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Abstract 

The purpose of this article is to introduce two indicators, the first denoted the “Electric Vehicle CarbonFlex Potential” 

indicator, which evaluates an EV’s indirect emissions relative to the maximum and minimum possible indirect emissions given 

the charging behavior of the user. The Second is the “EcoCharge Time” indicator, which provides feedback to an EV user based 

on their charging behavior on the best and worst times of charging the vehicle in a day. Since human behavior cannot be 

controlled, such indicators are essential tools for influencing the behavior of EV users toward a desired optimal, in this case, a 

charging schedule with the lowest possible overall indirect emissions. The proposed indicators were tested on an EV dataset 

using the carbon intensity data from a number of countries and the results show that there exists some amount of flexibility 

potential. Additionally, the results also showed the best charging times, which were typically clustered around, allowing for ease 

of use and understanding.  

Keywords: Indirect Carbon Emissions; Energy Transition; Carbon-free Transportation; Feedback Indicators; Linear Programming 

1. Introduction 

As the world continues to rely heavily on fossil fuels for transportation, the resulting greenhouse gas 

emissions are a major facilitator of climate change. The transportation sector is considered a major contributor to 

global warming since it accounts for 23% of global CO2 emissions (International Energy Agency, 2022). To 

mitigate this impact of transportation on climate change, electric vehicles (EVs) are becoming increasingly 

important in the fight against climate change. Battery Electric vehicles (BEVs) have consequently emerged as one of 

the most promising and prominent alternatives to traditional gasoline vehicles, as also illustrated in Figure 1 

(European Environment Agency, 2018; International Energy Agency, 2021). Governments and private companies 

are investing heavily in EV technology to accelerate their adoption and ensure a sustainable future for our planet. 

Therefore, electric mobility is considered an important pillar to achieving the energy transition for mitigating 

climate change.  

http://www.sciencedirect.com/science/journal/22107843
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Figure 1. Global EV stock for passenger light-duty vehicles-  Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEV) 

(International Energy Agency, 2022) 

 Compared to traditional ICE (internal combustion engine) vehicles, BEVs are a promising alternative that 

offers several benefits, including lower emissions, reduced reliance on fossil fuels, and potentially lower operating 

costs (Ingrid Malmgren, 2016). A key driver for the BEV revolution is that they have zero tailpipes (i.e. direct) 

emissions and are effectively more environmentally friendly in their operational phase. This benefit can be further 

enhanced by sourcing electrical energy from renewable sources, effectively making BEVs zero emissions. However, 

it is pertinent to take into account the production and end-of-life phases of the vehicle as well (i.e. the entire life 

cycle of a BEV). Literature shows that the manufacturing and end-of-life stages of BEVs have higher global 

warming potentials relative to conventional ICEs (Hawkins et al., 2013; Zerrin Günkaya et al., 2016). 

Like all energy-dependent systems, the impact of BEVs on emissions is dependent on the source of 

electricity used to power them. EVs powered by renewable electricity sources, such as wind and solar energy, can 

significantly reduce emissions compared to ICEs. However, for high carbon-intensity grids, BEVs may have 

emissions similar to or even higher than that of a similar ICE (Li et al., 2019). This brings to light the importance of 

optimizing human behavior to minimize the indirect emissions associated with BEVs (Bohua et al., 2018). Effective 

energy or climate awareness indicators can play an important role in influencing human behavior toward more 

sustainable choices. Indicators can serve as a tool to nudge individuals towards more sustainable behaviors, such as 

charging EVs during periods of low carbon intensity. Additionally, indicators provide a clear and concise way to 

communicate complex information (i.e. reduce the cognitive strain associated with trying to process information 

(Calvo et al., 2022)) and can encourage individuals to adopt more sustainable behavior (Midden et al., 2014).  

Multiple studies have been conducted to evaluate the effect of feedback on building occupants’ behavior 

with regard to energy consumption. Nilsson et al and Westskog et al (Nilsson et al., 2014; Westskog et al., 2015) 

concluded that providing feedback resulted in no significant reduction in electricity consumption, whilst Lin et al 

(Lin et al., 2016) recorded a 16.7% reduction in electricity consumption for a group of participants in their study. 

Effectively, these studies point out the fact that indicators can be effective if they are well-designed (simple and easy 

to understand) by incorporating the right socioeconomic factors (income, education, and cultural values) (Capellán-

Pérez et al., 2016; Twum-Duah et al., 2019). Thus, the purpose of this article is to provide feedback in the form of 

indicators to EV owners and fleet operators, which would serve as a tool for assessing their performance relative to 

the best and worst cases. The best case refers to the minimum possible indirect emissions given the historical 

charging behavior of the EV user and vice versa for the worst case. Subsequently, Section 2 of this article provides 

details on the datasets used in this article, Section 3 is the methodology, Section 4 presents the results and 

discussions and Section 5 is the conclusion. 
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2. EV and Grid Carbon Intensity Datasets 

 

Figure 2: Daily usage summary of EV (a) Energy charged, (b) energy discharged, and (c) distance traveled and the distribution of EV (d) hourly 

count of vehicle charging, (hourly count of vehicle discharge, (f) frequency of distance traveled data – typical daily distance less than 50km 

For this article, we consider two datasets, the EV dataset, and the grid carbon intensity dataset, for the 

period between January 2021 and December 2021 (i.e. one year). The considered dataset is sampled at a one-hour 

timestep and has undergone some pre-processing to remove outliers. All authors and as such this article adhere to 

the principles of Open-Science, implying that all datasets, notebooks, and code associated with this article will be 

published following the guidelines prescribed by ORUCE (Open and Reproducible Use Cases For Energy) 

(Hodencq et al., 2021). This study considered a 2013 Renault Zoe with a battery capacity of 22 kWh that was 

primarily used in the southeastern part of France. Figure 2 is a visualization of the EV data and shows some usage 

patterns. It can be observed from Figure 2(e) that the highest frequency of usage occurs between 7 AM and 8 PM, 

which refers to the fact that the main purpose of the vehicle is to drive to and from the workplace. 

 

Figure 3: Hourly carbon intensity for the electricity grids of (a) Brazil-North, Netherlands, and Poland, and (b) Germany, France, India 

(Maharashtra), and USA (California) 

The grid carbon intensity was sourced from the electricity map (Electricity Maps, 2022) for the following 
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countries; India (IN-MH), the USA (US-CAL-SISO), France (FR), the Netherlands (NL), Brazil (BR-N), Germany 

(DE), and Poland (PL), see Figure 3. The data shows that India had the highest carbon intensity (with low levels of 

variations) whilst France had the lowest levels of carbon emissions (also with low levels of variations). The German, 

Dutch, and American (Californian) grids were also of high interest as they had high renewable energy penetration 

rates. 

3. Methodology 

Considering the dataset, two indicators, namely, (i) the Electric Vehicle CarbonFlex Potential Indicator 

(EV-CP) and (ii) the EcoCharge Time indicator (ECT) was proposed. 

3.1. Electric Vehicle CarbonFlex Potential Indicator (EV-CP) 

The EV-CP is an indicator that provides information on the potential an EV user has to improve the indirect 

carbon emissions from their electric vehicle. It ranges from 0 – 1 (0 indicating optimal charging behavior and 1 

indicating the worst possible charging behavior)  This indicator is computed using the Mixed Integer Linear 

Programming (MILP) approach to minimize the carbon emissions related to charging (i.e. the best case) and the 

maximum carbon emissions (the worst case) based on the charging behavior of an EV user. The MILP approach is 

explained further in section 3.3. The EV-CP is then expressed mathematically as: 

𝐸𝑉 − 𝐶𝑃 =  [
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑎𝑙 − 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑏𝑒𝑠𝑡

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑤𝑜𝑟𝑠𝑡 − 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑏𝑒𝑠𝑡

]  (1) 

Such that 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑎𝑙  are the real emissions obtained from the available data and 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑤𝑜𝑟𝑠𝑡 and 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑏𝑒𝑠𝑡 are the emissions from the worst-case and best-case scenarios respectively and are denoted as  

 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑏𝑒𝑠𝑡 =  𝑚𝑖𝑛 [∑ ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) × 𝐶𝑂2𝑔𝑟𝑖𝑑(𝑡)] (2) 

 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑤𝑜𝑟𝑠𝑡 =  𝑚𝑎𝑥 [∑ ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) × 𝐶𝑂2𝑔𝑟𝑖𝑑(𝑡)]  (3) 

Where 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡) and 𝐶𝑂2𝑔𝑟𝑖𝑑(𝑝𝑑, 𝑡) are the charging power (in kW) and grid carbon intensity (g-co2 

eq/kwh) at time step ′𝑡′ respectively.  

3.2. EcoCharge Time indicator (ECT) 

The ECT indicator, on the other hand, makes use of the results from the two optimizations (i.e. optimal and 

worst-case scenarios) and evaluates the best hour and worst hour to charge based on the frequency of charging based 

on the two optimizations. It ranges from -100 to +100, with -100 denoting the highest likelihood for high grid 

emissions (i.e. bordering on the worst-case scenario), and +100 denoting the highest likelihood for low emissions for 

a given hour (i.e. bordering on the best-case scenario). Thus, for the worst-case scenario, the most frequently used 

charging time would yield the worst results and as such should be avoided. Similarly, using the results from the 

optimal scenario (minimize emissions), the best charging time can be determined based on how frequently the 

optimizer decided to charge for a specific hour. The goal of this indicator is to provide very generalized information 

(based on an EV users charging behavior) which would serve as a guide and nudge an EV user to charge at the most 

optimal time with respect to grid-related emissions. The ECT indicator is computed as the difference between the 

likelihood of a best-case charge and the likelihood of a worst-case charge for each hour of the day and is given 

mathematically as: 

𝐸𝐶𝑇 =  
𝐶𝑜𝑢𝑛𝑡𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) − 𝐶𝑜𝑢𝑛𝑡𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)

𝑇
 × 100 (4)  

Where 𝐶𝑜𝑢𝑛𝑡𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)  and 𝐶𝑜𝑢𝑛𝑡𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)   refer to the number of times during the 

evaluation period that the optimizer chose to charge for hour ′𝑡′ for the best and worst case scenarios respectively. 

‘T’ represents the total number of hours ′𝑡′ present in the evaluation period (in this case 365).  
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3.3. Mixed Integer Linear Programming approach for computing best and worst case 

As highlighted in the previous section, a mixed integer linear programming approach is applied to either 

determine the scheduling of charging which would allow the indirect emissions to be maximized (worst-case) or 

minimized (best-case). Figure 4 shows a block diagram representation of the system under consideration. For this 

optimization, we considered two time scales, the main horizon of 1 year (365 days) and the sub-horizon of 1 day (24 

hours), allowing for the daily demand of the EV user to be respected. Thus, the proposed charging strategy will not 

be the global optimal (it would be possible to improve results by removing the constraint of respecting the daily 

demand) however, this strategy allows us to take into account human behavior in the optimization. 

 

Figure 4. Graphical representation of the energy system for optimization 

The objective function of the proposed optimization was defined for the best case and worst case as: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑏𝑒𝑠𝑡 =  𝑚𝑖𝑛 [∑ ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡) × 𝐶𝑂2𝑔𝑟𝑖𝑑(𝑝𝑑, 𝑡)] (5) 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑤𝑜𝑟𝑠𝑡 =  𝑚𝑎𝑥 [∑ ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡) × 𝐶𝑂2𝑔𝑟𝑖𝑑(𝑝𝑑, 𝑡)] (6) 

Where 𝑷𝒄𝒉𝒂𝒓𝒈𝒆(𝒑𝒅, 𝒕) is the charging power from the grid and 𝑪𝑶𝟐𝒈𝒓𝒊𝒅(𝒑𝒅, 𝒕) is the grid carbon intensity 

for the horizon pd and belongs to the set{𝟎, 𝟏, 𝟐, ⋯ , 𝟑𝟔𝟒} at time step t. Moreover, to ensure that the battery state of 

charge (SOC) stays within defined operational bounds: 

SOCMin × 𝐶𝑎𝑝𝑏𝑎𝑡  ≤ E𝑏𝑎𝑡(pd, t) ≤ 𝑆𝑂𝐶𝑀𝑎𝑥  × 𝐶𝑎𝑝𝑏𝑎𝑡  (7) 

Where 𝐒𝐎𝐂𝐌𝐢𝐧 × 𝑪𝒂𝒑𝒃𝒂𝒕  and 𝑺𝑶𝑪𝑴𝒂𝒙  × 𝑪𝒂𝒑𝒃𝒂𝒕 refers to the minimum and maximum bounds of battery 

energy respectively and 𝐄𝒃𝒂𝒕(𝐩𝐝, 𝐭) is the electric charge in the battery. The energy in the battery 𝐄𝒃𝒂𝒕(𝐩𝐝, 𝐭) is 

given as: 

E𝑏𝑎𝑡(𝑝𝑑, 𝑡) =  E𝑏𝑎𝑡(𝑝𝑑, 𝑡 − 1) +  [𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡) ×   𝜂𝑐ℎ𝑎𝑟𝑔𝑒 −
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡)

𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

  ] × 𝑡𝑠 (8) 

Where, 𝑷𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆(𝒑𝒅, 𝒕) is the discharge power of the battery for the sub-horizon pd at time t, 𝜼𝒄𝒉𝒂𝒓𝒈𝒆 

and 𝜼𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆  are the battery charge and discharge efficiencies respectively and 𝒕𝒔  is the timestep coefficient 

(defined as the ratio of time step in minutes to 60 minutes). In addition, to ensure charging and discharging respect 

the technical constraints of the battery and the vehicle movement: 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡)   ≤ P𝑚𝑎𝑥−𝑐ℎ𝑎𝑟𝑔𝑒  × 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑑, 𝑡) (9) 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡)   ≤ P𝑚𝑎𝑥−𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  × 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑑, 𝑡) (10) 

Where, P𝑚𝑎𝑥−𝑐ℎ𝑎𝑟𝑔𝑒  and  P𝑚𝑎𝑥−𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  are the maximum charging and discharging power of the EVs 

battery and 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝𝑑, 𝑡) is a binary value which determined by the discharge power of the EV (i.e., it has a 

value of one when the vehicle is not being discharged and zero when the vehicle is in motion). To ensure an energy 

balance in the system: 

𝑃𝑔𝑟𝑖𝑑(𝑝𝑑, 𝑡) − 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡) + 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑡) − 𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑝𝑑, 𝑡) = 0 (11) 
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Where 𝑃𝑔𝑟𝑖𝑑(𝑝𝑑, 𝑡) and 𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑝𝑑, 𝑡) are the power imported from the grid and consumed by the EV, 

respectively. Lastly, to ensure continuity in the battery’s State of Charge (SOC), particularly in the day strategy, an 

additional constraint was added to ensure that the battery SOC charge stayed within the defined operating bounds. 

𝐸𝑏𝑎𝑡(𝑝𝑑 + 1 , 0) =  𝐸𝑏𝑎𝑡(𝑝𝑑, 𝑇 + 1) + [𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑇) ×  𝜂𝑐ℎ𝑎𝑟𝑔𝑒 −
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑝𝑑, 𝑇)

  𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

  ] × 𝑡𝑠 12 

Where 𝑇 is the last time step in the set defined by the sub-horizon given by{0,1,2 … 𝑇}, and the final battery 

energy is constrained as defined in Equation (2). Thus, the starting battery energy for the various periods was 

defined as:  

E𝑏𝑎𝑡(pd, t) = {
  𝐸𝑏𝑎𝑡(𝑝𝑑, 𝑇) ≤ 𝐶𝑎𝑝𝑏𝑎𝑡 ,   𝑖𝑓 𝑝𝑑 = 0 𝑎𝑛𝑑 𝑡 = 0

E𝑏𝑎𝑡(𝑝𝑑 − 1, 𝑇 + 1),   𝑖𝑓 𝑝𝑑 > 0 𝑎𝑛𝑑 𝑡 = 0
 13 

To carry out the optimization, the following technical parameters outlined in Table 1 were considered. Both 

day and annual strategies were modeled as PYOMO (Python Optimisation, Modelling Objects) (Hart et al., 2011) 
concrete models and were solved using the Gurobi solver (Gurobi Optimization, LLC, 2021). 

Table 1. Technical parameters and assumptions considered for the optimization 

No. Parameter Unit Value 

1 Max Charging Power kW 20.0 

2 Max discharging power kW 40.0 

3 Charging Efficiency % 85.0 

4 Discharging Efficiency % 100.0 

5 Sub-horizon  days 1 

6 Horizon days 365 

The discharging efficiency was kept at 100% since the sensors measured the energy being drawn out of the 

battery, thus the losses have been accounted for in the measurements. The subsequent section details the results of 

the optimizations. 

4. Results and Discussion 
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Figure 5. (a) Comparison of CO2 emissions (gCO2-eq/km) of reference charging schedule with minimum optimal schedule and maximum 

optimal schedule, (b) Comparison of Electric Vehicle CarbonFlex indicator for studied countries. 

Figure 5 (a) illustrates the actual results regarding the CO2 emissions of the reference-charging schedule 

with minimum optimal schedule and maximum (worst case) schedule. Figure 5 confirms the earlier assertion about 

Poland and India (Maharashtra) having higher indirect CO2 emissions and vice versa for France. Additionally, 

Figure 5 (a) provides an indication of how much potential flexibility there exists (generally, the Netherlands and the 

USA have the highest potential whilst France and India have the lowest potential). 

Building on this premise, the EC-CP indicator was calculated for each of the studied grids and is shown in 

Figure 5(b). It can be observed that for the French grid, the EV had a high (second highest potential (since the higher 

the value the higher the flexibility potential available). Whilst the flexibility potential was lowest in the Brazilian 

grid. The EV-CP in no way indicates that the actual emissions of the EV were lower in Brazil compared to the 

Emissions in France. It does, however, indicate that for the given charging behavior, an EV’s emissions would be 

closer to the optimal (i.e. the best case) emissions for the Brazilian grid as compared to the French grid. 

The ECT indicator was thus computed for France, the Netherlands, Brazil, and India, From Figure 6, we 

can see that for France, the best times to charge were found to be midnight to 4 AM, whilst the worst times to charge 

were between 7 and 11 PM. Similarly, for the Netherlands, the best times were 12 noon to 4 PM whilst the worst 

times were between 5 and 9 AM and 7 to 11 PM. In the case of Brazil-North, the best times to charge were between 

4 and 7 PM whilst the worst times were between midnight and 5 AM. Lastly, for India, 10 Am to 2 PM were seen to 

be the best times with most other hours falling in the negative zone hence not an ecological time to charge. 

 

Figure 6. EcoCharge Time (ECT) for (a) France, (b) Netherlands, (c) Brazil-North, and (d) India 

5. Conclusion 

 EVs have an associated operational global warming potential, though indirect yet it exists depending on the 

grid. There exists a potential to further improve the performance of an EV by potentially giving EV users some 

feedback. Using the EV-CP indicator, we propose a means of evaluating the behavior of EV users with respect to 

the emissions related to the electricity used to charge the EV. To promote desirable behavior, the ECT indicator 

provides information on behavioral change that would nudge an EV user in the desired optimal direction in terms of 

their indirect emissions. 

 These indicators have been proposed taking into account the behavior of one driver, and the results 
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depicted here may not be generally applicable. However, the methodology should be replicable and the feedback 

also applicable to different users. A further study to evaluate the effectiveness of the proposed indicators and their 

potential consequence on the behavior of EV users would be required and is planned as a future perspective of this 

study. 
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