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Robots acting in real-world environments usually interact with humans. Interactions may occur at different levels of abstraction (e.g., process, task, physical), entailing different research challenges (e.g., task allocation, human-robot joint actions, robot navigation). When acting in social situations, robots should recognize the context and behave in different manners, so as to act and interact in a correct and acceptable way. We propose the integration of task and motion planning to contextualize robot behaviors for social navigation. The main idea is to leverage the contextual knowledge of a deliberative task planner to dynamically adapt the navigation behaviors of a robot and enhance humanrobot interaction. More specifically, we propose a holistic model of tasks and human features and a mapping from task-level knowledge to motion-level knowledge to constrain the generation of robot trajectories. The proposed framework is tested in simulation for some commonly occurring scenarios in a hospital.

Introduction

Robots acting in situations requiring direct or indirect interactions with humans should realize behaviors that take into account also a social dimension. A set of implemented behaviors should not be only technically valid and efficient but also acceptable by humans [START_REF] Rossi | User profiling and behavioral adaptation for HRI: A survey[END_REF]. There is a crucial need of considering a social perspective in order to meet the expectations of humans in different (social) contexts and, realize behaviors that are safe, reliable, and legible. In Human-Robot Interaction (HRI), it is particularly important to reason about how tasks are carried out by a robot in order to do the right action in the right way and comply with the so-called social norms [START_REF] Triebel | SPENCER: A Socially Aware Service Robot for Passenger Guidance and Help in Busy Airports[END_REF][START_REF] Bruno | Knowledge representation for culturally competent personal robots: Requirements, design principles, implementation, and assessment[END_REF][START_REF] Awaad | The Role of Functional Affordances in Socializing Robots[END_REF]. Nevertheless, human behaviors are usually only partially predictable. From a control perspective, the presence of humans constitutes a source of uncertainty concerning, e.g., their goals, beliefs, and intentions [START_REF] Clodic | What Is It to Implement a Human-Robot Joint Action? Cham[END_REF][START_REF] Clodic | Key Elements for Human-Robot Joint Action[END_REF]. This uncertainty raises robot control issues and strongly affects the way a robot achieves its goals.

To deploy more natural and acceptable behaviors, robots need advanced reasoning capabilities and intelligent controllers that take into account: who is the human a robot in-teracts with; what are the objectives of the interactions; how to achieve them; when to execute the needed actions, and; where interactions take place. In general, it is necessary to reason about both technical and social aspects of the interactions in order to, respectively, realize correct behaviors and adapt robot behaviors to different contexts and human users.

Implementing "intelligent behaviors" requires investigating several research directions that lead to the integration of Robotics and Artificial Intelligence (AI) [START_REF] Lemaignan | Artificial cognition for social humanrobot interaction: An implementation[END_REF][START_REF] Ingrand | Deliberation for autonomous robots: A survey[END_REF]. General interaction capabilities of robotic platforms should be customized according to the specific features of a scenario as well as the preferences and needs of users [START_REF] Cortellessa | AI and robotics to help older adults: Revisiting projects in search of lessons learned[END_REF][START_REF] Moro | Learning and personalizing socially assistive robot behaviors to aid with activities of daily living[END_REF]. In this regard, it is paramount to endow the robot with contextual knowledge about human users, social environments, and (social) tasks to be performed. On the one hand, such knowledge allows robots to personalize their general interactions capabilities (i.e., behaviors) to the specific needs of a user. On the other hand, it provides a means for robots to adapt their behavior execution over time according to the changing or evolving states of users [START_REF] Umbrico | A holistic approach to behavior adaptation for socially assistive robots[END_REF].

In this work, we propose a novel integrated Task And Motion Planning (TAMP) approach to enhance the awareness of the social navigation skills of robots. This approach relies on a motion planning framework, called CoHAN (Singamaneni, Favier, and Alami 2021;2022), which allows the tuning of human-aware navigation behaviors. It exposes a number of motion parameters that are used by a task planner, called PLATINUm [START_REF] Umbrico | PLATINUm: A New Framework for Planning and Acting[END_REF] to dynamically adapt motion behaviors to the expected social context. To this aim, the paper proposes a holistic model characterizing domain and task requirements as well as human features at both domain and geometric levels. The feasibility of the approach is evaluated in an assistive scenario where a robot is requested to dynamically change motion behaviors according to different types of tasks, environmental features as well as interacting features of involved humans.

Human-Aware Task and Motion Planning

Endowing a control system with a well-structured model of humans and social contexts is crucial to synthesize flexible and effective robot behaviors. Indeed, there are several human and social-related variables that can affect motions and interaction styles of a robot in a certain social context. Usually, works in social navigation mainly focus on the geometric aspects of the implemented motions [START_REF] Kruse | Human-aware robot navigation: A survey[END_REF]. Humans are generally considered as dynamic obstacles whose geometric model is defined by taking into account different aspects e.g., proxemics [START_REF] Ferrer | Robot social-aware navigation framework to accompany people walking side-by-side[END_REF][START_REF] Rios-Martinez | From proxemics theory to socially-aware navigation: A survey[END_REF][START_REF] Mead | Autonomous humanrobot proxemics: socially aware navigation based on interaction potential[END_REF] or emotional states [START_REF] Cavallo | Emotion modelling for social robotics applications: A review[END_REF]. There are additional factors concerning human intention, perspectives, or social norms that should be considered to reliably plan robot motions [START_REF] Che | Efficient and trustworthy social navigation via explicit and implicit robot-human communication[END_REF][START_REF] Repiso | Adaptive social planner to accompany people in real-life dynamic environments[END_REF][START_REF] Beraldo | Shared autonomy for telepresence robots based on people-aware navigation[END_REF]. Furthermore, works usually focus on single navigation/interaction episodes ignoring more abstract knowledge about the interaction skills of involved humans, sequences of motions (i.e., robot plans), and (domain-level) "motivations" that lead the robot to act in a (social) situation.

Depending on the specific requirements of the domainlevel task being performed and the qualities of involved humans, the execution of needed (social) navigation skills would consider different priorities, safety requirements, and different performance constraints. Such contextual knowledge impacts the interaction style of a robot and the way navigation behaviors are actually implemented. In this regard, we propose a holistic model for social navigation tasks to characterize interacting behaviors from different (synergetic) perspectives: (i) the domain perspective considers technical and performance aspects of a task being executed; (ii) the human perspective considers the interacting skills, qualitative features, and preferences of humans involved in the execution of a task; (iii) the robot perspective considers the acting skills and execution modalities of trajectories; (iv) the environment perspective considers social features of the physical space where the execution of a task takes place. Each of these perspectives contributes to different levels of abstraction while defining context-aware robot behaviors. We integrate this holistic model into a novel Task and Motion planning (TAMP) approach to synthesize flexible robot behaviors. Fig. 1 shows the designed architecture and the resulting control flow. The task planner reasons at a high level of abstraction taking into account the domain requirements, the functional capabilities of the robot, and the interaction skills of humans. It deals with task decomposition, task assignment, and temporal sequencing of needed actions. We rely on the timeline-based planner PLATINUm1 and the executive framework ROXANNE2 (Cialdea Mayer, Orlandini, and Umbrico 2016; [START_REF] Umbrico | PLATINUm: A New Framework for Planning and Acting[END_REF]. The motion planner reasons at a lower level of abstraction taking into account the geometrical features of the environment, the robot, and the involved humans. We rely on the human-aware motion planning framework CoHAN3 which exposes a number of parameters to adapt the planning of motion trajectories to different contexts [START_REF] Singamaneni | Humanaware navigation planner for diverse human-robot interaction contexts[END_REF]2022).

The idea behind the proposed TAMP approach is to leverage the domain-level knowledge of the task planner to enrich the motion planner with contextual knowledge about tasks and involved humans. It is important to point out that a model of humans is necessary at both task and motion planning levels. Humans indeed should be characterized from both a functional level (necessary for the task planner) and a geometric level (necessary for the motion planner). The TAMP approach integrates such knowledge to support human-aware reasoning.

Task-level Knowledge

This section describes the task planning knowledge characterizing the requirements, motivations, and objectives that influence the robot's actions. Table 1 shows the variables considered at this level of abstraction: (i) the environmental context in which a task is performed (e.g., crowded spaces, public or private environments); (ii) the risk of a task with respect to the safety of humans and; (iii) the performance of a task (e.g., flexible tasks whose execution does not require rigid adherence to the nominal duration or strict tasks whose execution cannot be delayed).

The higher the (cumulative) score, the lower the need of considering human-related constraints. Depending on the cumulative score of the variables, we define three classes of tasks: (i) Technical-critical tasks (score ∈ (6, 9]) focus on technical requirements mainly. The motion planner would thus relax social constraints in favor of optimized and efficient motions; (ii) Interaction-critical tasks (score ∈ (3, 6]) require a trade-off between technical and social constraints when planning motions; (iii) Social-critical tasks (score ∈ [0, 3]) focus on social requirements. The motion planner would almost ignore optimal trajectory to favor safe and acceptable motions.

Table 2 shows the set of variables characterizing the interaction skills of humans. These variables are a subset of the International Classification of Functioning, Disability, and Health (ICF)4 proposed by the World Health Organization (WHO). The ICF framework describes the level of functioning of a person and has been proposed in robotics to adapt the interactions [START_REF] Umbrico | A holistic approach to behavior adaptation for socially assistive robots[END_REF][START_REF] Kostavelis | Understanding of human behavior with a robotic agent through daily activity analysis[END_REF][START_REF] García-Betances | Parametric cognitive modeling of information and computer technology usage by people with aging-and disabilityderived functional impairments[END_REF]. Each variable is associated with an integer value5 expressing the level of functioning of a person with respect to a particular aspect.

The rationale behind the use of this subset of ICF is to estimate human uncertainty with respect to the interaction with the robot. The higher the cumulative score of the variables the higher the uncertainty (i.e., higher impairments of interaction-related aspects). Depending on the cumulative scores of the variables we define three classes of humans: (i) Fragile humans (score ∈ (25, 44]) have limited interaction skills (e.g., low hearing or seeing functioning) and unstable motions (e.g., unstable walking, equilibrium issues, or low attention). This category entails conservative/prudent robot motions since no assumption can be made on the actual state or motions of the human (maximum uncertainty); (ii) Average humans (score ∈ (13, 25]) have minimal interaction skills and sufficiently stable motions. This category allows the robot to make some assumptions about the expected behaviors of the interacting humans and thus perform some level of optimization and planning of motions (average uncertainty); (iii) Reliable humans (score ∈ [0, 13]) can reliably interact with robots and perform mutual adaptation to robot motions. This category allows a robot to achieve a higher level of optimization since the behavior of the human is predictable to some extent (minimum uncertainty).

This knowledge with the discussed classes of tasks and humans is used within the task planning model to contextualize the interacting tasks of the robot. The task planner would thus provide the motion planner with contextual information useful to dynamically adapt the planning of motion trajectories.

Motion-level Knowledge

The framework CoHAN generates flexible motion trajectories by taking into account observed intentions of humans and supporting perspective-taking [START_REF] Singamaneni | Humanaware navigation planner for diverse human-robot interaction contexts[END_REF]2022). CoHAN exposes a number of navigation parameters that can be used by a task planner to support a finer tuning of motion trajectories. Table 3 shows the sets of motion parameters exposed by CoHAN and used within the proposed TAMP approach to dynamically constrain the generation of robot trajectories.

The parameter variables can be grouped into three sets. The first set characterizes the qualities of robot motions. In addition to variables limiting the speed and acceleration of the robot, the variable plan specifies the "look ahead" of the motion planner, determining the "length" of the trajectories. The variable band specifies the level of collaboration of the robot in solving motion conflicts with humans (e.g., deadlocks in narrow passages). The second set characterizes the qualities of human motions. In addition to variables estimating the velocity and acceleration of the human, the variable radius specifies the volume around the human body thus determining the proxemics constraints for the motions of the robot. The variable field of vision estimates the breadth of the field of vision of the human, determining whether the robot is visible or not to the human. The third set characterizes the social qualities of robot motions. The variable safety specifies the level of safe distance the robot must maintain while moving. The variable visibility determines the way the robot should enter the field of vision of the human from behind. The variable hidden human allows the robot to be cautious about occluded regions from where the human might emerge [START_REF] Singamaneni | Watch out! there may be a human. addressing invisible humans in social navigation[END_REF]. All these variables are meant to realize behaviors that are acceptable to humans.

Combining Perspectives

To dynamically set the values of the motion parameters according to the expected interaction context, it is necessary to combine the domain-level knowledge of the task planner with the geometry-level knowledge of the motion planner. Depending on the classification of the task and the involved human, the task planner would determine patterns of motion parameter values.

For example, social-critical tasks requiring the interaction between a robot and a fragile user would entail a prudent navigation behavior of the robot. In such a case, the task planner would dispatch navigation requests by setting the variable Radius to "big" (i.e., avoid the robot moving too close to the human); the variable Planning horizon to "max" (i.e., plan long trajectories in order to be more adaptive when approaching the human); the variable Field of vision to "narrow" (i.e., assume the user would see the robot only when in front of him/her); the variable Hidden humans to "max" (i.e., let the robot be very prudent when entering rooms or turning corners in corridors); etc. Table 4 maps the three classes of tasks to the motion variables characterizing the navigation skills of the robot and Table 5 maps the three classes of humans to the motion variables characterizing the behavioral model of the human. Finally, Table 6 maps combinations of task/human classes to the social-related motion variables. 

Experimental Evaluation

To assess the proposed TAMP approach we consider an inhospital scenario where a socially interacting robot is deployed to support patients and healthcare personnel. The domain entails a variety of social situations e.g., approaching The integrated approach has been tested in simulation using stage ros package6 . Fig. 2 shows the part of the hospital map used for all the scenarios with humans' (circles) and the robot's (square) positions. There are a total of six hu- mans in the setting with three humans representing patients in three different rooms, one pharmacist, and two others acting as pedestrians in a corridor. The humans in red circles are the patients, the ones in blue are the pedestrians and the human in green is the pharmacist. In this environment, we have designed and tested three scenarios: (i) A drug delivery scenario requires the robot to reach the pharmacy to pick up some drugs and deliver them to a particular patient located in a known room; (ii) A patrolling scenario requires the robot to move inside the different rooms of the floor to monitor the general health conditions of patients; (iii) An emergency scenario requires the robot to quickly reach the room hosting the patient asking for help. In all of these scenarios, humans are static in the rooms and the pharmacy, whereas they are dynamic from time to time in the corridor. The central aspect is the need for dynamically adapting motion behaviors according to the social situations characterizing the execution of each task (e.g., navigating the corridor, entering a room with patients, approaching patients or healthcare professionals). In particular, it is necessary to adapt motion behaviors within the execution of the same domain-level task.

Task Planning Model

The task planning model of the scenarios has been defined following the timeline-based formalism (Cialdea Mayer, Or-landini, and Umbrico 2016) 7 . Broadly speaking, the model consists of a number of state variables characterizing temporal behaviors of domain features, and a number of synchronization rules specifying global constraints coordinating the temporal evolution of single state variables. While state variables specify local constraints characterizing the correct dynamics of the modeled domain features, synchronization rules specify global constraints coordinating state variables to achieve complex goals (e.g., perform a highlevel domain task).

We have defined four state variables whose values are predicates asserting states or activities the associated features may respectively assume or execute over time. The state variable RobotBase models the end-effector allowing the robot to (autonomously) navigate the environment. The value At(?l) specifies the robot is still in a specific location (i.e., the parameter location of the predicate). The value MoveTo(?l, ?t, ?u) models the generic action of moving the robot towards a particular goal location (?l). The other parameters of the predicate contextualize the motion with respect to the class of task (?t) the robot is supposed to perform and the class of human (?u) the robot is expected to interact with.

The state variable RobotMotionController contextualizes navigation skills with respect to the structure of the environment. The values Still(?l) and NavigateTo(?l, ?t, ?u) characterize the motion of the robot outside the rooms. The other values e.g., Enter(?l, ?t, ?u), Inside(?l), Approach(?l, ?t, ?u), etc. characterize the motion of the robot inside the rooms. The state variable RobotSkill describes the interacting skills of the robot. The values represent complex actions (e.g., PickDrug(?l1, ?l2, ?l3), DeliverDrug(?l1, ?l2, ?l3)) the robot can perform through its end-effectors. The state variable RobotService describes the high-level tasks a robot should perform within the domain. Each value represents a planning goal and is associated with a particular scenario (i.e., DeliverDrug(?l1, ?l2, ?l3), Patrolling(?l1, ?l2, ?l3), and Emergency(?l1, ?l2, ?l3)).

State variables have a simple structure with a single value as a stable state (e.g., the values Idle(), Still(?l) and At(?l)) and other values as actions with bounded duration (e.g., ?l2,?l3), PickDrug(?l1, ?l2, ?l3), HelpPatient(?l1, ?l2, ?l3)). Value transitions thus go from a stable state value (e.g., Idle()) to action values (e.g., Deliver-Drug(?l1, ?l2, ?l3)) and vice versa. The state variable Robot-MotionController has a more complex structure depicted in Fig. 3. It distinguishes between the robot moving outside rooms (i.e., NavigateTo(?l, ?t, ?u)) and inside rooms (e.g., Enter(?l, ?t, ?u), Approach(?l, ?t, ?u)) supporting a finer tuning of the motion parameters.

Synchronization rules then organize state variables in a hierarchical fashion and specify the decomposition of highlevel tasks (i.e., values belonging to more abstract state variables) into incrementally simpler tasks (i.e., values belong- ing to lower-level state variables). For example, the highlevel task DeliverDrug(?l1, ?l2, ?l3) is first decomposed into values of the state variable RobotSkill denoting complex actions necessary to accomplish the task correctly (e.g., PickDrug(?l1, ?l2, ?l3)). Each complex action is then further decomposed into a number of contextualized navigation skills (e.g., NavigateTo(?l, ?t, ?u)). Rules may specify temporal relations constraining the correct execution of the sub-tasks. For example, within the high-level task De-liverDrug(?l1, ?l2, ?l3) of the RobotService state variable, the BEFORE temporal relation [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF] specifies the correct sequencing of the complex actions PickDrug(?l1, ?l2, ?l3), DeliverDrug(?l1, ?l2, ?l3) and GoHome() of the RobotSkill state variable. Each navigation skill is then further decomposed into the primitive motion actions (i.e., instances of MoveTo(?l, ?t, ?u)) that are dispatched to the motion planner for execution 8 .

Given the current focus on human-robot interaction, the planning model does not consider battery constraints. However, timeline-based formalism supports different types of resources et al. 2018) and the model can be easily extended to take into account robot autonomy (i.e., battery consumption/production).

ROS-based Implementation and Integration

The integrated task and motion planning approach depicted in Fig. 1 has been implemented in ROS Melodic using: (i) PLATINUm [START_REF] Umbrico | PLATINUm: A New Framework for Planning and Acting[END_REF]) as a timeline-based task planning engine; (ii) ROXANNE as ROS-compliant executive for timeline-based plans, and; (iii) CoHAN (Singamaneni, Favier, and Alami 2021) as a motion planner implementing the navigation skills of the robot.

ROXANNE is a ROS package supporting the development of goal-oriented plan-based controllers. It encapsulates PLATINUm as a timeline-based planning engine and provides a ROS-compliant executive. Interactions with ROX-ANNE and the underlying task planning system are realized through a set of topics exchanging custom ROS messages: (i) receiving planning requests (i.e., ActingGoal); (ii) dispatching plan tokens as execution requests for a robot (i.e., 8 The planning model is available on the GitHub repository of ROXANNEhttps://github.com/pstlab/roxanne_rosjava/blob/ master/domains/assistive_map1_v0.1.ddl TokenExecution), and; (iii) receiving related execution feedback (i.e., TokenExecutionFeedback).

The actual set of topics used by ROXANNE can be set through a dedicated configuration file. In this case, we configure ROXANNE with a single goal topic and a pair of dispatching and feedback topics for the execution of navigation skills. The dispatching topic allows PLATINUm to send CoHAN contextualized motion execution requests. The content of a dispatched message (TokenExecution) is a token composing the timeline of RobotBaseType, instantiating the value MoveTo(?l, ?t, ?u). The feedback topic allows PLAT-INUm to receive information from CoHAN about the actual execution of dispatched commands. The content of a feedback message (i.e., TokenExecutionFeedback) consists of a code denoting the result of the execution where a value of 0 means successful execution and values > 0 are used to denote different types of failures.

The control flow of the robot is initiated by the task planner when receiving a planning request through the goal topic of ROXANNE. A goal request instantiates one of the values of the state variable RobotService (e.g., the value Deliver-Drug(?l1, ?l2, ?l3)) thus representing a high-level planning task to perform. The task planner synthesizes a set of valid timelines for each of the state variables of the model, following the decomposition encoded by the synchronization rules. The obtained timeline-based plan is then executed through ROXANNE.

Given a planned instance of the value MoveTo(?l, ?t, ?u) (i.e., a token of the timeline of the state variable Robot-Base), ROXANNE encapsulates related information into a TokenExecution message and sends it through the dispatching topic. A simple ROS package is developed that receives this request and dynamically maps the parameters according to the values of ?task and ?user, following the mappings in Tables 4,5, and 6. It then updates the motion parameters of CoHAN before calling the motion planning service. When the motion execution is complete, CoHAN sends a To-kenExecutionFeedback to ROXANNE notifying the result. For each dispatched request, ROXANNE waits for feedback before executing the next tokens of the timeline.

Results and Discussion

The variety of social situations occurring in the designed assistive domain is well-suited to assess the contextual and human-aware navigation capabilities of the proposed TAMP approach. To this aim, the evaluation analyzes and compares the results of two configurations: (i) cohan showing the behavior without the use of contextual information from the task planner; (iii) cohan+platinum showing the behavior of the proposed TAMP approach. We now proceed to the description of the parameters in each scenario and analyze the results.

Patrolling Scenario The goal in this scenario is to navigate to each room with a patient and monitor them taking into consideration their fragile state. The list of parameters for this scenario is shown in Table 7. The robot goes to each room to monitor the patient and the complete task consists of a total of 13 navigational phases (or steps). The veloc- 4 showing the cohan setting, it can be seen that the robot moves with a maximum velocity of around 0.7 m/s. However, this may not be ideal for monitoring patients who can have limited reactive capabilities. Hence, the robot should be more careful (and slower) around the patients which can be achieved by updating the parameters (cohan+platinum) as shown in the bottom part of Fig. 4. Since the corridor navigation phases are simply technical, the robot could move with a larger velocity and use minimal human-aware capabilities for navigation. It makes the robot pass through these phases faster (comparing the times) when compared to the cohan setting. It might also affect the robot's trajectory as shown in Fig. 5. The color of the trajectory changes from blue at the start to red towards the end. Having toned down human-aware capabilities makes the robot react to the human only when required (Fig. 5 (b)) instead of adapting its trajectory early as in the case of Fig. 5 (a). This makes the robot traverse the corridor faster by reducing the effect of humans on the trajectory.

The total time taken for the robot to complete the task with dynamic parameter adaptation is 184.64 s and with constant parameters, it is 141.94 s. Even though there is an overhead of 42.7 s, the integrated approach moves the robot more safely around the fragile humans in the environment. Moreover, in a human-aware planning setting, the fastest approach may not be the ideal approach. From Fig. 4, it can be seen that there is a small time gap between the end of one phase and the start of another. This timing gap is attributed to the communication delay associated with the task planner and the motion planner, and the time to update the parameters of CoHAN. Considering only the times of the navigation phases, the total execution times for cohan and co-han+platinum settings are 128.20 s and 154.16 s. This gives us an overhead time of 2.34 s per phase in the dynamic setting and 1.06 s per phase in the constant setting. Although these overhead times are not large for real-world applications, we plan to reduce them in the future version of TAMP.

Emergency Scenario In this scenario, the robot has to rush to the patient in a room to assist in an emergency. For the setting, the list of parameters is updated as shown in Table. 8. Unlike the previous scenario, the robot moves at a larger speed to rush to the patient in the cohan+platinum setting compared to the cohan setting. From Fig. 6, it can be seen that each phase in the cohan+platinum configuration is executed in less or almost the same time as the cohan setting. The total time for cohan+platinum setting is 70. overhead time of 0.92 s in the cohan setting. This clearly shows that the integrated approach takes lesser time to reach the patient in an emergency even with a larger overhead. Moreover, the execution time for the cohan setting is 77.30 s which is larger than the overall planning time of the integrated approach, whereas, in the cohan+platinum setting, it is only 59.60 s. The benefit of the proposed TAMP approach is apparent from this scenario.

Drug Delivery Scenario

The scenario simulates a robot that has to take the prescribed drugs from the pharmacy and deliver them to a patient in a room. The complete set of parameters for this scenario is listed below in Fig. 7 shows the velocity profiles and the times for each phase. The corridor navigation phases in this scenario are P1, P5, and P9, where it can be seen that the robot with dynamic parameter adaptation takes lesser time to traverse. Phases P2 to P4 are the interaction phases of the robot with the pharmacist who might have already interacted with the robot and could act reliably compared to other humans in the environment. Therefore, the robot could use nominal human-aware parameters during these phases. Compared to the patrolling scenario, instead of monitoring the human, the robot has to interact with the patient in P7. Hence, the robot adapts a nominal velocity to be more responsive while interacting in the cohan+platinum setting.

The cohan setting takes 114.46 s to complete the task while the cohan+platinum setting takes 124.46 s. However, the execution time for the cohan+platinum setting is lesser (103.26 s) than the cohan setting (105.1 s). Hence, the robot effectively spends lesser time in navigation and delivery while using cohan+platinum configuration. Although this initial integration has an overhead time of 2.35 s per phase in the cohan+platinum setting, it could be reduced systematically.

Final Remarks and Future Works

We presented a novel integrated Task and Motion Planning approach to enhance the awareness of the social navigation skills of robots. We discussed task-related and humanrelated knowledge leveraged by a task planner to dynamically reconfigure the parameters of a motion planner and adapt the planning of trajectories to different (social) situations. We evaluated and tested the proposed approach in a simulated assistive domain, designing three different scenarios that required the robot to interact with different types of humans and perform various types of tasks. Note that this approach assumes perfect tracking of humans while planning and the types of humans are known beforehand to the task planner. When compared to a situation in which the robot uses the motion planner alone, results show that the integrated approach effectively allows the robot to dynamically adapt the velocity and motion behaviors to perform better in varying social situations. Future works will focus on improving the efficiency of the approach by reducing the overhead detected during the experiments. On a longer time horizon, we plan to investigate the integration also of augmented perception capabilities to enrich the contextual knowledge provided online by the task planner. Namely, perception capabilities would enrich dispatched motions by providing information about detected social situations (e.g., detecting a fragile human instead of a reliable human expected at planning time).
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 7 Figure 7: Velocity profiles and times for navigation phases (red: corridor ones) in the drug delivery scenario. Top: cohan, Bottom: cohan+platinum.

Table 1 :

 1 Variables characterizing domain-level knowledge of a task.

	Parameter	Value Set	Value Range	Description
	Social Context	{crowded, public, private, robotic}	[0, 3]	Describe the environmental context in which a task is supposed to be performed. Higher values
				correspond to a lower predominance of humans, and consequently higher availability of space to
				plan robot motions.
	Risk	{critical, high, average, low}	[0, 3]	Describe the risk of the execution of a task with respect to the safety of humans. Tasks with low
				risk, for example, would allow the execution of optimal trajectories that are not necessarily social.
				Vice versa, tasks with high risk would imply the execution of social (and non-optimal) trajectories.
	Performance	{none, flexible, regular, strict}	[0, 3]	Describe the required level of performance during the execution of the motions. Higher values
				imply stricter adherence to performance optimization when planning robot motions.

Table 2 :

 2 Variables characterizing human-level knowledge of a task.

	ICF Area	ICF variable	Value Range	Description
		Attention	[0, 4]	Specific mental functions of focusing on an external stimulus or internal experience for the required period of
	Mental Functioning	Memory	[0, 4]	time. Specific mental functions of registering and storing information and retrieving it as needed.
		Orientation	[0, 4]	General mental functions of knowing and ascertaining one's relation to time to place, to self, to others, to
				objects, and to space.
		Perception	[0, 4]	Specific mental functions of recognizing and interpreting sensory stimuli.
		Hearing	[0, 4]	Sensory functions relating to sensing the presence of sounds and discriminating the location, pitch, loudness,
	Sensory			and quality of sounds.
		Seeing	[0, 4]	Sensory functions relating to sensing the presence of light and sensing the form, size, shape, and color of the
				visual stimuli.
		Vision	[0, 4]	Mental functions involved in discriminating shape, size, color, and other ocular stimuli.
		Body Position	[0, 4]	Staying in the same body position as required, such as remaining seated or remaining standing for carrying
	Mobility	Movement Control	[0, 4]	out a task, in play, work, or school. Functions associated with control over and coordination of voluntary movements.
		Muscle Tone	[0, 4]	Functions related to the tension present in the resting muscles and the resistance offered when trying to move
				the muscles passively.
		Walking	[0, 4]	Moving along a surface on foot, step by step, so that one foot is always on the ground, such as when strolling,
				sauntering, walking forwards, backward, or sideways.

Table 3 :

 3 Motion variables exposed by CoHAN. Set the angular velocity of the implemented motions of the robot. Acceleration {min, nominal, max} Limit the maximum acceleration of the motions of the robot. Planning horizon {min, normal, max} Set the "look ahead" of the planned motion trajectories of the robot. Band tightness {loose, medium, tight} Set the collaborative level of the implemented behavior of the robot.

	Type	Parameter	Value Set	Description
		Velocity	{min, nominal, max}	Set the velocity limits of the implemented motions of the robot.
		Angular velocity	{min, nominal, max}	
	Robot			

Human Radius {small, medium, big} Estimate the volume of the human determining the proxemics constraints for the motion of the robots. Velocity {min, nominal, max} Estimate the speed of observed human motions over a certain cartesian direction. Angular velocity {min, nominal, max} Estimate the angular speed of observed human motions. Field of vision {narrow, normal, wide} Estimate the breadth of the field of vision of a human and thus the "eye contact" with the robot. Band tightness {loose, medium, tight} Estimate the possibility of a human changing his/her path. Social Safety {none, min, nom, max} This variable specifies the level of safety a robot must support while moving. Relative velocity {none, min, nom, max} This variable reduces the velocity of a robot as its distance from humans decreases and allows the robot to quickly change the path (moves to one side). Visibility {none, min, nom, max} This variable allows a robot to avoid entering the human's field of view very closely from behind. Hidden humans {none, min, nom, max} This variable makes the robot cautious about the occluded regions from where a human might emerge.

Table 4 :

 4 Map Task classes to Robot-related motion parameters.

	Task	Velocity	Angular	Acceleration Planning	Band
	Class		Velocity		Horizon	Tightness
	Technical	max	max	max	min	tight
	Interaction nominal	nominal	nominal	nominal	medium
	Social	min	min	min	max	loose

Table 5 :

 5 Map Human classes to Human-related motion parameters.

	Human	Radius	Velocity	Angular	Field of	Band
	Class			Velocity	Vision	Tightness
	Fragile	big	min	min	narrow	tight
	Average	medium	nominal	nominal	nominal	medium
	Reliable	small	max	max	wide	loose
	fragile users, navigating inside crowded corridors, or enter-
	ing rooms populated by users whose view is occluded to
	the robot. In this context, the robot should perform differ-
	ent types of tasks (e.g., drug delivery, patient monitoring,
	technical support to healthcare professionals) and interact
	with different categories of humans (e.g., fragile patients and
	more reliable healthcare professionals) within different en-
	vironments (e.g., rooms, corridors).		

Table 6 :

 6 Map combinations of human and task classes to Socialrelated motion parameters.

	Classes	Safety	Relative	Visibility	Hidden
			Velocity		Humans
	Technical+Fragile	max	nominal	min	nominal
	Technical+Average	min	min	nominal	nominal
	Technical+Reliable	min	min	min	min
	Interaction+Fragile	max	nominal	nominal	max
	Interaction+Average	nominal	nominal	nominal	nominal
	Interaction+Reliable	min	min	nominal	nominal
	Social+Fragile	max	max	max	max
	Social+Average	nominal	nominal	max	max
	Social+Reliable	min	nominal	nominal	nominal

  80 s with an overhead time of 2.24 s and it is 81.88 s with an

	Navigate corridor	Task: Technical, Human: Reliable
	Enter patient's room Task: Technical, Human: Average
	Monitor patient	Task: Technical, Human: Fragile
	Leave room	Task: Interaction, Human: Fragile

Table 8 :

 8 Parameters for an emergency

		2								
				P1		P2	P3	P4	P5	
	Velocity (m/s)	0.5 1 1.5		26.86 s		6.96 s	5.84 s	9.32 s	28.32 s
		0	0	10	20	30	40	50	60	70	80
							Time (s)			
		2								
				P1	P2	P3		P4		P5
	Velocity (m/s)	0.5 1 1.5		18.72 s	5.86 s	4.7 s		9.36 s	20.96 s
		0	0	10	20	30		40	50	60	70
							Time (s)			
	Figure 6: Velocity profiles and times for navigation phases (red:
	corridor ones) in the emergency scenario. Top: cohan, Bottom: co-
	han+platinum						

  Table. 9.

	Navigate corridor	Task: Technical, Human: Average
	Enter pharmacy	Task: Interaction, Human: Average
	Approach pharmacist Task: Interaction, Human: Reliable
	Leave pharmacy	Task: Interaction, Human: Average
	Enter patient's room	Task: Social, Human: Average
	Deliver drugs	Task: Interaction, Human: Fragile
	Leave room	Task: Social, Human: Average

Table 9 :

 9 Parameters for drug delivery

https://github.com/pstlab/PLATINUm.git

https://github.com/pstlab/roxanne_ rosjava.git

https://github.com/sphanit/CoHAN_Planner. git

https://icd.who.int/dev11/l-icf/en

ICF scores are defined within a 5-point Likert scale: (i) 0 means no impairment; (ii) 1 means soft impairment; (iii) 2 means medium impairment; (iv) 3 means serious impairment; (v) 4 means full impairment.

http://wiki.ros.org/stage_ros

Due to space limitations it was not possible to add an overview of the planning formalism. We invite readers to refer to (Cialdea Mayer, Orlandini, and Umbrico 2016) for an exhaustive description of the timeline-based formalism.

Acknowledge LAAS-CNRS authors are partially supported by the European Union's Horizon Europe euROBIN project under grant agreement No 101070596. CNR authors are partially supported by Italian MUR and the PNRR research project "Fit4MedRob-Fit for Medical Robotics" -"Piano Nazionale Complementare D.D. n. 931 6/6/2022 Cod. PNC0000007"