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This paper presents an improved version of the Universal Line Model (ULM) integrated into a graphical programming environment GPE (Simulink for example) for time domain transient simulations. The new model is based on an electrical circuit representation of the shunt line admittance and has improved efficiency using the Rational Krylov technique. The accuracy and performance of the new model are assessed through application examples and compared to results from electromagnetic transient software.

INTRODUCTION

The increasing integration of renewable energy sources into the transmission grid has led to a significant transformation in the grid's infrastructure, resulting in a growing number of high voltage direct current (HVDC) links that use power. The use of these technologies is crucial to achieving the goal of climate neutrality by 2050 [START_REF] Jovcic | High voltage direct current transmission: converters, systems and DC grids[END_REF]. Manufacturers of power converters face the challenge of developing solutions for multiterminal and multivendor HVDC and medium voltage DC (MVDC) systems, which require interoperability and protection strategies for reliable operation. Therefore, accurate and reliable simulation tools and models are essential for studying electrical systems.

Various commercial software tools and simulation environments are used to simulate electrical systems, such as EMTP, PSCAD, or MATLAB/Simulink. While EMTP and PSCAD provide comprehensive cable and power grid models [START_REF] Dommel | Electromagnetic Transients Program Reference Manual:(EMTP) Theory Book[END_REF], MATLAB/Simulink is widely used by power electronics manufacturers to model converters because of its low-level control. However, MATLAB/Simulink has less reliable and detailed models of cables and power grids compared to EMTP and PSCAD.

To address this issue, this article presents an improved version of the Universal Line Model (ULM) [START_REF] Morched | A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables[END_REF], also known as the Wide-Band (WB) model, that has been integrated into the MATLAB/Simulink environment for time-domain transient simulations of electrical networks based on power electronics. The ULM is based on an electrical circuit representation of the shunt line admittance and has been enhanced using the Rational Krylov technique to achieve improved efficiency with lower-order approximations [START_REF] Mouhaidali | Electromagnetic Transient Analysis of Transmission line based on rational Krylov approximation[END_REF]. For multiconductor modeling, the characteristic admittance is represented as an equivalent two-port Y parameter system.

This

article reviews the frequency-dependent multiconductor transmission line modeling in the frequency and time domains, describes the new implementation stepby-step to reach the equivalent electrical circuit, and assesses the accuracy and numerical performance of the proposed implementation using representative application examples, comparing it to EMTP. The improved ULM combines the capability of reliable transient studies with similar performances to traditional grid simulation software.

UNIVERSAL LINE MODEL

Traveling wave formulation

Let us suppose a system of 𝑛 parallel lines of length 𝑙 above an infinite, perfectly conducting ground plane. Thus, the 𝑛 line voltages and 𝑛 line current in the frequency domain, in matrix form, are obtained as:

𝑑𝑉(𝑠) 𝑑𝑥 = 𝑍(𝑠). 𝐼(𝑠) (1) 
𝑑𝐼(𝑠) 𝑑𝑥 = 𝑌(𝑠). 𝑉(𝑠) (2) 
The per unit length series impedance 𝑍(𝑠) ∈ ℂ 𝑁,𝑁 , and admittance 𝑌(𝑠) ∈ ℂ 𝑁,𝑁 , matrices are given by: 𝑍(𝑠) = 𝑅(𝑠) + 𝑠𝐿(𝑠) and : 𝑌(𝑠) = 𝐺(𝑠) + 𝑠𝐶(𝑠). And contains the per-unit length resistance 𝑅(𝑠), inductance 𝐿(𝑠), conductance 𝐺(𝑠) and capacitance.

Figure 1: Illustration of the current and voltage waves for a multiconductor

Taking into consideration the terminal conditions at both ends, the currents and voltages can be expressed as forward and backward-traveling waves as shown in Figure 1. Subscripts 𝑓 and 𝑏 indicate the forward and backward traveling waves. The currents and voltages at both ends can be expressed as:

𝐼 0 (𝑠) = 𝑌 𝑐 (𝑠)𝑉 0 (𝑠) -𝐻(𝑠)[𝑌 𝑐 (𝑠)𝑉 𝐿 (𝑠) + 𝐼 𝐿 (𝑠)] (3) 
𝐼 𝐿 (𝑠) = 𝑌 𝑐 (𝑠)𝑉 𝐿 (𝑠) -𝐻(𝑠)[𝑌 𝑐 (𝑠)𝑉 0 (𝑠) + 𝐼 0 (𝑠)]

Where 𝑌 𝑐 (𝑠) ∈ ℂ 𝑁,𝑁 and 𝐻(𝑠) ∈ ℂ 𝑁,𝑁 are matrices representing the characteristic admittance and the propagation function, respectively. 𝑌 𝑐 and 𝐻 being obtained by: 𝑌 𝑐 (𝑠) = 𝑍(𝑠) -1 √𝑍(𝑠)𝑌(𝑠)

(5)

𝐻 = 𝑒 -√𝑍(𝑠)𝑌(𝑠) 𝑙 (6) 
The backward traveling can be expressed as:

𝐼 𝑏,0 (𝑠) = 𝐻(𝑠)𝐼 𝑓,𝐿 (𝑠) = 𝐻(𝑠)[𝑌 𝑐 (𝑠)𝑉 𝐿 (𝑠) + 𝐼 𝐿 (𝑠)] (7) 
𝐼 𝐿 (𝑠) = 𝐻(𝑠)𝐼 𝑓,0 (𝑠) = 𝐻(𝑠)[𝑌 𝑐 (𝑠)𝑉 0 (𝑠) + 𝐼 0 (𝑠)] (8) 

Rational approximation in the ULM with RKFIT

In the ULM, 𝑌 𝑐 and 𝐻 are approximated using VFIT [START_REF] Morched | A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables[END_REF]. The rational approximations are used for time domain implementation in EMTP-type simulation tools [START_REF] Dommel | Electromagnetic Transients Program Reference Manual:(EMTP) Theory Book[END_REF].

A new rational approximation method has emerged recently, and it is based on the Rational Kylov fitting RKFIT [START_REF] Mouhaidali | Electromagnetic Transient Analysis of Transmission line based on rational Krylov approximation[END_REF]. This method is based on Rational Arnoldi Decomposition (RAD) for poles relocation. The used orthonormal RADs deliver a well-conditioned basis for the numerical linear algebra problems, and a more robust and faster convergent algorithm. The main difference between VFIT and RKFIT is the poles relocation method. Both methods solve a Least Square (LS) problem at each iteration, however VFIT uses a projection space in the partial fraction basis and RKFIT uses a projection space represented in discrete-orthogonal rational functions.

In this paper, a fitting procedure for 𝑌 𝑐 and 𝐻 is presented 1) Fitting the characteristic admittance:

The characteristic admittance 𝑌 𝑐 is easily fitted since it doesn't have resonance peaks. All the elements of 𝑌 𝑐 are fitted with the same set of poles expressed in the following form:

𝑌(𝑠) ≈ 𝑌 𝑐 𝑓𝑖𝑡𝑡𝑒𝑑 = ∑ 𝑅 𝑛 𝑠 -𝑎 𝑛 + 𝐷 𝑁 𝑛=1 (9) 
Where 𝑠 = 𝑗𝜔 in rad/s, the model order 𝑁; the poles 𝑎 𝑛 and residues 𝑅 𝑛 are either real or come in complex conjugate pairs; 𝐷 is a constant matrix.

2) Fitting the propagation function:

The approximation of the propagation function is more difficult since its elements contain propagation delays. The modal contributions of 𝐻 are calculated and a proper delay is assigned to each mode. The delay is calculated using the optimization technique proposed in [START_REF] Gustavsen | Time delay identification for transmission line modeling[END_REF]. The criterion proposed in [START_REF] Gustavsen | Time delay identification for transmission line modeling[END_REF] is used to group repetitive or close delays. Time delays are removed from the modal components and then fitted using RKFIT. The propagation function is then fitted using the poles from the modal approximation. The only remaining unknowns are the residues, and 𝐻 is approximated as:

𝐻(𝑠) ≈ 𝐻 𝑓𝑖𝑡𝑡𝑒𝑑 = ∑ ( ∑ 𝑅 𝑚,𝑖 𝑠 -𝑎 𝑚,𝑖 𝑁 𝑖 𝑚=1 ) 𝑒 (-𝑠𝜏 𝑖 ) 𝐾 𝑖 (10)
where 𝐾 is the number of grouped modes, 𝜏 𝑖 are the collapsed time delay, 𝑅 𝑚,𝑖 is the matrix of residues calculated for the corresponding poles 𝑎 𝑚,𝑖 of the grouped modes and 𝐻 𝑓𝑖𝑡𝑡𝑒𝑑 stands for the rational approximation of H considering the grouped modes.

Passivity

For a multi-port electrical network, the passivity is guaranteed if and only if its transfer admittance matrix 𝑌 𝑛 (𝑠) has a purely positive real part through the whole frequency range [START_REF] Grivet-Talocia | Passive macromodeling: Theory and applications[END_REF]. The transfer function in terms of the cable model parameters is given by [START_REF] Grivet-Talocia | Passive macromodeling: Theory and applications[END_REF]. 𝑌 𝑛 (𝑠) is positive definite if and only if its Hermitian part 𝑌 𝐻 (𝑠) has only positive eigenvalues:

𝑒𝑖𝑔(𝑌 𝐻 (𝑠)) = 𝑒𝑖𝑔(𝑌 𝑛 (𝑠) + 𝑌 𝑛 𝑇 (𝑠)) (11) 
Where 𝑌 𝑛 𝑇 (𝑠) is the conjugate of 𝑌 𝑛 .

Advantages of the new fitting approach

The proposed fitting approach has several advantages over the fitting approach implemented in the EMT software:

• The proposed approach delivers accurate fitting results with low RMS error and guarantees convergence of the algorithm.

•

The model order is automatically calculated by the RKFIT algorithm. The user only defines the RMS fitting error tolerance.

•

The user requires no a priori knowledge of the pole location. Poles can be equal to the ieee arithmetic representation for positive infinity, represented in Matlab by the value inf.

•

An automated order reduction procedure is implemented, and it takes place if an RMS fitting error below the tolerance is achieved [START_REF] Berljafa | Generalized rational Krylov decompositions with an application to rational approximation[END_REF].

TIME DOMAIN IMPLEMENTATION

Let's consider a system in the frequency domain, the input to the system is denoted 𝑈(𝑠), the output 𝑌(𝑠) and 𝐹(𝑠) the transfer function, we can write

𝑌(𝑠) = 𝐹(𝑠)𝑈(𝑠) (12) 
In the time domain, the response is obtained via the convolution integral:

𝑦(𝑡) = ∫ 𝑓(𝑡 -𝜏)𝑢(𝜏)𝑑𝜏 +∞ -∞ = 𝑓(𝑡) * 𝑢(𝑡) (13) 
Assuming that the system is causal and the excitation 𝑓(𝑡) = 0 for 𝑡 < 0, the convolution is reduced to:

𝑦(𝑡) = ∫ 𝑓(𝑡 -𝜏)𝑢(𝜏)𝑑𝜏 𝑡 0 (14) 
It is possible to derive a particularly efficient implementation of the convolution in equation ( 13) that provides the output 𝑦(𝑡) in terms of the input 𝑢(𝑡). Let's consider the transfer function 𝐹(𝑠) in the following form:

𝐹(𝑠) = 𝑅 𝑠 -𝑎 ( 15 
)
Where 𝑅 is the residue, 𝑎 a pole and 𝑠 the angular frequency. The impulse response of the system is:

𝑓(𝑡) = ℒ -1 𝐹(𝑠) = 𝑅𝑒 𝑎𝑡 𝜃(𝑡) (16) 
So that the convolution in equation ( 16) simplifies to:

𝑦(𝑡) = 𝑅𝑥(𝑡) with 𝑥(𝑡) = ∫ 𝑒 𝑎(𝑡-𝜏) 𝑢(𝜏)𝑑𝜏 𝑡 0 (17) 
Where 𝑥(𝑡) is an auxiliary state variable. Now we will consider an uniform discretization of the time axis with a fixed time step ∆𝑡, leading to discrete time point 𝑡 𝑘 = 𝑘∆𝑡 for 𝑘 = 0,• • • , 𝐾. We calculate 𝑥(𝑡) for 𝑡 = 𝑡 𝑘 and we perform the following derivation:

𝑥(𝑡 𝑘 ) = ∫ 𝑒 𝑎(𝑡 𝑘 -𝜏) 𝑢(𝜏)𝑑𝜏 𝑡 𝑘 0 = 𝑒 𝑎Δ𝑡 𝑥(𝑡 𝑘-1 ) ∫ 𝑒 𝑎(𝑡 𝑘 -𝜏) 𝑢(𝜏)𝑑𝜏 𝑡 𝑘 𝑡 𝑘-1 (18) 
This expression shows that the state time 𝑡 𝑘 can be expressed in a recursive form, as a function of the same state at time 𝑡 𝑘-1 , plus a term that accumulates the contribution from the input 𝑢(𝜏), restricted to the interval [𝑡 𝑘 -1, 𝑡 𝑘 ], and suitably weighted by the term 𝑒 𝑎(𝑡 𝑘 -𝜏) . We still must compute the integral in equation ( 18).

Semlyen and Dabuleanu proposed in [START_REF] Semlyen | Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions[END_REF] a linear approximation on the input. Assuming that the input signal has slow variations in [𝑡 𝑘 -1, 𝑡 𝑘 ]:

𝑢(𝜏) ≈ 𝑢(𝑡 𝑘-1 )(𝑡 𝑘 -𝜏) + 𝑢(𝑡 𝑘 )(𝜏 -𝑡 𝑘-1 ) Δ𝑡 ( 19 
)
Substituting this approximation in equation ( 18)

𝑥 𝑘 = 𝑒 𝑎Δ𝑡 𝑥 𝑘-1 + [1 + (𝑎Δ𝑡 -1)𝑒 𝑎Δ𝑡 ]𝑢 𝑘-1 + (-1 -𝑎Δ𝑡 + 𝑒 𝑎Δ𝑡 )𝑢 𝑘 𝑎 2 Δ𝑡 ( 20 
)
This formulation is usually denoted as recursive convolution [START_REF] Semlyen | Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions[END_REF]. There are other various possible approximations depending on the discretization rule. One of the other main methods is the trapezoidal rule. All the discretization schemes can be collected in the compact form:

{ 𝑥 𝑘 = 𝛼𝑥 𝑘-1 + 𝛽 0 𝑢 𝑘 + 𝛽 1 𝑢 𝑘-1 𝑦 𝑘 = 𝑅𝑥 𝑘 (21)
Where 𝛼, 𝛽 0,1 depend on the adopted discretization strategy:

Table 1: Integration coefficient formulas

Recursive convolution

Trapezoidal rule

𝛼 = 𝑒 𝑎Δ𝑡 𝛼 = 1 + 𝑎Δ𝑡 2 1 - 𝑎Δ𝑡 2 𝛽 0 = - 1 𝑎 (1 + 1 -𝛼 𝑎Δ𝑡 ) 𝛽 0 = Δ𝑡 2 1 - 𝑎Δ𝑡 2 𝛽 1 = - 1 𝑎 ( 𝛼 -1 𝑎Δ𝑡 -𝛼) 𝛽 0 = Δ𝑡 2 1 - 𝑎Δ𝑡 2

Transmission line time domain solution

Let's consider the lossy transmission line with frequencydependent characteristic admittance 𝑌 𝑐 (𝑠) and propagation function 𝐻(𝑠), denoting their (exact) inverse Laplace transform as 𝑦 𝑐 (𝑡) and ℎ(𝑡), respectively. Equations ( 7) and [START_REF] Semlyen | Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions[END_REF] are casted in the time domain through the following convolutions:

𝑖 0 = 𝑦 𝑐 * 𝑣 0 -ℎ * (𝑖 𝐿 + 𝑦 𝑐 * 𝑣 𝐿 ) (22) 
𝑖 𝐿 = 𝑦 𝑐 * 𝑣 𝐿 -ℎ * (𝑖 0 + 𝑦 𝑐 * 𝑣 0 ) (23) 
It is possible to rewrite 𝑖 0 as:

𝑖 0 = 𝑖 𝑠ℎ,0 -𝑖 𝑏,0 (24) 
Where:

𝑖 𝑠ℎ,0 = 𝑦 𝑐 * 𝑣 0 (25) 
𝑖 𝑏,0 = ℎ * 𝑖 𝑓,𝐿 = ℎ * (𝑖 𝐿 + 𝑦 𝑐 * 𝑣 𝐿 )

By exchanging the subscripts 0 and 𝐿 in equations ( 15) and ( 16), the corresponding set of equations for 𝑖 𝐿 can be obtained. The time domain equations are interfaced with Electromagnetic Transient (EMT) simulation software using the Norton equivalent in Figure 2.

Figure 2:Norton equivalent of a transmission system Time domain approach

For un transmission line with a core and screen conductors, the current and voltages at one end are expressed as follows

[ 𝐼 0 𝑐𝑜𝑟𝑒 𝐼 0 𝑠𝑐𝑟𝑒𝑒𝑛 ] = [ 𝑌 𝑐 1,1 𝑌 𝑐 1,2 𝑌 𝑐 1,2 𝑌 𝑐 2,2 ] [ 𝑉 0 𝑐𝑜𝑟𝑒 𝑉 0 𝑠𝑐𝑟𝑒𝑒𝑛 ] + [ 𝐼 𝑏,0 𝑐𝑜𝑟𝑒 𝐼 𝑏,0 𝑠𝑐𝑟𝑒𝑒𝑛 ] (27) 
Where 

𝐼 𝑠ℎ 0 𝑐𝑜𝑟𝑒 = 𝑌 𝑐
Equation ( 27) is the matrix representation of a two port network, the equivalent electrical circuit is shown in Figure 3.

Figure 3: Two port representation of the transmission line sending end

If a passive two-port can be expressed with admittance parameters and the admittance matrices are symmetrical by definition, then that two port is equivalent to a PI representation as shown in Figure 4. Where:

𝑌 𝑥 = 1 (𝑌 𝑐 1,1 + 𝑌 𝑐 1,2 ) (30) 
𝑌 𝑥 = 1 (𝑌 𝑐 2,2 + 𝑌 𝑐 1,2 ) (31) 
𝑌 𝑍 = 1 𝑌 𝑐 1,2 (32) 
The full circuit of a transmission line with a core and screen conductors is represented in Figure 5. 

NUMERICAL RESULTS

The proposed implementation is used with two underground transmission lines and the results are compared with the corresponding results from a commercial transient simulation software (EMTP).

In all simulations, the characteristic admittance and the propagation function matrices are calculated for the frequency range from 0,01𝐻𝑧 up to 1𝑀𝐻𝑧 with a sampling rate of logarithmically spaced 10 points/ decade. Let's consider 2 HVDC cables installed as shown in Figure 6. The geometrical and materials proprieties of the cables are listed in Table 2.

The transient simulation is done in Matlab/Simulink. The short circuited cable end is presented in Figure 7, where the first core is energized with a unit step at 𝑡 = 0. 

CONCLUSIONS

In conclusion, this paper has presented an efficient and accurate version of the Universal Line Model (ULM) integrated into a graphical programming environment. The new model is based on an electrical circuit representation of the shunt line admittance and utilizes the Rational Krylov technique to improve its efficiency.

The application examples presented in this paper demonstrate the model's performance and its ability to provide results comparable to those obtained from electromagnetic transient software.

The improved ULM presented in this paper is a valuable contribution to the field of time domain transient simulations, providing an effective tool for engineers and researchers working in this area.
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Figure 7 :Figure 8 :Figure 8

 788 Figure 7: Short circuited cable end
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  1,1 𝑉 0 𝑐𝑜𝑟𝑒 + 𝑌 𝑐 1,2 𝑉 0 𝑠𝑐𝑟𝑒𝑒𝑛 (28) 𝐼 𝑠ℎ 0 𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑌 𝑐 1,2 𝑉 0 𝑐𝑜𝑟𝑒 + 𝑌 𝑐 2,2 𝑉 0 𝑠𝑐𝑟𝑒𝑒𝑛