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In this work, we propose a power-balanced model of the full vocal apparatus, described by passive elementary components, the connection of which accounts for fluidsolid and fluid-fluid interactions. In the larynx, we consider a potential incompressible flow of an inviscid fluid between parallel moving walls whose dynamics is reduced to a mass-spring-damper oscillator equipped with an elastic cover. The vocal tract is represented by a macroscopic lumped parameter model derived for the irrotational flow of a compressible inviscid fluid with the simplest kinematics satisfying the boundary conditions. The assembly of elements admits a representation as a constrained global port-Hamiltonian system for which we propose simulations based on a projection method that preserves the power balance. Several numerical experiments show the ability of the model to reproduce a variety of regimes according to different configurations: non oscillating regimes (no phonation), periodic regimes (typical of healthy voice) and non-periodic oscillating regimes (typical of dysphonia). These simulations are used to sketch first cartographies of regimes with respect to control parameters.

INTRODUCTION

Physical modelling of the vocal apparatus has a long history, based on low or high dimensional descriptions. For the larynx, the first family includes lumped-parameters models such as the reference two-mass model presented in [START_REF] Ishizaka | Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords[END_REF]. It accounts for a one-dimensional glottal flow coupled to two pairs of mass-spring-damper systems representing trapezoidal vocal folds, the flow dynamics being governed by a Bernoulli equation. Extensions to refined shapes and structures are also available in e.g. [START_REF] Titze | The human vocal cords: A mathematical model[END_REF][START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF][START_REF] Titze | Rules for controlling lowdimensional vocal fold models with muscle activation[END_REF]. However, such Bernoulli-based modelling does not represent balanced power exchanges between the glottal flow and the vocal folds.

The second family based on e.g. finite element methods and coupled fluid-structure interactions (FSI) solvers is computationally highly demanding (see e.g. [START_REF] Zheng | A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation[END_REF] and [START_REF] Zheng | A Coupled Sharp-Interface Immersed Boundary-Finite-Element Method for Flow-Structure Interaction With Application to Human Phonation[END_REF] for 2D and 3D problems, or the European project EUNI-SON). This work is twofold and aims to: develop a lumpedparameter model of a full vocal apparatus that accounts for balanced power exchanges between the glottal flow and the vocal folds; provide a power-balanced simulation that requires a relatively low computational cost. In order to do so, we use the port-Hamiltonian framework by assembling models from Refs. [START_REF] Hélie | Self-oscillations of a vocal apparatus: a port-Hamiltonian formulation[END_REF] and [START_REF] Wetzel | Lumped Power-balanced Modelling and Simulation of the Vocal apparatus : a Fluid-Strucutre Interaction Approach[END_REF] (see also [START_REF] Mora | A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds[END_REF]). This paper is organised as follows. Section 2 presents a brief reminder on Port-Hamiltonian systems and detail the modelling of the larynx, the vocal tract and their assembly. Section 3 presents the power-balanced numerical method. and section 4 the numerical experiments, before conclusions and perspectives in section 5.

MODELLING 2.1 Reminder on Port Hamiltonian Systems

We propose here a short presentation of port-Hamiltonian systems (PHS), introduced in [START_REF] Maschke | Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties[END_REF]. The port-Hamiltonian framework is an extension of classical autonomous and conservative Hamiltonian mechanics to the cases where internal dissipation of energy and power exchanges with the environment can occur. Their advantages for the representation of multi-physical problems include a natural fulfilment of the power balance, taking into account power exchanges between passive components, hence leading to globally passive systems. We are also particularly interested in the workflow provided by the framework which consists of modelling subsystems separately and connecting them through their interacting port.

We here use the following class of PHS: Exchanged power [START_REF] Titze | The human vocal cords: A mathematical model[END_REF] Note that constraints do not produce work as their power is λ ⊺ 0 = 0 in the pairing. The skew-symmetry of the interconnection matrix S that links e and f in (1) and characterize the structure of the physical system guarantees the power balance, since ⟨e|f ⟩ B = ⟨e|Se⟩ B = e ⊺ Se = 0.

    ẋ w 0 y     f = S     ∇H(x) z(w, x) λ u     e , with S = -S ⊺ , (1) 
This matrix is associated with the so-called Dirac structure which gathers compatible efforts and flows:

S = {(f, e) ∈ F, E|f = Se}. ( 3 
)
For our models, this matrix will have the following structure:

S =     S xx S xw S xλ S xu -S ⊺ xw 0 0 S wu -S ⊺ xλ 0 0 S λu -S ⊺ xu -S ⊺ wu -S ⊺ λu 0     . (4) 
The next sections are devoted to the description of the two components of our model of the vocal apparatus.

Larynx

For the larynx, we use a simplified model presented in [START_REF] Hélie | Self-oscillations of a vocal apparatus: a port-Hamiltonian formulation[END_REF]. It considers a potential incompressible flow of an inviscid fluid between parallel moving walls. Those correspond to the surface of the vocal folds whose dynamics is reduced to a mass-spring-damper oscillator equipped with an elastic cover. The domain containing the fluid is represented in Fig. 2. Denoting h = y l -y r the height of the canal and y m = (y r + y l )/2 the middle-line position, the simplest kinematics for the fluid in the domain obeying Euler equations and satisfying normal velocity continuity on the walls is given by

v = v x v y = v 0 -x ḣ h ẏm + ḣ h (y -y m ) . (5) 
In [START_REF] Hélie | Self-oscillations of a vocal apparatus: a port-Hamiltonian formulation[END_REF], the state vector is x g0 = v 0 , ẏm , ḣ, h where v 0 and ẏm are the mean axial and transverse velocities, h the height of the domain and ḣ its time derivative. The Hamiltonian is then given by

1 2 m(h)v 2 0 + m(h) ẏ2 m + m 3 (h) ḣ2 , (6) 
where we consider m(h) = 2ρl 0 Lh(t) the mass of the fluid and m 3 (h) = m(h)(1 + 4l 2 0 /h 2 )/12 the effective mass for the transverse expansion motion. However, this choice leads to a state-dependant interconnection matrix, which complicates the implementation of the numerical solver. In order to obtain a PHS representation with a constant interconnection matrix, we here use a change of variable. After introducing a normalisation height h 0 , we define π x = mv 0 h 0 /h and π y = mv y h 0 /h the mean axial and transverse momenta and π exp = 2m 3 ḣ the expansion motion momentum from which we can define the new state vector

x g = [π x , π y , π exp , ḣ]. (7) 
The corresponding Hamiltonian is

H(x g ) = h 2 2h 2 0 π 2 x + π 2 y m(h) + 1 8 π 2 exp m 3 (h) . (8) 
Using this new set of variable and a couple of instantaneous laws modulating the input forces by h 0 /h, we obtain the following PHS with a constant interconnection matrix:

                  πx πy πexp ḣ w turb ≡ Q + w g0 ≡ F l -F r w g1 ≡ ∇ πy H(x) -Q - Q + -v l -v r                   = S glottal                   ∇ πx H(x) ∇ πy H(x) ∇ πexp H(x) ∇ h H(x) z turb (w turb , h) z g0 (w g1 , h) z g1 (w g0 , h) P - tot P + F l F r                   . ( 9 
)
This PHS is controlled by subglottal (upstream) and supglottal (downstream, after turbulence dissipation z turb ) pressures P - tot and P + and by the forces applied by the left and right vocal folds on the fluid F l and F r . The power conjugated outputs are the volume flows -Q -, Q + and the speeds -v l and -v r of the vocal fold walls.

The dissipation function

z turb (w turb , h) = ρ 2 w turb L 0 h 0 2 Θ(w turb ), (10) 
with Θ the Heaviside function, represents the loss of energy due to shear layer vortices at the output of the glottis where a rapid change of section is observed. The instantaneous law

z g0 z g1 = h 0 h w g1 -w g0 , (11) 
corresponds to a gyrator modulating the forces F l and F r in order to keep S glottal constant, without contribution to the power balance as ⟨z g (w g , h)|w g ⟩ = 0. Finally, the constitutive block matrices of S glottal , encoding the dynamics, are

S glottal xx =     0 0 0 0 0 0 0 0 0 0 0 -2 0 0 2 0     , (12a) S glottal xw =     -L 0 h 0 0 0 0 0 1 2L 0 l 0 0 0 0 0 0     , (12b) 
S glottal xu =     L 0 h 0 0 -L 0 h 0 0 0 0 0 0 2L 0 l 0 2L 0 l 0 -1 -1 0 0 0 0     , (12c) S glottal wu =   0 0 0 0 0 0 1 -1 0 0 0 0   . (12d)

Vocal folds

Vocal folds are reduced to mass-spring-damper systems with a purely elastic cover, as shown in figure 1. The PHS corresponding to this system is presented in [START_REF] Hélie | Self-oscillations of a vocal apparatus: a port-Hamiltonian formulation[END_REF] and not reproduced here for the sake of brevity.

Complete larynx

Once the models of glottal flow and vocal folds are established, they can be connected by means of a PHS connections procedure, as presented in [START_REF] Lopes | Energy Balanced Model of a Jet Interacting With a Brass Player's Lip[END_REF]: the output forces of the vocal folds models are linked to the input forces F l and F r applied on the glottal flow. The complete larynx model then admits two input-output pairs:

u larynx = P - tot , P + ⊺ and y larynx = -Q -, Q + ⊺ , (13) 
which are respectively the pressures and volume flows at the entrance and exit of the glottis.

Vocal tract

We use the vocal tract model developed in [8, chap. 3]. It is a lumped parameter model based on the decomposition of the complete vocal tract in multiple sub-tracts. The full tract is then controllable by means of input and output fluid enthalpy and of the velocity of the surrounding tissues. This allows the reproduction of articulations from geometric trajectories to produce vowel sounds.

A single sub-tract

x = 0 l 0 -l 0 y = 0 h(t) S L S R S B S w ψ L q L ψ R q R v w F w Ω(t) Figure 3. Single tract schematic
We consider a time-varying fluid domain, as presented figure 3. After making the assumption that the fluid is a compressible perfect gas having an homogeneous density in the domain Ω(t) and that the flow is irrotational, one can derive a finite-dimensional representation of the dynamics, based on a decomposition of the velocity field in 3 different components:

v(x, y, t) = 1 0 v mx (t) Uniform axial + -x/h(t) y/h(t) v y (t) Incompressible + x/l 0 0 v c (t) Compressibility . ( 14 
)
After some computations presented in [START_REF] Wetzel | Lumped Power-balanced Modelling and Simulation of the Vocal apparatus : a Fluid-Strucutre Interaction Approach[END_REF], Wetzel showed that the dynamics of this single tract admits a port-Hamiltonian formulation with canonical interconnection matrix S (composed of 0, 1 and -1). The state vector for this PHS is given by

x tract = [ν l , ν r , π y , m, h] ⊺ , (15) 
where ν l and ν r are axial kinematics variables and π y is an incompressible transverse motion component. Finally, m and h are respectively the mass of the fluid contained in the tract and the height of the tract. The Hamiltonian associated with these states is given by

H tract (x tract ) = m 2l 2 0 (ν 2 l + ν 2 r -ν l ν r ) + 3π 2 y 2m + P 0 hS w γ 2 ρ(m, h) -ρ 0 ρ 0 -1 , (16) 
where ρ(m, h) = m Swh is a function reconstructing the fluid density.

Finally, the structure of the single tract PHS is:

                  νl νr πy ṁ ḣ w g0 ≡ ṁ w g1 ≡ ḣ 0 Ψ l q r v w                   = S tract                   ∇ ν l H(x) ≡ q l ∇ νr H(x) ≡ q r ∇ πy H(x) ≡ v w ∇ m H(x) ≡ ⟨Ψ⟩ Ω ∇ h H(x) ≡ -⟨p⟩ Ω Sw z g0 (w g1 , π y , m) := v w πy m z g1 (w g0 , π y , m) := - πy m ṁ λ 0 ≡ Ψ l -q l Ψ r F w                   , (17) 
where < . > Ω is the volume-average operator. Note that instantaneous laws z g0 (w g1 , π y , m) and z g1 (w g0 , π y , m) form a conservative gyrator. The constitutive block matrices of S tract are:

S tract xx =       0 0 0 -1 0 0 0 0 1 0 0 0 0 0 -1 1 -1 0 0 0 0 0 1 0 0       , ( 18a 
)
S tract xw =       -1 0 1 0 0 -1 0 0 0 0       , ( 18b 
)
S tract xλ =       -1 0 0 0 0       , ( 18c 
)
S tract λu = 1 0 0 , (18d) 
S tract xu =       0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0       . ( 18e 
)
This PHS is then a dissipation free model of the tract, controlled by left mass flow q l , right enthalpy Ψ r and by the force F w applied on the wall. Conjugated outputs are the left enthalpy Ψ l , right mass flow q r and the speed of the wall v w . In order to have a mass flow control at the left, a Lagrange multiplier imposing the constraint -∇ ν l H(x) = -q l has been introduced in (17).

Assembly of the vocal tract

Thanks to this Lagrange multiplier, we can now directly connect 2 tracts by linking the outgoing mass flow of the leftmost tract (output of the PHS) to the ingoing mass flow of the rightmost tract (input of the PHS). Repeating this procedure allows to build a full vocal tract composed of an arbitrary number of tracts. Then, we connect simple spring-damper systems to the force inputs for the walls. This aims to represent the effect of the tissues on the dynamics and also provides a control of the walls through their velocity, which is more natural than the force. Finally, a simple radiation condition is added at the rightmost tract. Those last points are explained in more details in [8, chap. 4].

At the end of the assembly, the full vocal tract is controlled by the ingoing input mass flow in the leftmost tract and by velocities of the walls of each tracts.

Assembly of the full vocal apparatus

From the larynx model and the vocal tract model, the assembly is straightforward: as the output of the larynx is the outgoing volume flow Q + and the input of the vocal tract is the mass flow q l , the connection is achieved by Q + /ρ = q l , where ρ is the constant density assumed for the glottal flow.

NUMERICAL METHOD

The numerical method is based on an adaptation of [START_REF] Remy | Time-continuous power-balanced simulation of nonlinear audio circuits : realtime processing framework and aliasing rejection[END_REF]Chap. 5] to solve a PHS that includes algebraic constraints formulated as in [START_REF] Story | Voice simulation with a body-cover model of the vocal folds[END_REF]. This adaptation corresponds to a projection method that:

• produces solutions in the continuous time-domain (with continuous state and discontinuous effort and flows),

• preserves the power balance, accurate at order 2,

• is capable to manage constraints.

From the original PHS structure given in (3), we define a projected structure

S P = {(f, e) ∈ F, E|f = P Se}, (19) 
where P : F -→ F is a projector over a time interval T. Under the condition that S is skew-symmetric, the projected structure preserves the passivity, that is: ∀(f, e) ∈ S P , ⟨e|f ⟩ = 0. The demonstration is done in [START_REF] Remy | Time-continuous power-balanced simulation of nonlinear audio circuits : realtime processing framework and aliasing rejection[END_REF] for PHS without constraint but the introduction of constraints on efforts does not modify it (as their corresponding flows are always 0). By means of writing the solutions using the basis coefficients in some approximation space, a numerical scheme involving numerical integration at each time step can be developed as in [START_REF] Remy | Time-continuous power-balanced simulation of nonlinear audio circuits : realtime processing framework and aliasing rejection[END_REF]. For our application, we use the simplest case where the approximation space reduces to constants over T, with projector P projecting to this space. On a given time interval T, variables are then approximated by:

x(τ ) := x 0 + hδXτ =⇒ Ẋ(τ ) = hδX, (20a) 
w(τ ) := w app , (20b) 
y(τ ) := y app , (20c) 
where x 0 is the initial condition (state at τ = 0) and the subscript app stands for approximation. At each time step, we solve the projected PHS for the unknowns δX, w app and y app using the Newton-Raphson method.

NUMERICAL EXPERIMENTS

For all our numerical experiments, we use a sampling frequency of 44100 Hz and an absolute tolerance of 1e -10 for the nonlinear systems solutions. Table 1. Parameter sets corresponding to 3 configurations.

Configurations and regimes

In the following, the assembled model is excited by an input pressure ramp defined by its amplitude P 0 , a delay time t del and a rise time t rise such that:

P (t) =      0 if t < t del , t-t del trise P 0 if t del < t < t del + t rise , P 0 if t > t del + t rise . (21) 
For our experiments, we consider a set of fixed parameters for each sub-systems:

• • Excitation: delay time t del = 0.005 s and rise time t rise = 0.02 s.

Table 4 gives 3 sets of the complementary parameters giving rise to 3 different behaviours of the dynamical system. The glottal opening h is shown in figure 4 for the 3 configurations.

In configuration C1, the vocal folds are symmetric and the input pressure amplitude is sufficient to induce self-oscillations of the larynx. After a transient of approximately 0.2 s, the system follows a stable trajectory in which the vocal folds are not touching.

Configuration C2 corresponds to a case where the folds are still symmetrical but the input pressure is low. After a transient, the system converges to a static equilibrium with no oscillations.

In configuration C3, the input pressure amplitude is the same than in configuration C2, but the vocal folds are rendered asymmetrical by changing the mass of the left fold. In that case, the system does not self oscillate but converges slowly to a static regime. 

Cartographies

In order to characterize the parameter sets giving rise to oscillations, we use a cartography methodology based on the work done in [START_REF] Missoum | Explicit mapping of acoustic regimes for wind instruments[END_REF] for a clarinet model. It is based on the training of a classification algorithm (based on Support Vector Machines) on data gathered from a number of simulations. In this work, we propose a simple twodimensional cartography of the presented vocal apparatus on the initial glottis opening h r and on the input pressure amplitude P 0 .

The damping coefficient of the vocal folds is set to 4e-3 kg.s -1 while the other fixed parameters are the same than presented in part 4.1. Varying parameters h r [m] and P 0 [Pa] are generated using latin hypercube sampling on the intervals 1e -4 < h r < 1e -3 and 0 < P 0 < 400. After running the simulation, we use a criterion based on the envelope of the oscillating signal h (glottis opening) to determine if there is a self-oscillation. If the amplitude of the oscillation is greater at the end of the simulation than just after the transient, we consider that the system is oscillating. Otherwise, we fit the envelope of the oscillation with an equation of type h(t) = ae bt + c and compare the value of c to a criterion value c crit : if c > c crit , then we consider that there is an oscillation. Figure 5 presents the cartography obtained from a number of simulations. We observe that, for the model with chosen fixed parameters, oscillations only occur in a given input pressure range and for a glottal opening at rest below a given value. This is coherent with the fact that abduction of the vocal folds is needed for the apparition of oscillations. Nevertheless, it is important to keep in mind that the lumped parameters values (macroscopic constants) are not straightforward to estimate from the known characteristics of the tissues and that they can greatly influence the shape of the cartography presented figure 5.

CONCLUSION AND PERSPECTIVES

The main contribution of this paper is the derivation of a power-balanced simulation of a full vocal apparatus based on a nonlinear lumped-parameter modelling. The model involves fluid-structure interaction with physically interpretable power exchanges. It proves capable to produce self-oscillating regimes, and relevant to characterize such regimes with respect to the sub-glottal pressure and the glottal opening at rest.

A straightforward perspective is to use this model to produce co-articulated sound. In the medium term, further work will concern some modelling of contacts between the vocal folds and a refined description of the exterior domain (fluid loss and acoustic radiation). Another work will be devoted to study methods in order to reduce the computational cost.

  where x ∈ R Nx is the state of the system, H : R Nx → R is the Hamiltonian (positive definite energy function), w ∈ R Nw denotes flow variables associated with instantaneous effort laws z : R Nx+Nw → R Nw satisfying z(w, x) ⊺ w ≥ 0, λ ∈ R N λ denotes Lagrange multipliers relative to constraints on efforts, y ∈ R Next and u ∈ R Next are respectively the outputs and inputs of the system. The efforts e ∈ E = R N and flows f ∈ F = R N define the bond variables (e, f ) ∈ B = E × F equipped with the pairing ⟨e|f ⟩ B = e ⊺ f ∈ R. Detailing variables in e and f (see (1)), this pairing defines a global power as ⟨e|f ⟩ B = ∇H(x) ⊺ ẋ Stored power + z(w, x) ⊺ w Dissipated power + u ⊺ y.
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  Vocal folds: folds stiffness k i = 100 N.m -1 , cover stiffness κ i = 300 N.m -1 , damping r i = 1.3e -3 kg.s -1 , sub-glottal surface S sub = 11e -5 m 2 and supra-glottal surface S sup = 11e -7 m 2 . • Glottal flow: density ρ 0 = 1.3 kg.m 3 , length 2l 0 = 4e -3 m, width L 0 = 11e -3 m, initial and reference height h 0 = h r = 1e -4 m. • Vocal tract: number of tracts N = 4, single tract length 2l 0 = 17e -2/(2 * N ) m, tract width L 0 = 1e -2 m, initial tract opening h tract = 1e -2 m, tracts opening speed ḣtract = 0 m.s -1 , wall stiffness k w = 845 N.m-3 and wall damping r w = 0.04 kg.s -1 .m 2 .

Figure 4 .

 4 Figure 4. Glottal opening h as a function of time for 3 configurations.

Figure 5 .

 5 Figure 5. Cartography of oscillating configurations w.r.t. the subglottal pressure P 0 and the glottal opening h r .
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