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Context and purpose
Mutations are one of the main sources of genetic variation, and a major
component of evolutionary adaptation. Most of them occur during DNA
replication due to the errors of DNA polymerases. These mutations are
counterbalanced by two dedicated repair systems:
• the capacity for proofreading by exonuclease, an enzyme associated

with the polymerase;
• the mismatch repair system (MMR) that detects and corrects errors

on the nascent strand during and after DNA replication.
⇒ To better understand mutational processes: B. subtilis strains impaired
for one or both of these systems and showing inducible mutation rates.

Strains
• ΔmutS and ΔmutL - expected : constitutive increase in

spontaneous mutation rate
• integration at an ectopic locus under the control of IPTG of:

— a known dominant negative mutL allele: L* strain;
— a polC mutant with a deficient exonuclease: C* strain;
— a mutL*//polC* operon using the above alleles : LC* strain.

Fluctuation assays confirmed the increase in spontaneous mutation rate,
and its inductibility by IPTG up to 100 µM in L*, C* and LC* strains.

Evolution of high mutation rates in MA
Premise of Mutation Accumulation (MA): enforce repeated random
bottlenecks on a population to accumulate mutations in a neutral way,
before sequencing the genome of the evolved population and compute the
mutation rate.
Experimental design

• Strains evolved on LB (+100 µM IPTG when necessary), in 4
independent lines, for 280 - 540 generations;

• random picking of a colony each day;
• populations sequenced at intermediate and final points.

Evolution of mutation rates

• Decrease in the mutation rate of 1 C* line and the 4 LC* lines during
the experiment.

Figure 1: Spontaneous substitution rate per line depending on the number of elapsed
generations for the LC* strain. Sequencing intervals for which the mutations were discarded

are indicated with a red cross. 95% CIs are indicated.

⇒ Mutations found after the decrease in mutation rate discarded from
the analysis.

⇒ High mutation rates are deleterious, and lead to counter-
selection despite the experimental design.

⇒ Intermediate sequencings → accurate measurement of mutation
rates.
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Mutation and reparation biases
Substitution rates and transition / transversion biases

Strain Subs. rate σ (95% CI) Tv. proportion (95% CI)
CS 7.0 (0.18 - 39)·10−11 0 (0 - 0.98)

WT 3610[1] 3.4 (3.0 - 3.8)·10−10 0.25 (0.21 – 0.31)
ΔmutS 3610[1] 3.4 (3.3 - 3.5)·10−8 0.03 (0.02 – 0.03)
ΔmutL 1.8 (1.5 - 2.1)·10−8 0.01 (0.00 – 0.05)
ΔmutS 1.9 (1.6 - 2.2)·10−8 0.01 (0.00 – 0.05)

L* 1.4 (1.1 - 1.7)·10−8 0.02 (0.00 – 0.06)
C* 5.5 (5.0 - 6.1)·10−8 0.12 (0.09 – 0.16)

LC* 5.5 (5.2 - 6.3)·10−7 0.04 (0.02 – 0.06)

⇒ substitution rate of LC* ' × 103 higher than WT;
⇒ contrasts in transversions ratios, e. g. between C* and MMR-

deficient strains → MMR has a strong tendency to repair
transitions rather than transversions

Impact of the replication strand and neighbouring nucleotides
Arbitrarily: mutated base considered to be the pyrimidine of the pair.
⇒ Strand orientation : substitutions are favored when T is templating

the leading strand in all strains, and when C is templating the
lagging strand in MMR-deficient strains.

⇒ Orientation of replication, and not transcription, impacts the
local substitution rate, including in head-on genes;

⇒ Adjacent nucleotides impact the substitution rate, e.g. the
presence of a G and/or a C increases the mutation rate.

Figure 2: log2 of substitution rates by triplet and replication strand, centered by genotype.
Triplets are indicated in the 5’→3’ orientation with regards to the pyrimidine of the

mutated pair (in the middle). LeS and LaS: resp., pyrimidine templating the leading or
lagging strand. Test µ(triplet, rep.strand) = µ(global) according to the Poisson distribution:

*: 0.001 ≤ p-value < 0.01; ** :p-value < 0.001.

⇒ Impact of both triplet and replication strand have to be taken
into account

⇒ Similarity with multiple organisms including Escherichia coli [2],
Saccharomyces cerevisiae[3] and Deinococcus radiodurans[4] when it
comes to the influence of neighbouring nucleotides.

Conclusions and perspectives
! A cautionary tale on mutation accumulation experiments with

hypermutating strains
! A preliminary dechipering of parameters influencing the local

mutation rate: adjacent nucleotides and replication strand;
→ Investigate the contribution of the essential polymerase DnaE to

mutations and the possible role of the MMR as a equalizer of
mutation spectra;

→ Characterize the contribution of MMR saturation to C* and WT
mutation rates;

→ Use the strains in experimental evolution with a well-suited IPTG
concentration (cf. fluctuation assays), and the knowledge of
mutational spectra to determine the appropriate strain.


