
HAL Id: hal-04163507
https://hal.science/hal-04163507

Submitted on 21 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Computer-aided shape features extraction and
regression models for predicting the ascending aortic

aneurysm growth rate
Leonardo Geronzi, Antonio Martinez-Sanchez, Michel Rochette, Kexin Yan,

Aline Bel-Brunon, Pascal Haigron, Pierre Escrig, Jacques Tomasi, Jane
Morgan-Daniel, Alain Lalande, et al.

To cite this version:
Leonardo Geronzi, Antonio Martinez-Sanchez, Michel Rochette, Kexin Yan, Aline Bel-Brunon, et
al.. Computer-aided shape features extraction and regression models for predicting the ascend-
ing aortic aneurysm growth rate. Computers in Biology and Medicine, 2023, 162, pp.107052.
�10.1016/j.compbiomed.2023.107052�. �hal-04163507�

https://hal.science/hal-04163507
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Journal Pre-proof

Revised manuscript (clean) Click here to access/download;Revised manuscript

Click here to vi
Jo
ur

na
l P

re
-p

ro
ofComputer-aided shape features extraction and

regression models for predicting the ascending aortic
aneurysm growth rate

Leonardo Geronzia,b,∗, Antonio Martineza,b, Michel Rochetteb, Kexin Yanb,c,
Aline Bel-Brunonc, Pascal Haigrond, Pierre Escrigd, Jacques Tomasid, Morgan

Danield, Alain Lalandee,f, Siyu Line,f, Diana Marcela Marin-Castrillone,f,
Olivier Bouchotg, Jean Porterieh, Pier Paolo Valentinia, Marco Evangelos

Biancolinia

aUniversity of Rome Tor Vergata, Department of Enterprise Engineering “Mario
Lucertini”, Rome, Italy

bAnsys France, Villeurbanne, France
cUniversity of Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
dUniversity of Rennes, CHU Rennes, Inserm, LTSI – UMR 1099, F-35000, Rennes, France

eICMUB Laboratory, CNRS 6302, University of Burgundy, 21078 Dijon, France
fMedical Imaging Department, University Hospital of Dijon, Dijon, France

gDepartment of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon,
Dijon, France

hCardiac Surgery Department, Rangueil University Hospital, Toulouse, France

Abstract

Objective: ascending aortic aneurysm growth prediction is still challenging in

clinics. In this study, we evaluate and compare the ability of local and global

shape features to predict ascending aortic aneurysm growth.

Material and methods: 70 patients with aneurysm, for which two 3D acqui-

sitions were available, are included. Following segmentation, three local shape

features are computed: (1) the ratio between maximum diameter and length

of the ascending aorta centerline, (2) the ratio between the length of external

and internal lines on the ascending aorta and (3) the tortuosity of the ascending

tract. By exploiting longitudinal data, the aneurysm growth rate is derived.

Using radial basis function mesh morphing, iso-topological surface meshes are

created. Statistical shape analysis is performed through unsupervised princi-

pal component analysis (PCA) and supervised partial least squares (PLS). Two
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oftypes of global shape features are identified: three PCA-derived and three PLS-

based shape modes. Three regression models are set for growth prediction: two

based on gaussian support vector machine using local and PCA-derived global

shape features; the third is a PLS linear regression model based on the related

global shape features. The prediction results are assessed and the aortic shapes

most prone to growth are identified.

Results: the prediction root mean square error from leave-one-out cross-

validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for

local, PCA-based and PLS-derived shape features, respectively. Aneurysms

close to the root with a large initial diameter report faster growth.

Conclusion: global shape features might provide an important contribution

for predicting the aneurysm growth.

Keywords: Ascending aortic aneurysm, growth prediction, shape

features, regression

1. Introduction

The ascending aortic aneurysm (AsAA) represents a dangerous and poten-

tially life-threatening condition consisting in a permanent dilatation of the aortic

wall [1]. If left untreated, the aneurysm can continue to grow and potentially

burst, leading to severe bleeding and even death [2]. The risk associated with5

AsAA is currently mainly determined by assessing the maximum diameter of the

aorta from imaging techniques [3]. According to the medical guidelines, when

the AsAA reaches a diameter of 50 mm, surgical repair should be performed [4].

To date, however, the use of the diameter alone as a predictor of complications

has proven insufficient [5] and an accurate assessment of the patient-specific risk10

of rupture is still missing. Thus, there is a strong need for new risk evaluation

strategies that take into account additional clinical parameters and biomarkers

for the AsAA [6]. Anatomy seems to play an important role in both diagnosis

and therapy of the pathology: shape alterations, in fact, often cause functional

impairments which in turn further accentuate anatomical abnormalities [7].15
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ofThe necessity of conducting longitudinal studies to follow the progression of

cardiac diseases has already been discussed in literature [8]. In recent years, a

strong contribution to the development of prediction methods has been provided

by machine learning techniques [9, 10].

In this field, most research focused on the abdominal aorta [11, 12]. In20

predicting the abdominal aortic aneurysm growth, automatic methods to extract

the diameter from three-dimensional imaging such as the maximally inscribed

sphere method have already been developed [13]. The importance of considering

the vessel shape for predicting the aneurysm evolution has been discussed in

literature [14, 15]. Shum et al. [16] described a set of classification methods25

based on local geometric features and wall thickness to identify patients at risk

of abdominal aortic aneurysm rupture. Zhang et al. [17] proposed a predictive

model to estimate the abdominal aortic aneurysm progression based on Growth

and Remodelling (G&R) approaches and able to quantify the uncertainty related

to the growth prediction. Jiang et al. [18] used deep learning methods and G&R30

techniques to predict the aneurysm diameter assessed by maximally inscribed

sphere methods. Do et al. [19] developed a Dynamical Gaussian Process Implicit

Surface approach to predict the evolution of abdominal aortic aneurysms.

Regarding the thoracic aorta, Sophocleous et al. [20] investigated the asso-

ciations between morphological features and cardiovascular function in patients35

affected by aortic coarctation and with bicuspid aortic valve. The importance

of predicting post-operative risks related to aortic surgery was described by Ren

et al. [21]. In [22], a classifier based on the curvature of the thoracic aorta was

proposed to evaluate the risk of rupture.

The 3D information related to the global shape derived from the segmented40

images can be exploited using statistical shape analysis (SSA) [23], a mathe-

matical approach that models the shape variation of an anatomy of interest in

a population [24]. This technique includes statistical shape modelling (SSM),

a method to represent the shape probability distribution by a mean shape and

modes describing the shape variations [25]. Principal component analysis (PCA)45

is usually the unsupervised technique used to extract the linearly independent
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datasets containing the same number of points. Therefore, when working with

computational grids, iso-topological meshes (i.e. having the same number of

nodes and the same connectivity) are required. To this end, radial basis func-50

tion (RBF) mesh morphing can be used to adapt a reference mesh to a new

patient’s anatomy [26, 27]. SSM has been widely used in literature for many

medical purposes [28, 29, 30, 31]. A shape-based framework to identify diseased

or healthy anatomical structures was described by Durrleman et al. [32]. Bruse

et al. performed hierarchical clustering on a set of aortic segmentations and55

on the reduced PCA-derived shapes to replicate the diagnoses given by clinical

experts [33]. An alternative method to PCA for performing SSA is partial least

squares (PLS) analysis. PLS is a supervised statistical method used to analyze

the relationship between two sets of variables, one set of predictor variables and

one set of response variables [34]. It was used and compared with PCA to pre-60

dict the risk of aortic dissection [35], showing superior capabilities in separating

patients who will experience dissection and patients who will not. Moreover,

it has been used to assess the risk of myocardial infarction and predict cardiac

remodelling [36, 37, 38].

The possibility of combining shape modes and regression models to predict65

the risk of AsAA surgery was already presented by Cosentino et al. [39]. Liang

et al. [40] used regression methods combined with machine learning models to

investigate the relationship between shape features of the thoracic aorta and

rupture risk previously derived from numerical simulation. Meyrignac et al.

[41] combined abdominal aortic lumen volume and parameters derived from70

numerical simulation such as wall shear stress (WSS) with regression models in

order to predict the abdominal aneurysm growth.

In this paper, using the geometric decomposition techniques presented in our

previous work [42], we first derive a set of local shape features using a more ex-

tensive dataset than the one previously exploited. After, we perform statistical75

shape analysis to extract global shape features from principal component anal-

ysis and partial least squares. Local shape features are geometric measurements

4
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shape features describe the overall shape and dimension of the aneurysm and are

extracted using all information related to the studied population. Finally, we80

apply regression methods with the aim of directly inferring the ascending aortic

aneurysm growth rate based on the information derived from the previously

computed shape features.

2. Materials and Methods

Figure 1: Pipeline of the full procedure to assess the growth rate from local and global shape

features.

The principal purpose of this paper is to compare the prediction perfor-85

mances of regression techniques applied to assess the ascending aortic aneurysm

growth rate through local or global shape features.

The workflow, shown in Fig. 1, consists of the following steps: (1) selection

of a longitudinal dataset consisting in patients with ascending aortic aneurysm;

(2) image segmentation to extract 3D geometries; (3) geometric decomposition90

of the aortic domain, (4) determination of local shape features; (5) computa-

tion of the aneurysm growth rate; (6) mesh morphing application to obtain

iso-topological surface meshes; (7) implementation of statistical shape analysis

5
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features due to the geometrical variability; (8) execution of statistical shape95

analysis based on supervised partial least squares to extract global shape fea-

tures related to the growth of the aorta; (9) assessment of the relationship

between local-global shape features and growth rate through regression models.

These points are explained in detail below.

2.1. Dataset100

We included patients affected by ascending aortic aneurysm with two 3D

exams separated by at least 6 months. The dataset was composed of subjects

with both bicuspid and tricuspid aortic valve and was provided by three French

centres: the University Hospital of Rennes, the University Hospital of Dijon and

the University Hospital of Toulouse. The ethical standards were respected in105

performing this study. Images from both CT and MRI-Angiography were used,

with a maximum voxel size of 1mm x 1mm x 1mm. To increase the likelihood

of producing reliable and reproducible results, additional exclusion criteria were

set: (1) patients under 25 years of age, (2) aneurysms related to systemic inflam-

matory diseases, (3) prior aortic valve surgery, (4) acute aortic syndrome, (5)110

congenital tissue disorders such as Marfan syndrome and (6) images damaged by

artefacts. In total, N = 70 patients were included, 50 of whom had already been

used in our previous work related to the identification of local shape features

[42]. 47 (67.1%) patients had double ECG-gated acquisitions. The longitudinal

dataset consisted of 120 (85.7%) CT-Scans and 20 (14.3%) MRI-Angiographies.115

85 acquisitions (60.7%) were performed with contrast agent injection and 35

(39.3%) without.

2.2. Segmentation

The aortic lumen geometries were extracted from CT and MRI images and

the reconstructions were made in 3D Slicer [43]. We used a semi-automatic local120

thresholding method based on the grey-level histogram derived from analysing

three sets of voxels. Each set was determined by initially identifying three points
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scending aorta. Around each point used as center, three spheres of radius 5 mm

were built, as shown in Fig. 2 (A). All the voxels distributed inside each sphere125

were acquired to determine the grey level interval for segmenting the aorta. Au-

tomatic morphological erosion and dilation were applied. Through erosion, 2

voxels were removed from the boundaries of the binary labelmap representing

the aorta. A subsequent dilation added the same number of voxels to preserve

the original size. Shrinking the domain, erosion was useful for removing small130

white noises and detaching small connected objects while dilation was applied to

restore the overall shape of the vessel. The resulting surface underwent a man-

ual editing process for the correction of possible improperly segmented portions.

A median filter was then applied with a kernel size of 3 mm. Any remaining

artefact in the resulting aortic surface (Fig 2 (B)) was removed using Meshlab135

[44].

Figure 2: (A) Spheres built around the markers to acquire the grey levels for the thresholding

method. (B) Final model derived from the segmentation.
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The vessel centerline was extracted using the maximally inscribed sphere

method and Voronoi diagrams [45]. The ascending tract was isolated cutting

the vessel perpendicularly to the centerline at two specific points: at the level of140

the annulus and at the end of the ascending aorta where the first ostium of the

brachiocephalic artery was detected. The superior branches, the coronary ar-

teries, the arch and the descending aorta were excluded. A spline corresponding

to the internal curvature line (ICL) was determined from the internal geodesic.

The external curvature line (ECL) was computed by projecting each point gen-145

erating the ICL onto the external part of the aorta in a direction perpendicular

to the centerline and passing through it [42]. Using the geometries derived from

the first acquisition, the following local shape features, shown in Fig. 3 (A-C),

were extracted:

1. the diameter-centerline ratio DCR:

DCR =
D

L(C)
(1)

where D was the maximum diameter and L(C) was the length of the150

centerline C related to the ascending tract;

2. the ratio between the external and internal curvature line lengths:

EILR =
L(ECL)

L(ICL)
(2)

3. the tortuosity T :

T =
L(C)

L(C0)
(3)

where C0 was the straight line connecting the first and the last points of

the centerline C.

In parallel to the extraction of the local features, some additional splines on155

the aortic surface were extracted, as shown in Fig. 3 (D). These were subse-

quently used to obtain the points acting as pseudo-landmarks [46] to perform

mesh morphing. On each aortic section Ψl (l ∈ 1, ..., 100) perpendicular to

8
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Figure 3: (A-C) Local shape features for the ascending aorta model; (D) above, the model

with the lateral splines on the surface. Below, a section Ψl of the aorta for computing the

points that identified the splines.

C, given the axis along the direction connecting the point of the centerline to

xecl ∈ ECL, 6 additional points were identified as the intersection between the160

axis rotated onto Ψl each time by 45 degrees and the boundary of the section

itself. When connecting the corresponding points on the 100 sections, 6 new

splines were thus derived.

2.4. Growth rate assessment

Although the diameter threshold for elective surgery may not have been met,

patients experiencing rapid AsAA growth should be carefully and frequently

monitored for preventive surgical purposes [47]. For these reasons, we can de-

duce that the risk of aneurysm rupture is closely related to the risk of aneurysm

growth [48]. By using longitudinal data and naming D′
i the diameter D related

to the first acquisition of the i-patient and D′′
i the maximum diameter of the

model from the follow-up exam, we derived the aneurysm growth rate GRi by

dividing the difference in maximum diameters by the time gap ∆τi, measured

in months, between the two acquisitions:

GRi =
D′′

i −D′
i

∆τi
(4)
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Y = (GR1,GR2, . . . ,GRN ) ∈ RN (5)

The study about the correlation between the local shape features here proposed165

and the aneurysm growth rate has already been performed in a previous work

[42].

2.5. Mesh morphing

The iso-topological grids required for the statistical shape analysis were built

using RBF mesh morphing, whose mathematical background is given in Ap-170

pendix A. The cubic kernel φ(r) = r3 was chosen to interpolate the displace-

ments in 3D space [49].

The initial shape used to generate the first mesh was identified as the one

reporting the median aortic diameter of our patient population, as done for the

femur by Grassi et al. [50]. The mesh, consisting of E = 37400 quadrilateral el-175

ements and K = 37620 nodes, was obtained using ANSA pre-processor (BETA

CAE Systems, Switzerland). A preliminary step was performed to align all

the segmented models to the baseline mesh through an iterative closest-point

algorithm. As already done by Marin et al. [51], a two-step morphing proce-

dure was applied to modify each time the reference mesh in order to exactly180

match the target segmentation. The first step of the morphing procedure con-

sisted in approaching the target segmented surface and the second in completely

projecting the deformed surface on the target geometry to achieve a perfect fit.

Controlling the mesh using morphing is particularly difficult in case of biological

models with few detectable anatomical landmarks [52], as the ascending aorta.185

In this regard, we developed a method to extract some pseudo-landmarks from

the 3D surface, avoiding the need for manual landmark placement. The Source

Points (SPs) to drive the morphing, corresponding to the pseudo-landmarks,

were automatically derived through an equally-spaced sampling of the previ-

ously obtained splines. 10 SPs per spline were collected on the initial model for190

a total of 80 SPs. A displacement was imposed to the SPs of the initial model

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofin order to match the SPs extracted from the target geometry and the mesh

nodes were updated through RBF interpolation, as reported in the appendix.

To ensure the overlapping of the entire wall, the modified surface nodes were

projected onto the target segmentation in the second step. The direction of pro-195

jection was determined by the normal of each node of the reference mesh. To

reduce mesh distortion due to morphing, once the N = 70 iso-topological grids

were obtained, a mean template was derived and mesh morphing was performed

again on all grids starting from this new average model. A new mean template

was then generated and used for the subsequent steps.200

2.6. Statistical shape analysis

Exploiting the set of iso-topological grids, a data matrix X containing K

shape vertices was created:

X = (x1,x2, . . . ,xN) ∈ R3K×N (6)

The statistical shape analysis to extract global shape features was performed

both by creating a statistical shape model based on the principal components205

and using partial least squares analysis. All the algorithms were developed using

Python.

2.6.1. Statistical shape model

Principal component analysis was used to extract the principal modes of vari-

ation by computing the eigenvectors of the covariance matrix C of the training

data:

C =
1

N − 1
XXT ∈ R3K×3K (7)

The eigen-equation related to the covariance matrix is:

Cϕj = λjϕj (8)

where ϕj is the eigenvector corresponding to the eigenvalue λj and represents

the directions of variation of the data. Eigenvalues and eigenvectors are ordered210

11
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variance was given by its corresponding eigenvalue λj [53].

A factorization of the data matrix through singular value decomposition

(SVD) can be performed:

X = USVT (9)

with U ∈ R3Kx3K and V ∈ RNxN unitary matrices (U−1 = U∗ and V−1 = V∗)215

and S ∈ R3KxN matrix containing the singular values sj on the diagonal.

Thus, equation 7 can be written as:

C =
1

N − 1

(
USVT

)(
USVT

)T

(10)

and simplifying:

C =
1

N − 1
US2UT (11)

This demonstrates that the singular values of the data matrix are related to

the eigenvalues of the covariance matrix:

λj =
1

N − 1
s2j (12)

Once the template or mean shape x has been extracted, each patient shape

x̃i belonging to the dataset can be reconstructed using the first M shape modes:

x̃i(w) = x̄ + ϕw (13)

where w is the vector containing the shape feature weights for the i-patient

which can be derived from:220

w = ϕT (xi − x̄) (14)

Assuming the data follows a normal distribution, each feature weight wj is

conventionally bounded within a certain range of the standard deviation:

−ξlim
√
λj ≤ wj ≤ ξlim

√
λj (15)

12
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providing the geometrical influence of each shape mode on the final deformed

model. Only the first M of the N eigenvectors were selected to account for a225

predetermined percentage of the variance and synthetically represent each aortic

shape in the dataset. M can be chosen by computing the compactness (CN)

and finding the number of shape modes for which the variance curve reaches

80%, 90%, 95% or 99%. CN is defined as the sum of variances normalized by

the whole cumulative variance:230

CN(M) =

∑M
j=1 λj

∑N
j=1 λj

(16)

The CN curve shows how many PCA modes are needed to describe a certain

amount of variation in the dataset. A second parameter to assess the SSM

quality is the generalization (GE). It is used to estimate the SSM capability

to represent unseen data and is computed as the average sum of square errors

of a leave-one-out (LOO) procedure [54]. Each time, in fact, one patient is235

excluded and a new statistical shape model is built using the N − 1 remaining

ascending aortic shapes. The new SSM is then used to reconstruct the shape

of the left-out patient and the difference between the original shape and the

reconstruction is quantified using the mean square error, progressively including

additional modes. In this case, GE was computed using up to M shape modes:240

GE(M) =
1

N

N∑

i=1

∥xi − x̂i (M)∥2 (17)

where xi and x̂i are the original and rebuilt left-out shapes, respectively.

2.6.2. Partial least squares analysis

PCA modes are extracted purely from the patient matrix X without taking

into account any external information related to the examined shapes. On

the other side, PLS performs a simultaneous decomposition of X and Y in245

order to obtain the highest correlation for the score vectors of both the input

and output matrices [55]. This ensures maximal interdependencies between the

13
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application-oriented since dependent on the clinical response variables, i.e. the

growth rate. Whereas PCA tries to identify hyperplanes that capture the most250

significant variation in the data, PLS employs a linear regression model that

involves projecting the predicted variables and observable variables into a new

space to establish the fundamental relationships between them. PCA generates

a set of orthogonal components that are uncorrelated and ordered by the amount

of variance. PLS, on the other hand, generates a set of latent variables that255

capture the maximum covariance between the X and Y matrices.

Given two standardized matrices X ∈ RN×3K and Y ∈ RN×Z where N is the

number of observations (shapes), 3K is the number of predictor variables (point

coordinates), Z is the number of predicted variables and defining the number of

shape modes M , PLS models the relations between these two matrices through260

score vectors. It decomposes the X and the Y matrices as follow:

X = TPT + E

Y = UQT + F
(18)

where T ∈ RN×M , U ∈ RN×M are the matrices of the M extracted score

vectors t and u, P ∈ R3K×M and Q ∈ RZ×M represent the matrices of loadings

and E ∈ RN×3K and F ∈ RN×Z are the matrices of residuals. The PLS method

finds weight vectors b, c such that:

[cov(t,u)]2 = [cov(Xb,Yc)]2 = max
|r|=|s|=1

[cov(Xr,Ys)]2 (19)

where cov(t,u) = tTu/N denotes the sample covariance between the score

vectors.

PLS is based on an iterative process: the nonlinear iterative partial least

squares (NIPALS) algorithm [56]. It starts with a random initialization of the265

score vector u and executes the following steps until convergence is reached:

• b = XTu/
(
uTu

)

• ∥b∥ → 1

14
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• c = YT t/
(
tT t

)
270

• ∥c∥ → 1

• u = Yc

Since in this case Z = 1, Y can be denoted as y and u = y. Consequently,

the NIPALS procedure converges in a single iteration. The weight vector b is

equal to the first eigenvector of the following eigenvalue problem [57]:275

XTYYTXb = λb (20)

After the extraction of the score vectors t and u, a process of deflation of the

matrices X and Y is performed by subtracting their rank-one approximations

based on t and u. Various methods of deflation are used, which define different

versions or variants of PLS. The vectors of loadings p and q can be derived from

(18) as coefficients of regressing X on t and Y on u, respectively:280

p = XT t/
(
tT t

)
and q = YTu/

(
uTu

)
(21)

Since Z = 1, the PLS1 deflection method can be used:

X = X− tpT (22)

It is based on the assumption that the score vectors t are good predictors of Y

and that a linear inner relation between the scores vectors t and u exists, i.e:

U = TD + H (23)

where D ∈ RM×M is the diagonal matrix and H denotes the matrix of residuals,

The deflation of y is technically not needed in PLS1.285

For the PLS modes, the new patient-specific shape features score vectors t
i

were computed and used for the prediction.

15
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Once the shape features have been computed, regression models were used

to directly infer the patient-specific growth rate. Our approach involved both290

local and global shape features. Regarding the local, DCR, EILR and T were

employed together. For the global, the patient-specific weights w related to

the PCA modes and the PLS scores t were used as a predictor of the growth

rate. Concerning the PCA modes, we used a F-test as feature ranking algo-

rithm to order the predictors by importance [58]. Higher scores were associated295

with higher-importance shape features. The null hypothesis of each F-test is

that the means of the response values, which are grouped by predictor variable

values, are drawn from populations with equal means. On the other side, the

alternative hypothesis is that the means of the populations are not all the same.

If the resulting p-value of the test statistic is small, the corresponding predic-300

tor variable has a significant impact on the response variable. We reported as

output the scores of the F-test FS = −log(p). Thus, a high score value indi-

cates that the corresponding predictor is relevant. The first three ordered PCA

modes were used as global shape features. Although not necessary for the PLS

shape features choice, the same F-test was applied to the PLS scores to observe305

the differences with the scores from PCA. The regression model used for the

local shape features and the PCA-based global shape features was the support

vector machine (SVM), which had already shown good results in similar studies

[40]. This machine learning model is able to describe the nonlinear relation-

ships between shape features and aneurysm growth. A gaussian kernel function310

was set and the hyperparameters, reported in the results section, were tuned to

minimize the prediction mean square error (MSE) [59]. Regarding the PLS re-

gression, we only considered the first three components of the PLS, as these refer

to the shape features most significantly correlated with the computed growth

rate. Leave-one-out cross-validation was performed to evaluate the performance315

of each regressor and the regression accuracy was determined through root mean

square error (RMSE). R2 values are reported for both local and global shape

features to assess the regression fit quality. The marginal effect of each predictor
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dependence plots between the predictor variables and the predicted responses.320

Finally, the SVM regression surface for the representative PCA-based global

shape features is provided to understand how the predicted growth rate varied

as the shape changed according to the variability of the studied population.

3. Results

The population mean age at the baseline acquisition was 62.7 ± 15.5 years.325

21 women (30%) and 49 men (70%) were included in the dataset. The mean

time between two consecutive acquisitions was 18 ± 16 months, with a range

between 6 and 98 months. At the baseline, the maximum diameter was 49.4

± 4.1 mm whereas at the follow-up it was 51.9 ± 4.6 mm. The full dataset

presented a median growth rate of 0.118 mm/month with an interquartile range330

IQR = 0.133 mm/month.

The local shape features reported in terms of mean value and standard devi-

ation were: EILR = 2.336±0.323, CDR = 0.496±0.052 and T = 1.213±0.072.

Mesh morphing was applied on all geometries, ensuring a correct correspon-

dence between the pseudo-landmarks computed on the template model and the335

pseudo-landmarks identified on the target geometry after the first step and a

perfect matching after the second.

The statistical shape analysis was performed including all computational

surface grids.

Concerning the SSM, the compactness curve is reported in Fig. 4 (A). The340

first PCA mode alone accounted for 52.4% of the anatomical variability in the

population whereas the first 3 PCA modes together captured 80% of the overall

variability. 90%, 95% and 99% of the compactness curve were achieved using

6, 10 and 24 PCA modes, respectively. The generalization ability is instead

reported in Fig. 3 (B) for the first 24 PCA modes. By including additional345

shape modes, its mean value, representing the mean square error between shapes

reconstructed by LOO and shapes reconstructed by the SSM over the entire
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Figure 4: (A) SSM compactness according to the number of PCA modes used: the symbols

indicate the PCA mode for which 80%, 90%, 95% and 99% of the cumulative variance is

reached. (B) Generalisation curve when increasing the number of PCA modes. (C) FS for

selecting the PCA modes to perform SVM regression. (D) FS for the PLS modes.

population, went from 2.81 mm2 to 0.52 mm2, where it tends to stabilise. In

Fig. 4 (C), the results of the F-test for choosing the PCA modes to be used for

the regression are reported. Based on FS, the PCA modes selected as global350

shape features were 1, 2 and 6. Fig. 4 (D) shows the same outputs for PLS

score vectors t. Concerning the first 10 shape modes, PLS globally reported

higher FS values than PCA. The contribution of each mode can be visualized

by deforming the mean template from low (ξ = −ξlim) to high (ξ = +ξlim)

standard deviation, as reported in Fig. 5 for the three selected PCA and PLS355

modes.

The first PCA mode defines the overall position of the aneurysm in the as-
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Figure 5: Shape modification due to PCA modes 1, 2 and 6 and PLS modes 1, 2 and 3.
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closer to the root whereas positive weight values define aneurysms developed

more towards the end of the ascending aorta. The second PCA mode mainly360

describes the curvature and tortuosity of the ascending aorta. PCA mode num-

ber 6 is instead graphically associated with the size of the aneurysm, which

increases as the weight of the mode itself rises. On the other hand, the first

PLS mode appears to represent both the location of the aneurysm and its size.

The second PLS mode is visually mainly associated with the diameter of the365

aneurysm while the third mode is graphically related to the tortuosity of the

ascending tract.

After the LOO cross-validation, the hyperparameters for the SVM regression

models are reported in Table 1. The regression performances in terms of R2

and RMSEreg values are the following: R2
lsf = 0.28 and RMSElsf = 0.112370

mm/month, R2
PCA = 0.42 and RMSEPCA = 0.083 mm/month and R2

PLS =

0.63 and RMSEPLS = 0.066 mm/month. The comparison between real and

predicted growth rate values for the three regression models is shown in Fig. 6.

Hyperparameters local shape features global shape features (PCA)

Kernel size 1.72 1.89

Box constraint 0.41 1.82

Epsilon 0.008 0.039

Table 1: SVM regression hyperparameters

The partial dependencies plots are shown in Fig. 7 for the three cases: the

first graph shows the dependence of the gaussian SVM regression model on375

the three local shape features, the second reports how the selected PCA modes

affect the SVM prediction while the third shows the estimated linear relationship

between the three PLS modes selected and the growth rate.

Finally, in Fig. 8, the regression surface is shown using the modes extracted

from the statistical shape model. The ascending aorta shapes corresponding380

to specific zones of the surface are reported to associate the shape with the
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Figure 6: Predicted versus true response plot for the growth rate using the three local shape

features (red), the global shape features extracted from PCA (blue) and the global shape

features extracted from PLS (green).

Figure 7: Partial dependencies plots for local and global shape features.

4. Discussion

In this work, we presented a method to exploit local and global shape fea-

tures for the prediction of the ascending aortic aneurysm growth rate. By using385

the framework we proposed, based on geometric decomposition, mesh morph-

ing, statistical shape analysis and regression, we were able to extract distinctive

shape features potentially valuable for improving the prediction of the aneurysm

growth. The results of this study show that the partial least squares regression

model based on global shape features can outperform the support vector ma-390
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derived from principal component analysis.

The higher frequency of male patients agrees with what is observed for the

aneurysm disease [60]. The obtained growth rate results are consistent with

what has been reported in literature [61, 62].395

Concerning the initial grid, we chose the patient’s model reporting the me-

dian diameter to reduce the mesh degradation after mesh morphing [63]. This

starting model is a reasonable compromise to reach the aneurysms with the

smallest and largest diameter in the dataset. Like the maximally inscribed

sphere method, the geometric decomposition allowed to derive the maximum400

diameter along the vessel centerline but it additionally ensured the possibility

of identifying sections perpendicular to the centerline which enable the creation

of the splines. The number of pseudo-landmarks acting as Source Points to

perform the first morphing step was chosen in order to achieve good results in

terms of computational grid quality [51]. A fundamental requirement for build-405

ing accurate statistical shape models is the one-to-one correspondence between

the positions of the landmarks on each geometry of the dataset. Since it is very

complex to identify landmarks for the isolated ascending tract, the proposed

morphing method allows associating points of the splines resulting from the ge-

ometric decomposition of the initial template to the same ones computed on410

the target aorta. This ensured a better control of the grid distortion than using

purely distance-based methods in which iterative energies stabilization methods

and recursive smoothing techniques, i.e. not driven by statistical information,

are usually performed [23].

The SSA was carried out on the ascending tract and not on the entire415

aorta because a detailed and restricted correspondence between ascending aortic

aneurysm shape and growth rate was sought. In this way, any spurious com-

ponent related to other parts of the thoracic aorta was not included. While

in other approaches [19], PCA modes were related to the cumulative energy

with which the aneurysm grew over time for a specific patient, in this work the420

modes indicated which shape feature within the population could be related to
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Figure 8: Regression surface derived from the global shape features obtained with PCA.

the growth of the disease. The parametric 3D model offers an advantage com-

pared to 2D metrics extraction in capturing complex ascending aortic shapes

by allowing for the detection of shape features that can be represented visually

and numerically. These features are difficult to be obtained using conventional425

morphometric measurements [64]. Generally, in constructing statistical shape

models based on PCA, the high-frequency modes are discarded since considered

principally related to noise. However, they could be significant in explaining

the pathological growth associated with the disease. Despite including shape

modes up to 99% of the variability, one limitation of PCA-based growth predic-430

tion is that there could be an excluded high-frequency mode that is nevertheless

strongly associated with growth. The compactness values obtained for the sta-

tistical shape model are in agreement with those indicated by Casciaro et al.

[65], in which a healthy subset of aortas required only 6 modes to capture 84%

of the variance, whereas a congenital set of aortas, required 19 modes to cap-435

ture 90%. These values are quite consistent with our findings considering that

we only selected the ascending part in building the SSM and the variability, in

our case, is consequently lower. Moreover, our compactness and generalization

outcomes fit within the range of variability reported in other similar studies

[33, 40]. This demonstrated the valuable ability of the SSM to represent a wide440

population. The F-test results using the PCA components give high importance

to shape modes determining the aneurysm location, its size and the tortuosity
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shape features and growth reported in our previous work [42] and with the

shape representation provided by the PLS modes.445

Only three global shape features were selected because it was the number

for which the root mean square prediction error was the lowest. Using a dif-

ferent number of shape features for the regression, RMSEPCA went from 0.089

mm/month to 0.142 mm/month and RMSEPLS went from 0.066 mm/month to

0.121 mm/month.450

Based on this dataset, the value of R2
lsf and RMSElsf and the representa-

tion of real versus predicted response values for local shape features in Fig. 6

indicate that the SVM regression method is highly inaccurate in predicting the

growth rate, in particular for patients whose growth is very rapid, especially

if the prediction error is compared to the median GR of the dataset. Results455

improve when using global shape features. The RMSE was in fact lowered

using SVM with a combination of PCA-based shape features and was further

reduced by approximately 56% from RMSElsf using PLS regression. Better

results when using global shape features compared to local shape features were

already reported by Liang et al. [40] for the classification of patients whose460

aneurysms might burst according to numerical simulation results. In addition,

it is worth observing that partial dependencies plots (Fig. 7) for local shape

features highlight a major dependence on DCR than EILR and even more than

T , an aspect already emerged in our previous work [42], in which the linear cor-

relation between local shape features and growth rate using the reduced dataset465

was stronger for the first index.

Our method does not currently allow to derive the shape of the aorta with the

associated uncertainty after a certain time interval [19] but allows to identify

those aneurysm shapes within the population that may evolve most rapidly.

Regarding the three PCA-based global shape features, it is clear that patients470

with ξ values close to zero are those for whom growth is generally slower. On

the other hand, the partial dependencies resulting from PLS show that the

tendency to grow is for aneurysms located more towards the root, with a larger
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related to root aneurysms rather than mid-aortic dilatations has already been475

highlighted by Kalogerakos et al. [66]. In Fig. 8, the surface resulting from

the regression for the three PCA modes is reported. It can be related to what

Fig. 7 shows. Fast AsAA growth seems to be related to highly negative w1 and

w2 and positive w6. These results agree with what was found by Della Corte

et al. [67]: a root phenotype characterized by aortic dilatation at the sinuses480

may indicate a more severe level of aortopathy. Slow growth occurs instead

for aneurysms with values close to 0 for w1 and w2 and negative w6 i.e. for

ascending aortas less tortuous, with aneurysms located far from the root and

with a smaller initial diameter, results consistent with previous studies [47, 68].

Obviously, additional research is needed to understand the connection among485

aortic shape, wall properties, haemodynamics, mechanical behaviour and aneurysm

growth or rupture [69]. A more accurate prediction could be probably achieved

by combining both shape and physical parameters derived from images or nu-

merical simulation [35].

This work, therefore, showed the importance of morphometric analysis to490

improve the prediction of aneurysm growth of the ascending aorta. Combining

SSA and regression methods could be a powerful way to model the relation-

ship between shapes and growth rate. Accurately identifying which patients

with AsAA will require surgery within a specific timeframe would enhance the

risk-benefit analyses and the definition of surveillance protocols [70]. A slow-495

growing ascending aortic aneurysm, in fact, would not require frequent moni-

toring whereas it will be necessary for rapid-growing cases.

However, this retrospective study presents some limitations that need to be

reported. The principal is the small cohort of patients. The statistical shape

analysis requires a large population of representative training samples: for the500

same topology, the wider the diversity between anatomical models, the higher

the number of samples required. The set of shapes that can be described by

the feature space is limited to the deformation modes derived from the included

cohort. Therefore, there is no guarantee that a feature vector can accurately
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linear growth rate hypothesis; exponential growth rate models [71] seem to be

more accurate but often require at least three exams over time to be validated

[17, 72] while the dataset selected for this work includes patients with only two

acquisitions.

Uncertainty is then introduced by using both MRI images and CT-Scans.510

However, we tried to mitigate it by including the resolution criterion and seg-

menting the intra-luminal aortic region to derive the shape parameters [73].

Moreover, we included patients with non-gated acquisitions, which reduced the

accuracy of the results [74]. This is why an exclusion criterion of 6 months was

set so that variations were more likely to be attributed to the growth of the ves-515

sel rather than the variations that could emerge between systole and diastole.

Furthermore, we did not consider if the patients, during the follow-up period,

had taken drugs such as beta-blockers to slow down the aneurysm growth [75], a

phenomenon that could alter the calculation of the growth rate. In performing

the regression, a robust study should include a testing dataset but, given the520

small number of patients available, we preferred to use only the training and val-

idation set. Furthermore, for local shape features and PCA-based global shape

features, we have only reported SVM-based regression results. Other regression

models should be tested in order to compare the prediction performances. In our

work, we only considered the ascending aorta shape properties and we did not525

include the patient’s valve type although its type and condition can influence

haemodynamics and consequently the aneurysm growth rate [76]. Many other

factors could then be included: aortic annulus disjunction, dislocation of the

coronary ostia or possible aortic wall thinning [77]. Moreover, this study does

not take into account the arch and the descending tract: anatomical-functional530

variations of these parts could alter the growth of the ascending aortic aneurysm

[78]. In future works, blood pressure, flow and tissue material properties and 3

layer-thickness walls will be incorporated into the models to improve the growth

prediction. Moreover, numerical simulation will be used to extract biomechani-

cal and hemodynamic biomarkers which will be complemented with the informa-535
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shear stress have, in fact, proven to be good candidates for predicting aortic wall

weakening phenomena [79]. PCA-based statistical shape analysis could then be

used to create data-driven reduced order models and derive real-time simulation

results [80]. The set of results precomputed by numerical simulation is usually540

based on iso-topological grids which could be obtained through the morphing

approach here described. The combination of patient-specific data, machine

learning and simulation results may be the key to improve growth prediction

[81] and speed up decision-making in real-life medicine [82].

5. Conclusion545

This work showed that global shape features integrated with regression mod-

els could be fundamental for improving the ascending aortic aneurysm growth

prediction. An accurate growth estimate could be used to monitor the progres-

sion of the aneurysm over time and to determine the most appropriate course of

treatment for a patient. By using shape features integrated with other relevant550

clinical information, clinicians can investigate the aneurysm shape, monitor its

progression and make informed decisions about its management, such as the

timing of surgery or the need for medical intervention. Specific to this work,

while PCA appears to be more suitable for exploratory data analysis and di-

mensionality reduction, PLS seems to more accurately predict and model the555

relationships between the ascending aortic shape and the growth rate. The use

of shape modes in predicting aneurysm growth is a promising approach that

leverages the power of statistical shape analysis in indicating the shapes most

likely to grow. In future, a combination of shape features and numerical sim-

ulation results could be integrated to the maximum diameter threshold for the560

selection of patients for whom surgery is strictly required.
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Celentano, C. Garćıa-Montero, R. L. Burgos, Mechanical behaviour and

rupture of normal and pathological human ascending aortic wall, Medical835

& biological engineering & computing 50 (2012) 559–566.

37



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[70] A. J. McLarty, M. Bishawi, S. B. Yelika, A. L. Shroyer, J. Romeiser, Surveil-

lance of moderate-size aneurysms of the thoracic aorta, Journal of cardio-

thoracic surgery 10 (1) (2015) 1–7.

[71] G. Martufi, M. Auer, J. Roy, J. Swedenborg, N. Sakalihasan, G. Panuccio,840

T. C. Gasser, Multidimensional growth measurements of abdominal aortic

aneurysms, Journal of vascular surgery 58 (3) (2013) 748–755.

[72] C. J. Prestigiacomo, W. He, J. Catrambone, S. Chung, L. Kasper, L. Pa-

supuleti, N. Mittal, Predicting aneurysm rupture probabilities through the

application of a computed tomography angiography–derived binary logistic845

regression model, Journal of neurosurgery 110 (1) (2009) 1–6.

[73] C. Frazao, A. Tavoosi, B. J. Wintersperger, E. T. Nguyen, R. M. Wald,

M. Ouzounian, K. Hanneman, Multimodality assessment of thoracic aortic

dimensions: comparison of computed tomography angiography, magnetic

resonance imaging, and echocardiography measurements, Journal of Tho-850

racic Imaging 35 (6) (2020) 399–406.

[74] L. Lehmkuhl, B. Foldyna, K. Von Aspern, C. Lücke, M. Grothoff,
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[84] H. Yu, T. Xie, S. Paszczyñski, B. M. Wilamowski, Advantages of radial895

basis function networks for dynamic system design, IEEE Transactions on

Industrial Electronics 58 (12) (2011) 5438–5450.

9. Appendix A

Mesh morphing. Mesh morphing is a technique used to modify the shape of

a computational grid [83]. Among the morphing methods available in the lit-

erature, radial basis functions (RBFs) are well known for their interpolation

quality [84]. RBFs allow to interpolate in the space a scalar function known at

discrete points, called Source Points (SP). By solving a linear system of order

equal to the number of SP employed [26], the displacement of a mesh node in

the three directions in space can be described. The approach is meshless and

able to manage every element type both for surface and volume mesh. The

interpolation function is defined as follows:

s(x) =
N∑

i=1

γiφ (∥x− xsi∥) + h(x) (24)

where x is a generic position in space, xsi the SP position, s(·) the function

which represents a transformation Rn → R, φ(·) the radial function of order m,900

γi the weight and h(x) a polynomial term with degree m− 1. The unknowns of

the system, namely the polynomial coefficients and the weights γi of the radial

functions, are retrieved by imposing the passage of the function on the given

values and an orthogonality condition on the polinomials. The linear problem

can be also written in matrix form:905


M P

PT 0






γ

β



 =




g

0



 (25)

in which M is the interpolation matrix containing all the distances between RBF

centres Mij = φ (∥xi − xj∥), P the matrix containing the polynomial terms that
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at SPs. If a deformation vector field has to be fitted in 3D (space morphing),

considering h(x) as a linear polynomial made up of known β coefficients:910

h(x) = β1 + β2x + β3y + β4z (26)

each component of the displacement prescribed at the Source points can be

interpolated as follows:





sx(x) =
∑N

i=1 γ
x
i φ (∥x− xsi∥) + βx

1 + βx
2x + βx

3 y + βx
4 z

sy(x) =
∑N

i=1 γ
y
i φ (∥x− xsi∥) + βy

1 + βy
2x + βy

3y + βy
4z

sz(x) =
∑N

i=1 γ
z
i φ (∥x− xsi∥) + βz

1 + βz
2x + βz

3y + βz
4z

(27)

When working with a mesh, the new nodal positions can be retrieved for

each node as:

xnodenew = xnode +




sx(xnode)

sy(xnode)

sz(xnode)


 (28)

where xnodenew and xnode are the vectors containing respectively the updated

and original positions of the given node.
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HIGHLIGHTS:

1) The analysis of the aneurysm shape can be crucial in understanding its growth.

2) Statstcal shape analysis allows to ertract and compress precious informaton.

3) Global shape features for the growth predicton can be derived from a populaton.

4) Regression models based on shape features can improve the rupture risk assessment.
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