is the grid of 
interest, in this example the bilinear interpolation at this point requires the coarse grid cell concentrations CI,J , CI+1,J, CI+1,J− 1 and CI,J− 1. Here we consider nsx × nsy 
= 10 × 10 for the example. 

A.2 The Gaussian filtering technique Filterσ 

To account for atmospheric dispersion processes between high resolution grid cells, and obtain a more realistic field of primary concentrations c, 
we use here a Gaussian dispersion equation and apply it using the scipy python library which offers the possibility to smooth a 2D array using a 
Gaussian approach. This type of filtering is appropriate since Gaussian equations correspond to analytical solutions of the dispersion in air pollution 
modelling. A 2D Gaussian filter G for a given σ (grid index unit) is defined as: 

ci,j =
∑nx

k=1

∑ny

l=1
c∗k,lG

σ
k,l(i − k, j − l)

Gσ
k,l(ik, jl) =

1
2πσk,l

2e
−
ik

2 + jl
2

2σk,l
2

∑ik=+w

ik=− w

∑jl=+w

jl=− w
Gσ

k,l(ik, jl) ≅ 1

(5) 

ik and jl are the new coordinate system on both axes from cell (k,l) of the HRG grid corresponding to the new origin ik = 0 ; jl = 0. σ depends on 
dispersion conditions and has to be evaluated first for each grid cell. w is the size of the footprint with the width (2 • w+1) of the regular squared 
windows centered over the cell (k,l) where the central cell is diffused in 2D. This windows width is defined by the python procedure using a specific 
input parameter and a dependency with σ. The computation is then optimized to avoid useless calculations over the full grid since G quickly tends to 
0 when ik

2+jl2
2σk,l2 becomes very large. An increase of σ implies an increase of the computation time. Actually, the resulting diffused concentration by the 

Gaussian filter at cell (i,j) is c as: 

c=
1

2πσ2c∗ (6) 

Then, by using equations (1) and (6) which provides in a stationary regime the concentration produced by the cell emission, σ2 is estimated for a 
fine grid cell as: 

σ2 =
1

2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8ku
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δx × δy

√

√

×
c∗

e
(7)  

In practice, to save computing time and benefit from existing compact libraries, we simplify the use of a Gaussian filtering by using only 20 classes b of 
sigma σb (discrete scale of σ) with a step of 0.5 defined by the list in equation (7) to apply the Gaussian filtering approach. The step and the number of 
classes can be changed but these values provide a satisfactory results in our case after several tests. 
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if σ < 0.5 : σb = 0

if 0.5 ≤ σ < 1 : σb = 0.5

if 1 ≤ σ < 1.5 : σb = 1

…

if σ ≥ 10 : σb = 10

(8) 

The filtering technique of scipy called scipy.ndimage.gaussian_filter (Virtanen et al., 2020) is then applied for the HRG by class of σ (called σb) as 
previously defined and the final concentrations is the sum over all classes b as: 

Filterσ
(
c∗,i,j

p)
=

∑

b

[
∑nx

k=1

∑ny

l=1
c∗,k,l

pGσb

k,l(i − k, j − l)

]

(9) 

This approach is therefore fully additive. 

Appendix B 

Error statistics used to evaluate model performance (M and O refer respectively with Model and Observations data, and N is the number of ob
servations). U95 is the 95th percentile measurement uncertainty of the observed concentration level, and β is the coefficient that scales the propor
tionality of the bias to the measurement uncertainty (Kushta et al., 2019).   

Bias Bias = (M − O) with M =
1
N

∑N
i=1

Mi and O =
1
N

∑N
i=1

Oi  

Root Mean Square Error 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1

(Mi − Oi)
2

√

Correlation Coefficient R = (
∑N

i=1(Mi − M)(Oi − O)) /(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Mi − M)
2
×
∑N

i=1(Oi − O)
2
)

√

Model Quality Index 
MQIi =

|Mi − Oi|

βU95(Oi)
with β = 2   

Appendix. C: Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2023.105692. 
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Carbone, S., Freney, E., O’Dowd, C., Baltensperger, U., Prévôt, A.S.H., 2017. 
Modelling winter organic aerosol at the European scale with CAMx: evaluation and 
source apportionment with a VBS parameterization based on novel wood burning 
smog chamber experiments. Atmos. Chem. Phys. 17, 7653–7669. https://doi.org/ 
10.5194/acp-17-7653-2017. 

CIESIN, 2018. Gridded population of the world, version 4 (GPWv4): population density 
adjusted to match 2015 revision UN WPP country totals. Revision 11. https://doi. 
org/10.7927/H4F47M65. 

CLC, 2020. CLC 2018 — Copernicus land monitoring Service [WWW Document]. URL. 
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. (Accessed 18 
June 2022). 

Colette, A., Bessagnet, B., Meleux, F., Terrenoire, E., Rouïl, L., 2014. Frontiers in air 
quality modelling. Geosci. Model Dev. (GMD) 7, 203–210. https://doi.org/10.5194/ 
gmd-7-203-2014. 

Denby, B.R., Gauss, M., Wind, P., Mu, Q., Grøtting Wærsted, E., Fagerli, H., 
Valdebenito, A., Klein, H., 2020. Description of the uEMEP_v5 downscaling approach 
for the EMEP MSC-W chemistry transport model. Geosci. Model Dev. (GMD) 13, 
6303–6323. https://doi.org/10.5194/gmd-13-6303-2020. 

Dong, C., Loy, C.C., He, K., Tang, X., 2014. Learning a deep convolutional Network for 
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), 
Computer Vision – ECCV 2014. Springer International Publishing, Cham, 
pp. 184–199. https://doi.org/10.1007/978-3-319-10593-2_13. 

EEA, 2019. Air Quality in Europe: 2019 Report. Publications Office, LU.  

B. Bessagnet et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.envsoft.2023.105692
https://www.eea.europa.eu/data-and-maps/data/aqereporting-9
https://www.eea.europa.eu/data-and-maps/data/aqereporting-9
https://doi.org/10.5194/acp-4-423-2004
http://refhub.elsevier.com/S1364-8152(23)00078-6/sref3
http://refhub.elsevier.com/S1364-8152(23)00078-6/sref3
http://refhub.elsevier.com/S1364-8152(23)00078-6/sref3
https://doi.org/10.1016/j.spasta.2017.08.003
https://doi.org/10.1088/2515-7620/ac17f7
https://doi.org/10.1088/2515-7620/ac17f7
http://refhub.elsevier.com/S1364-8152(23)00078-6/sref6
http://refhub.elsevier.com/S1364-8152(23)00078-6/sref6
http://refhub.elsevier.com/S1364-8152(23)00078-6/sref6
https://doi.org/10.5194/acp-16-12667-2016
https://doi.org/10.5194/acp-16-12667-2016
https://doi.org/10.1016/j.envpol.2011.04.030
https://doi.org/10.1029/2001JD001409
https://doi.org/10.1029/95JD02093
https://doi.org/10.1029/95JD02093
https://doi.org/10.1175/JAMC-D-13-0270.1
https://doi.org/10.1175/JAMC-D-13-0270.1
https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2019/06122019_conversiontablereportingcodes_.xlsx
https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2019/06122019_conversiontablereportingcodes_.xlsx
https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2019/06122019_conversiontablereportingcodes_.xlsx
https://doi.org/10.5194/acp-17-7653-2017
https://doi.org/10.5194/acp-17-7653-2017
https://doi.org/10.7927/H4F47M65
https://doi.org/10.7927/H4F47M65
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://doi.org/10.5194/gmd-7-203-2014
https://doi.org/10.5194/gmd-7-203-2014
https://doi.org/10.5194/gmd-13-6303-2020
https://doi.org/10.1007/978-3-319-10593-2_13
http://refhub.elsevier.com/S1364-8152(23)00078-6/sref19


Environmental Modelling and Software 164 (2023) 105692

12

Fenech, S., Doherty, R.M., Heaviside, C., Vardoulakis, S., Macintyre, H.L., O’Connor, F. 
M., 2018. The influence of model spatial resolution on simulated ozone and fine 
particulate matter for Europe: implications for health impact assessments. Atmos. 
Chem. Phys. 18, 5765–5784. https://doi.org/10.5194/acp-18-5765-2018. 

Feranec, J., Soukup, T., Hazeu, G., Jaffrain, G. (Eds.), 2016. European Landscape 
Dynamics, 0 ed. CRC Press. https://doi.org/10.1201/9781315372860. 

GDAL, 2022. GDAL software. https://doi.org/10.5281/ZENODO.5884351. 
Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., 

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., 
Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., 
Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., 
Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with NumPy. 
Nature 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2. 

Jiang, L., Bessagnet, B., Meleux, F., Tognet, F., Couvidat, F., 2020. Impact of physics 
parameterizations on high-resolution air quality simulations over the Paris region. 
Atmosphere 11. 

JRC, 2022. FAIRMODE Guidance Document on Modelling Quality Objectives and 
Benchmarking: Version 3.3. Publications Office, LU. https://doi.org/10.2760/ 
41988.  

Kushta, J., Georgiou, G.K., Proestos, Y., Christoudias, T., Thunis, P., Savvides, C., 
Papadopoulos, C., Lelieveld, J., 2019. Evaluation of EU air quality standards through 
modeling and the FAIRMODE benchmarking methodology. Air Qual Atmos Health 
12, 73–86. https://doi.org/10.1007/s11869-018-0631-z. 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. https:// 
doi.org/10.1038/nature14539. 

Lin, C., Wang, Y., Ooka, R., Flageul, C., Kim, Y., Kikumoto, H., Wang, Z., Sartelet, K., 
2022. Modelling of street-scale pollutant dispersion by coupled simulation of 
chemical reaction, aerosol dynamics, and CFD (preprint). Dynamics/Atmospheric 
Modelling/Troposphere/Physics (physical properties and processes). https://doi. 
org/10.5194/acp-2022-365. 

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F., Siour, G., Turquety, S., 
Briant, R., Tuccella, P., Bessagnet, B., Colette, A., Létinois, L., Markakis, K., 
Meleux, F., 2017. CHIMERE-2017: from urban to hemispheric chemistry-transport 
modeling. Geosci. Model Dev. (GMD) 10, 2397–2423. 

Malherbe, L., Meleux, A.U.F., Bessagnet, B., Steyn, D., Builtjes, P., Timmermans, R., 
2014. A statistical approach to improve air quality forecasts in the PREV’AIR system. 
Air Pollution Modeling and Its Application 205–209. 

Mareckova, K., Pinteris, M., Ullrich, B., Wankmueller, R., Gaisbauer, S., 2019. Review of 
Emission Data Reported under the LRTAP Convention and the NEC Directive Stage 1 
and 2 Review Status of Gridded and LPS Data (EMEP Report No. 4/2019). 
Umweltbundesamt GmbH, Vienna, Austria.  

Menut, L., Bessagnet, B., Briant, R., Cholakian, A., Couvidat, F., Mailler, S., Pennel, R., 
Siour, G., Tuccella, P., Turquety, S., Valari, M., 2021. The CHIMERE v2020r1 online 
chemistry-transport model. Geosci. Model Dev. (GMD) 14, 6781–6811. https://doi. 
org/10.5194/gmd-14-6781-2021. 

Mircea, M., Grigoras, G., D’Isidoro, M., Righini, G., Adani, M., Briganti, G., 
Ciancarella, L., Cappelletti, A., Calori, G., Cionni, I., Cremona, G., Finardi, S., 
Larsen, B.R., Pace, G., Perrino, C., Piersanti, A., Silibello, C., Vitali, L., Zanini, G., 
2016. Impact of grid resolution on aerosol predictions: a case study over Italy. 
Aerosol Air Qual. Res. 16, 1253–1267. https://doi.org/10.4209/aaqr.2015.02.0058. 

Mu, Q., Denby, B.R., Wærsted, E.G., Fagerli, H., 2022. Downscaling of air pollutants in 
Europe using uEMEP_v6. Geosci. Model Dev. (GMD) 15, 449–465. https://doi.org/ 
10.5194/gmd-15-449-2022. 

Owens, R., Hewson, T., 2018. ECMWF forecast user guide. https://doi.org/10.219 
57/M1CS7H. 

Paolella, D.A., Tessum, C.W., Adams, P.J., Apte, J.S., Chambliss, S., Hill, J., Muller, N.Z., 
Marshall, J.D., 2018. Effect of model spatial resolution on estimates of fine 

particulate matter exposure and exposure disparities in the United States. Environ. 
Sci. Technol. Lett. 5, 436–441. https://doi.org/10.1021/acs.estlett.8b00279. 

Ramacher, M.O.P., Kakouri, A., Speyer, O., Feldner, J., Karl, M., Timmermans, R., Denier 
van der Gon, H., Kuenen, J., Gerasopoulos, E., Athanasopoulou, E., 2021. The UrbEm 
hybrid method to derive high-resolution emissions for city-scale air quality 
modeling. Atmosphere 12, 1404. https://doi.org/10.3390/atmos12111404. 

Schaap, M., Cuvelier, C., Hendriks, C., Bessagnet, B., Baldasano, J.M., Colette, A., 
Thunis, P., Karam, D., Fagerli, H., Graff, A., Kranenburg, R., Nyiri, A., Pay, M.T., 
Rouïl, L., Schulz, M., Simpson, D., Stern, R., Terrenoire, E., Wind, P., 2015. 
Performance of European chemistry transport models as function of horizontal 
resolution. Atmos. Environ. 112, 90–105. 

Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L.D., Fagerli, H., 
Flechard, C.R., Hayman, G.D., Gauss, M., Jonson, J.E., Jenkin, M.E., Nyíri, A., 
Richter, C., Semeena, V.S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., Wind, P., 
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