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ABSTRACT

Thanks to the rise of self-supervised learning, automatic
speech recognition (ASR) systems now achieve near hu-
man performance on a wide variety of datasets. However,
they still lack generalization capability and are not robust to
domain shifts like accent variations. In this work, we use
speech audio representing four different French accents to
create fine-tuning datasets that improve the robustness of
pre-trained ASR models. By incorporating various accents in
the training set, we obtain both in-domain and out-of-domain
improvements. Our numerical experiments show that we can
reduce error rates by up to 25% (relative) on African and
Belgian accents compared to single-domain training while
keeping a good performance on standard French.

Index Terms— automatic speech recognition, multi-
domain training, accented speech, self-supervised learning,
domain shift

1. INTRODUCTION AND RELATED WORK

In recent years, self-supervised learning (SSL) has proven
useful in a variety of domains, including computer vision,
NLP, and speech processing. For the latter, SSL is used to
leverage huge amounts of unannotated speech to build pow-
erful speech representations that can be used to tackle down-
stream tasks like automatic speech recognition (ASR). Sys-
tems pre-trained with an SSL approach and then fine-tuned
on a target domain reach state-of-the-art performance. How-
ever, there is growing evidence that these systems are not ro-
bust to domain shifts [1, 2]. For example, a model fine-tuned
on speech uttered with accent A is likely to have reduced per-
formance when evaluated on accent B, although the language
is the same in both cases. It is known that adding out-of-
domain data to the training dataset improves robustness to
domain shifts [3]; however, it is often the case that out-of-
domain data is scarce, making it hard to gather amounts suf-
ficient for training. Regarding the peculiar case of accented
speech, the vast majority of corpora consist of speech spoken
with the dominant accent.

In order to tackle the lack of accented data, we can use
data augmentation to artificially increase the amount of train-
ing data. There exist several ways to do this, for instance,

Corpus Duration # Utt. # Speakers Accent
CV [9] 56:11 46991 2897 None
AAF [10] 13:20 11344 228 African1

CaFE [11] 1:09 936 12 Quebec
CFPB [12] 4:07 6132 9 Belgian

Table 1. Statistics for the datasets (duration in hours)

it is possible to add noise to the training data, modify voice
speed, or transform voice by manipulating the vocal-source
and vocal-tract characteristics [4]. Other approaches include
applying speaker normalization or anonymization methods in
a reverse manner, for example using Vocal Tract Length Per-
turbation [5] or voice conversion using X-vectors [6].

There exist several methods for reducing the effects of do-
main shifting. It has been shown that adding new domains to
the pre-training dataset improves the model’s robustness [3].
In order to avoid expensive retraining of large SSL mod-
els, Fan et al. introduce DRAFT [7], a method for learning
domain-specific knowledge using residual adapters. Viglino
et al. use multi-task learning and accents embeddings [8] to
tackle accented speech recognition. In this work, we learn
domain-specific knowledge during the fine-tuning stage by
carefully designing multi-domain training sets.

2. EXPERIMENTAL CONTEXT

2.1. Datasets

We use four different datasets of French speech represent-
ing different accents. All the datasets are supplied with tran-
scripts. Their main statistics are reported in Table 1.
CV (Common Voice [9]) is a large crowd-sourced multilin-
gual corpus of read speech. We use the French subset of the
CommonVoice 3 database. We use the official splits of the
dataset - train: 31h, dev: 12h, test: 13h. This is our reference
corpus for (accent-free) French speech.
AAF (African Accented French [10]) is a corpus of read
speech. Speakers originate from five African countries
(Cameroon, Chad, Congo, Gabon, and Niger) where French

1While improper, we re-use the term African accent to refer to the mix
of accents from Cameroon, Chad, Congo, Gabon, and Niger which compose
the dataset.



Hours 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 100% FullCV
CV 0 0.89 2.00 3.42 5.32 7.97 11.96 18.6 30.87 30.87 30.87 30.87 56.19
AAF 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 3.99 1.99 0 7.97
Total 7.97 8.86 9.97 11.39 13.29 15.94 19.93 26.57 38.84 34.86 32.86 30.87 64.16
#Utt. 6780 7556 8516 9831 11481 13678 17068 22890 33580 30186 28553 26800 53771
#Spk. 140 151 166 188 210 248 300 382 574 508 474 434 3037

Table 2. Statistics for the training sets of our first experiment. Percentages indicate the proportion of CV data in the training
set. FullCV is a dataset containing AAF together with all the splits of CV.

is (one of) the official language(s), however, their accent is
clearly audible. We split this dataset as such - train: 8h, dev:
3h, test: 3h. This is our target corpus, that is, we want to
obtain the best performance on this dataset.
CaFE (Canadian French Emotional [11]) is a small corpus
of acted emotional speech. Speakers have a distinguishing
Québécois accent. Due to the low amount of audio of this
dataset, we do not split it and use it solely for testing.
CFPB (Corpus de Français Parlé à Bruxelles (Corpus of
French as Spoken in Brussels) [12]) is a small corpus of in-
terviews with Brussels speakers with a Belgian accent. We
split this dataset as such - train: 3h, test: 1h.

2.2. Model

We use the following wav2vec 2.0 models from the LeBench-
mark [13] initiative: LB-7K-base and LB-7K-large, which
were pre-trained on 7,739 hours of French audio. The base
variant refers to the standard model architecture from [14]
that has 95 million parameters, while the large refers to their
larger architecture that presents greater capacity (317 million
parameters). We use the LB-7K variants of the models since
previous work [15] has shown that for this task, models pre-
trained using the greater quantity of audio performed best.

Each pre-trained wav2vec 2.0 model acts as a speech en-
coder, which is fine-tuned for the ASR task together with an
additional feed-forward network. This head network consists
of three linear layers with 768 or 1,024 neurons for a base or
large model, respectively. Each linear layer is followed by
batch normalization and a Leaky ReLU [16] activation func-
tion. We use dropout with p = 0.15 between each linear
layer. At last, a final linear layer projects the output into to-
ken space, and log-softmax is applied to obtain probabilities
of each token.

2.3. Training

We use the SpeechBrain [17] toolkit for all our experi-
ments. All our models are fine-tuned during 50 epochs using
the CTC loss. Adam [18] and Adadelta [19] optimizers with
learning rates 10−4 and 1.0 are used to update the weights of
the wav2vec 2.0 model and the additional top layers respec-
tively. Learning rates are reduced at each epoch in which the
validation loss does not improve. During training, we apply

on-the-fly data augmentation using the SpeechBrain time-
domain approximation of the SpecAugment [20] algorithm:
it disrupts audio speed, and randomly drops chunks of audio
and frequency bands.

For fine-tuning we use several different training sets,
which are formed using varying amounts of audio data from
one or more speech domains (accents). We detail the for-
mation of these training sets in section 3. We also use a
validation set (dev set) for early stopping; this set is com-
posed of 5 hours of audio, evenly distributed between CV and
AAF. We believe that using such a validation set favors the
selection of a model with good performance in both domains.
Note that we take care of separating by speaker when creating
splits of the data; this way validation and testing are always
done on unknown speakers.

2.4. Evaluation

We evaluate our trained models on four test sets, which stay
identical for all the experiments: CV, AAF, CFPB (test splits),
and CaFE (whole set). We use the Word Error Rate (WER)
as our test metric; lower is better. Note that we do not use
any language model to avoid introducing a bias during evalu-
ation.

3. MULTI-DOMAIN DATA AUGMENTATION

3.1. Data Augmentation using McAdams coefficient

We use data augmentation to increase the amount of accented
training data. Our approach consists of the alteration of the
McAdams coefficient [21], and is described in [22] in the con-
text of speaker anonymization. It is based upon simple signal
processing techniques and is particularly relevant because it
is simple to implement and does not require any additional
training data. By applying the McAdams transformation to
a speech signal with different McAdams coefficients α, we
generate new signals with the same transcription but uttered
by a pseudo voice with a different timbre.

We use values of α ranging from 0.7 to 1 with a step of
0.1 to generate the augmented dataset; note that using α = 1
does not change the sample. We do not use values of α ≤ 0.6
because it deteriorates too much the intelligibility. Applying



this augmentation to AAF results in a dataset that is 4× big-
ger than the original set, leading to a total of ≃ 32 hours of
speech, matching the audio quantity of CV. We denote this
augmented dataset AAFaug.

3.2. Multi-domain mix of datasets

We want to study the impact of multi-accent fine-tuning on
the recognition of individual accents. To do so we design
several experiments which consist of varying the number of
domains and their associated quantity of speech data.

In our first experiment, we create train sets using various
amounts of CV and AAF. Starting with a set containing only
AAF, we keep increasing its size by including increasingly
larger subsets of CV. In a reverse manner, we also create train
sets by starting with CV and progressively adding AAF. We
denote these sets CV - x%, where x represents the propor-
tion of CV data in the set. In addition, we create a FullCV
train set consisting of the whole CV dataset (train, dev, test)
together with the AAF train split. See Table 2 for details on
the individual training sets.

In a second experiment, we select the best train sets from
experiment 1 (i.e. the sets which led to the lowest WER) and
combine them with either CaFE (whole) or CFPB (train split).
This leads to slightly larger train sets which have three accents
instead of two.

In our third and last experiment, we repeat experiment 1
using a fixed number of hours in the training set. To do so, we
make use of the augmented dataset AAFaug 3.1. Similarly
to experiment 1, we define 11 train sets, starting with a 31h
subset of AAFaug, and gradually replacing more and more
AAFaug data by CV data with a 10% proportion increment,
ending with the full CV train set. Finally, we create two larger
training sets using the augmented data, namely CV ∪ AAFaug
and FullCV ∪ AAFaug.

4. RESULTS AND DISCUSSION

In this section, we summarize and analyze the results of our
experiments. Numerical results are reported in Table 3; for
the sake of brevity, we only list the best training sets. All
models use the Large architecture unless specified otherwise.

4.1. Experiment 1: Mixing two domains

We study the impact of mixing two domains during training
on performance. We observe U-shaped curves of WER with
respect to CV proportion in the training set, meaning that
WER first decreases when adding CV to the mix (from 0
to 80%), then slightly increases again when removing AAF
(from 80 to 100%). Going from one to two domains causes
both in-domain and out-of-domain improvements. When
adding a new domain B to a train set containing only domain
A, not only do we improve on domain B as expected, but we
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Fig. 1. A representation of the performance trade-off between
CV and AAF. Each point represents a model fine-tuned on
a different train set. All models are Large unless specified
otherwise. Details on the experiments can be found in sec-
tion 3.2.

also improve on domain A and on unseen domains C and D
as well. We obtain our best results on CV (9.4 WER) and on
CaFE (36.8 WER) using CV 90% and CV 50% respectively,
while also reaching competitive performance on the other test
sets compared to the baselines. Remarkably, training on a
CV/AAF mixed set allows us to reach WER of 34.6 and 36.8
on CFPB and CaFE respectively, which is a lot better than
the scores reached when training on CV or AAF alone, see
table 3.
We observe similar trends on base models although with sig-
nificantly higher WER (+40% on average relative to large
models). However, we see lesser improvements from the do-
main augmentation compared to large models. We believe the
base model is less able to take advantage of multi-domain due
to its reduced capacity.

It should be noted that the LB-7K models were pre-
trained using several different corpora, including AAF and
CaFE (see [13]). However, this does not prevent the catas-
trophic forgetting phenomenon which happens during fine-
tuning. For instance, the LB-7K-large model fine-tuned on
CV scores 18.7 on AAF, despite AAF being included in the
pre-training data. This highlights the importance of mixing
domains during fine-tuning.

4.2. Experiment 2: Mixing three domains

We select the five best train sets from experiment 1, which are
CV 0% (i.e. AAF only), CV 80% (i.e. CV ∪ AAF), CV 90%,
CV 100% (i.e. CV only) and FullCV. When adding CaFE to
those sets, we observe no significant changes on CV or AAF,



as we can see in figure 1. We observe the same trend with
CFPB; however, its addition results in a massive boost on the
CFPB test set (-30% WER). The best performance on CFPB
is reached on the train set CV 90% ∪ CFPB, with a WER of
24.8 and very good scores on CV and AAF.
Moreover, the best average WER on all four test sets is
reached on the train set CV 80% ∪ CFPB, see Table 3, last
row. This shows the benefits of training on multiple domains,
as we can leverage speech from other domains to improve on
each domain with respect to the single-domain baseline.
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Fig. 2. Graph of the WER with respect to the CV proportion.
Plain and dashed lines correspond to experiments 1 and 3 re-
spectively (without or with augmentation).

4.3. Experiment 3: using data augmentation

We repeat experiment 1 using an augmented AAF dataset.
Results are shown in figure 2. We clearly see the advantage of
using the augmented train set: performance improves on CV
and AAF while staying nearly identical on CaFE and CFPB.
This improvement is also visible in figure 1, bottom-left cor-
ner. In addition, this figure highlights the existing trade-off
between error rates on different domains. When training us-
ing a fixed number of hours, an improvement on one domain
usually comes at the expense of a (possibly slight) degrada-
tion in another domain.
The best performance on AAF among these 31h sets is
reached using CV 10% (which comprises 28h of African
speech) with a WER of 5.7, but its performance is poor on
CV (16.7 WER). However, if we train on CV ∪ AAFaug (63h
of speech), we obtain a WER of 5.3 and 9.7 on AAF and CV
respectively (see ”top result” in figure 2), which is our best
score on African accent.

These results on augmentation are encouraging: thanks to
it, we are able to significantly reduce the WER on African

Train set CV AAF CFPB CaFE
CV 9.5 18.71 35.86 38.68
AAF 38.2 7.32 52.78 62.34
CFPB 45.1 44.28 32.59 67.41
CV 90% 9.37 8.25 34.98 40.77
CV 100% ∪ AAFaug 9.69 5.29 37.2 44.69
CV 90% ∪ CFPB 9.42 8.32 24.79 41.77
CV 50% 12.91 6.75 37.27 36.76
CV 80% ∪ CFPB 9.54 6.42 25.21 41.09

Table 3. Results on the different test sets. Each line corre-
sponds to a different training set. Rows contain, in that order:
single-domain train sets; best train sets for each test set; train
set with the best average score. The best results in each col-
umn are shown in bold

accent (−14% WER, relative) compared to the best result
without augmentation. However, the augmentation method
we describe (which is based on the variation of the McAdams
coefficient) may not be particularly relevant to the task. In-
deed, we ran an ablation study, training using only on-the-
fly SpecAugment on the same quantity of data, and obtained
nearly the same results. Further investigation is needed to
assess more precisely the impact of the different augmen-
tation methods on ASR performance, and the relevance of
McAdams pseudo-voices.

Finally, we discuss the impact of using a substantially
larger CV domain for training, forming the FullCV family
of train sets, which are the largest ones. Models trained on
these sets tend to perform better on average on CaFE (−6.1%)
and CFPB (−1.4%) compared to those trained on the sec-
ond biggest sets, but also show a performance degradation on
AAF (+1.7%). Besides, no model trained on FullCV sets has
reached top performance on any of the test sets. This is likely
due to the discrepancies between the accents in the training
data, and indicates that blindly maximizing the amount of
training data may not always be the best choice for minimiz-
ing WER, neither across domains nor for a single domain.

5. CONCLUSION

Recognition of accented speech remains a challenging task.
In this work, we showed the positive influence of using multi-
domain fine-tuning datasets both on in-domain and out-of-
domain accents. We experimented with various ways of com-
bining training sets and achieved remarkable gains on our
evaluation accents compared to single-domain baselines. We
leave as future work the collection and evaluation of new ac-
cents, as well as the experimentation of new methods for gen-
erating accented speech for low-resource accents.



6. REFERENCES

[1] Wei Ning Hsu et al., “Robust wav2vec 2.0: Analyzing
domain shift in self-supervised pre-training,” in Pro-
ceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH,
2021, vol. 3.

[2] Juan Zuluaga-Gomez et al., “How does pre-trained
wav2vec 2.0 perform on domain-shifted asr? an exten-
sive benchmark on air traffic control communications,”
in 2022 IEEE Spoken Language Technology Workshop
(SLT), 2023, pp. 205–212.

[3] Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap,
Paden Tomasello, Jacob Kahn, Gilad Avidov, Ronan
Collobert, and Gabriel Synnaeve, “Rethinking Evalu-
ation in ASR: Are Our Models Robust Enough?,” in
Proc. Interspeech 2021, 2021, pp. 311–315.

[4] Takashi Fukuda, Raul Fernandez, Andrew Rosenberg,
Samuel Thomas, Bhuvana Ramabhadran, Alexander
Sorin, and Gakuto Kurata, “Data augmentation im-
proves recognition of foreign accented speech,” in Pro-
ceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH.
2018, vol. 2018-September, pp. 2409–2413, ISCA.

[5] Navdeep Jaitly and Geoffrey E Hinton, “Vocal tract
length perturbation (vtlp) improves speech recognition,”
Proceedings of the 30 th International Conference on
Machine Learning, vol. 90, 2013.

[6] Fuming Fang, Xin Wang, Junichi Yamagishi, I. Echizen,
Massimiliano Todisco, Nicholas Evans, and Jean-
François Bonastre, “Speaker anonymization using x-
vector and neural waveform models,” in Proceedings of
the 10th ISCA Speech Synthesis Workshop, 09 2019, pp.
155–160.

[7] Ruchao Fan and Abeer Alwan, “DRAFT: A novel
framework to reduce domain shifting in self-supervised
learning and its application to children’s ASR,” in Pro-
ceedings of the 23th Interspeech Conference, 09 2022,
pp. 4900–4904.

[8] Thibault Viglino, Petr Motlicek, and Milos Cernak,
“End-to-End Accented Speech Recognition,” in Proc.
Interspeech 2019, 2019, pp. 2140–2144.

[9] Rosana Ardila et al., “Common voice: A massively-
multilingual speech corpus,” in Proceedings of the
12th Conference on Language Resources and Evalua-
tion (LREC 2020), 2020, pp. 4211–4215.

[10] “African accented french,” https://www.
openslr.org/57/, Accessed : 14-10-2022.

[11] Philippe Gournay, Olivier Lahaie, and R. Lefebvre, “A
canadian french emotional speech dataset,” in Proceed-
ings of the 9th ACM Multimedia Systems Conference, 06
2018, pp. 399–402.

[12] Anne Dister and Emmanuelle Labeau, “Le corpus
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