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 ABSTRACT 

 Monitoring wetlands of Kenya is critical for analysis of environmental changes since 
they present unique ecosystems with special hydrological balance and biodiversity. In this 

study, the Landsat 8-9 OLI/TIRS satellite images for 2015-2022 were classified using GRASS 
GIS scripts to evaluate changes in the Lorian Swamp wetland, north-eastern Kenya. The 
results of the image analysis presented maps of land cover changes including wetlands. The 
study demonstrated technical effectiveness of the GRASS GIS for image analysis, and 
contributed to the environmental monitoring of African wetlands. 

 
 RÉSUMÉ: Cartographie des zones humides du Kenya à l’aide de données de 

télédétection et de scripts de GRASS GIS. 
 La surveillance des zones humides du Kenya est essentielle pour l’analyse des 
changements environnementaux car elles présentent des écosystèmes uniques avec un équilibre 
hydrologique et une biodiversité particuliers. Dans cette étude, les images satellite Landsat 8-9 
OLI/TIRS pour 2015-2022 ont été classées à l’aide de scripts SIG GRASS pour évaluer les 
changements dans la zone humide du marais de Lorian, au nord-est du Kenya. Les résultats de 
l’analyse d’images ont présenté des cartes des changements d’occupation du sol, y compris les 
zones humides. L’étude a démontré l’efficacité technique du SIG GRASS pour l’analyse 

d’images et a contribué à la surveillance environnementale en Afrique. 
 

 REZUMAT: Cartografierea zonelor umede din Kenya folosind date de teledetecție și 
scripturi GRASS GIS. 
 Monitorizarea zonelor umede din Kenya este esențială pentru analiza schimbărilor de 
mediu, deoarece acestea prezintă ecosisteme unice cu echilibru hidrologic și biodiversitate 
deosebite. În acest studiu, imaginile satelitului Landsat 8-9 OLI/TIRS pentru 2015-2022 au fost 

clasificate folosind scripturile GRASS GIS pentru a evalua schimbările din zona umedă Lorian 
Swamp, din nord-estul Keniei. Rezultatele analizei imaginii au prezentat hărți ale modificărilor 
acoperirii solului, inclusiv zonele umede. Studiul a demonstrat eficacitatea GIS GRASS pentru 
monitorizarea mediului în zonele umede africane. 
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 INTRODUCTION 

 Water, a key resource and generator of secondary resources in the 21st century, is 
under high threats and risks of a number of stressors (Bănăduc et al. 2022). In Kenya, recent 
environmental changes led to negative processes which include land degradation, vegetation 
decline, fragmentation of landscape patterns, changed functionality (Gomes et al., 2023) and 
land cover changes (Balaka Opiyo et al., 2022). Recent studies on land cover change 
assessment in Kenya noticed the conversions of grassland and forestland to cropland, increase 
of cropland and built-up area and decrease of forest, grassland, and bare lands (Rotich et al., 
2022). The overexploitation and land degradation in Lake Victoria basin of Kenya resulted in 

decline in wetlands, vegetated landscapes, and farm lands (Onyango and Opiy, 2022). Climate 
effects on the environmental sustainability arise from the increasing temperature and decreased 
precipitation which led to the increase in aridity and scarcity of water resources (Böhme et al., 
2013; Goman et al., 2020; Lemenkova, 2022a,b). This results in changed vegetation patterns 
such as expansion of shrubs in areas earlier occupied by pastures, the distribution of gullies 
due to the erosional processes (Maua et al., 2022; Lemenkova, 2022b). 
 Wetland fishery potential depends on water level in lakes, owing to the effects of a 
decline of water depth during the dry season (Kipkemboi et al., 2007). Degraded examples of 
biodiversity in Kenya include alien species that contribute to the decline of endemics and 
increase in water and food insecurity. The integrated effects of all these climate-environmental 

factors increase and accelerate land degradation processes and environmental unsustainability. 
Rehabilitation and restoration of land and water resources is a complex process which takes 
time, resources, and efforts. Therefore, preventive mapping of land cover changes may 
contribute to the operative environmental monitoring in easter Africa. 
 Mapping land cover types as reliable identifiers of environmental changes presents an 
effective baseline for assessing land degradation and environmental sustainability (Lemenkova, 
2023; Steinbach et al., 2023). Wetlands in Kenya present unique ecosystems with specific 
features of hydrology, soils, and vegetation patterns (Böhme et al., 2016). Wetlands play a key 
role in hydrological balance of water resources, maintain biodiversity as habitats for rare 

species, and have high potential in agricultural production (Leauthaud et al., 2013). As 
important transition zones between land and water areas, wetlands support cycling of nutrients 
and energy flow. Highly sensitive to changes in hydrology, wetland complexes also present 
valuable data for paleoenvironmental and paleoclimate reconstructions and climate modelling, 
since they represent the interrelation between terrestrial and lacustrine environments in the past 
(Kiage and Kam-biu Liu, 2099; Goman et al., 2017; Githumbi et al., 2021). 
 The study region focuses on the area of wetlands in the north-eastern Kenya (Fig. 1). 
The origin and formation of Kenyan wetlands has a deep connection with topographic, 
geomorphic, and geologic setting which in turn affect the climatic conditions and hydrologic 

regulations including the level of drainage (Job and Sieben, 2022). With this regard, the 
geology of the Kenyan Rift Valley has the most prominent impact on the distribution of 
lacustrine and wetland environments through the formation of small shallow lakes located in 
gently sloping depressions in the rift floor. 
 Wetland ecosystems of Kenya combine the characteristics of terrestrial and aquatic 
habitats with special features on water, soil, and vegetation types. These wetlands play a main 
hydro-ecological buffer role through protecting lake shallows from excessive sedimentation 
and eutrophication, controlling the growth of aquatic plant and algae. In this way, wetlands 
maintain the livelihoods of the riparian communities and ecosystems (Morrison et al., 2013). 
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Figure 1: Topographic map of Kenya with study area (red rotated square). 

Data source: GEBCO. Mapping: GMT scripting toolset. 
 

 Furthermore, wetlands play a critical role in biodiversity and ecosystem services in 
rural areas of Kenya, which are essential to health and welfare. Thus, disturbed patterns of 
water supply, stagnant water and storage may affect sanitation and hygiene (Anthonj et al., 
2016, 2017, 2019). At the same time, due to the associated climate threats and anthropogenic 
challenges, wetlands in Kenya degrade and wetland landscapes become partially or completely 

lost at an increasing rate. Changes in wetland landscapes are triggered by several factors 
including human activity, changing river hydrology and climate-change-related coastal 
processes (Gitau et al., 2023). The wetland habitats losse will necessarily affect the distribution 
of wildlife species, and will have negative effects on livelihoods of the selected communities. 
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 The hydrogeological parameters of soil such as permeability and plasticity, content of 
organic mass, granularity and viscosity affect water drainage in lakes and wetlands and 
regulate water circulation (stagnant waters in swamps versus currents in lakes). Nowadays, the 
region of the Kenyan Rift Valley forms a part of the large complex of the East African Rift 
System (Garcin et al., 2012; Michon et al., 2022; Lemenkova, 2022e), is presented by the 
Quaternary extrusive and intrusive rocks (Qv), outcrops of Tertiary (Ti) sediments (Fig. 2). 

 

 
Figure 2: Geologic units, lithology and provinces in Kenya. 
Data source: geologic vector layers obtained from USGS. 

 

 Other units include Quaternary sediments, and occasional Jurassic outcrops. Such 
formation includes fine-grained caoline, montmorillonite, kaolinite, and illite as the principal 
clay minerals (Yurevich, 1979). The subsequent Cenozoic extension is recorded in northern 
Kenya in the Turkana-Lokichar rift zone (Torres Acosta et al., 2015). Active geologic 

development presented conditions for formation of volcanic and tectonic lakes of the eastern 
branch of the African Great Rift Valley which are notable by hydrological connectivity. 
Besides, volcanic activity generated endorheic basins (Fazi et al., 2018). 
 The Olorgesailie Formation in southern Kenya Rift Valley contains lacustrine, wetland 
and terrestrial facies formed during the last 1.2 M years. The remaining aquatic indicators, 
such as diatoms, fossils and rhizolith, evidence the presence of shallow fresh to mildly saline 
waters in Pleistocene in this region (Owen et al., 2009; Scott et al., 2008). Such geological 
setting creates favourable conditions for the formation of lakes and wetlands in Kenya. Here 
the depth of the valley affects the velocity of streams, river discharge and ground water storage 

with shallow basins that better correspond to the formation of wetlands and swamps. In turn, 
the topographic shape of valley reflects the geomorphic parameters and soil types. 
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 The present paper aims at mapping changes in wetlands of Kenya over the recent 
decade. To this end, a series of the satellite images was used to reveal changes in land cover 
types occasioned by the intensive human activities which requires enhancing the protection of 
wetlands in Kenya. Depicting the dynamics in Kenya’s wetlands using remote sensing data 
and GIS has been documented in existing papers (Kiage et al., 2007; Olang et al., 2011; Mwita 
et al., 2013; Mwaniki et al., 2017; Okotto-Okotto et al., 2018; Wanjala et al., 2020). However, 
these papers mostly use traditional methods of mapping such as GIS. In contrast, this study 
presents an advanced script-based approach by the GRASS GIS scripts. Scripts used in 
cartographic tasks significantly improve the mapping workflow through automation and 
programming (Lemenkova, 2019, 2021). 

 A specific focus of this study is placed on the Lorian Swamp. One of the important 
wetlands ecosystems of north-eastern Kenya, Lorian Swamp is situated on a vast floodplain 
(Fig. 3). The swamp is located in the arid zone with high mean annual temperatures and 
excessive evaporation. The swamp is fed by occasional rainfall which have a highly irregular 
pattern of occurrence due to the recurrent floods and drought (Mati et al., 2005). The effects 
from arid and semi-arid regions result in seasonal variations of the Lorian Swamp which is a 
subject to occasional droughts affecting its size, the extent and level of water. Thus, the swamp 
varies in area from almost zero to about 5.8 km2 (Crafter et al., 1992). 

 

Figure 3: Enlarged view of the Lorian swamp, Kenya, on the aerial image: USGS. 
 

 The wetland area of the Lorian Swamp presents a vital resource for dry-season grazing 
as well as a sanctuary for the nomadic herds. Such climate setting creates unfavourable 

conditions for swamp ecosystem and affect its coverage and extent. Major water sources that 
fed the Lorian swamp include Ewaso Ng’iro North River with its tributaries originating in the 
slopes of Mountain Kenya and forming a river basin. Minor sources include seasonal wadis 
(Ministry of Environment and Mineral Resources, Kenya, 2012). 
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 MATERIAL AND METHODS 

 Data 
 The data include two multispectral Landsat 8-9 OLI/TIRS satellite images covering 
target area of the Lorian swamp on 14 January 2015 and 28 January 2023 (Fig. 4). Technical 
characteristics common for both images are the following. The images are acquired from the 
USGS EarthExplorer repository with Landsat Collection Category T1 and Collection Number 
2. The Landsat Worldwide Reference System (WRS) Path of the images is 167, the WRS Row 
is 59 which coincide with the target path and row of the satellite’s orbit. The Station Identifier 
is LGN; the images were taken during day period with Nadir on. The Data Type L2 is 
OLI_TIRS_L2SP for both of the scenes and Sensor Identifier is OLI_TIRS and Ground 

Control Points Version 5. The Product Map Projection L1 is Universal Transverse Mercator 
(UTM), Zone 37, Datum and Ellipsoid WGS84. The rest of the metadata is summarised in the 
table 1. 

 

Figure 4: Remote sensing data (RGB) captured from the USGS EarthExplorer repository: 
Landsat 8-9 OLI/TIRS C2 L12 images. (a): 14 January 2015; (b): 28 January 2023.  

 

 Satellite images contain repetitions of pixels arranged along the matrix structure of      
the raster with different brightness. This is illustrated in figures 5 and 6, which show              
the original Landsat OLI/TIRS scenes and the segments of the study area. Therefore,                
the analysis of the satellite images relies on the information containing spectral reflectance        
of the pixels corresponding to the land cover types on the Earth’s surface including       
wetlands. 
 The identification of the land cover types in general and wetlands in particular     
enables to collect information regarding the extent of these landscapes, while changes of 
contours over time enabled to assess the variations of the land cover types caused by the 

climate effects. 
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 Table 1: Metadata of the two images Landsat 8-9 OLI/TIRS used in this study. 

Data Set Attribute Attribute Value (2015) Attribute Value (2023) 
Landsat Product Identifier L2 LC08_L2SP_167059_201501

14_20200910_02_T1 
LC09_L2SP_167059_2023012

8_20230309_02_T1 
Landsat Product Identifier L1 LC08_L1TP_167059_201501

14_20200910_02_T1 
LC09_L1TP_167059_202301

28_20230309_02_T1 
Landsat Scene Identifier LC81670592015014LGN01 LC91670592023028LGN02 
Date Acquired 2015/01/14 2023/01/28 
Roll Angle 0.000 -0.001 
Date Product Generated L2 2020/09/10 2023/03/09 
Date Product Generated L1 2020/09/10 2023/03/09 
Start Time 2015-01-14 07:35:58.666005 2023-01-28 07:36:21 
Stop Time 2015-01-14 07:36:30.436001 2023-01-28 07:36:53 
Land Cloud Cover 0.00 0.01 
Scene Cloud Cover L1 0.00 0.01 
GCP Model 866 791 
Geometric RMSE Model 2.482 4.544 
Geometric RMSE Model X 1.460 3.172 
Geometric RMSE Model Y 2.008 3.254 
Processing Software LPGS_15.3.1c LPGS_16.2.0 
Sun Elevation L0RA 53.70218735 54.66787672 
Sun Azimuth L0RA 130.48808928 125.24360389 
TIRS SSM Model FINAL N/A 
Satellite 8 9 
Scene Center Lat DMS 1°26’47’’N 1°26’46.90’’N 
Scene Center Long DMS 39°15’05.98’’E 39°13’35.08’’E 
Corner Upper Left Lat DMS 2°29’29’’N 2°29’28.93’’N 
Corner Upper Left Long DMS 38°13’44.90’’E 38°12’07.74’’E 
Corner Upper Right Lat DMS 2°29’27.56’’N 2°29’27.67’’N 
Corner Upper Right Long DMS 40°16’28.24’’E 40°15’00.83’’E 
Corner Lower Left Lat DMS 0°23’36.67’’N 0°23’36.67’’N 
Corner Lower Left Long DMS 38°13’47.42’’E 38°12’10.37’’E 
Corner Lower Right Lat DMS 0°23’36.46’’N 0°23’36.46’’N 
Corner Lower Right Long DMS 40°16’24.06’’E 40°14’56.72’’E 
Scene Center Latitude 1.44639 1.44636 
Scene Center Longitude 39.25166 39.22641 
Corner Upper Left Latitude 2.49139 2.49137 
Corner Upper Left Longitude 38.22914 38.20215 
Corner Upper Right Latitude 2.49099 2.49102 
Corner Upper Right Longitude 40.27451 40.25023 
Corner Lower Left Latitude 0.39352 0.39352 
Corner Lower Left Longitude 38.22984 38.20288 
Corner Lower Right Latitude 0.39346 0.39346 
Corner Lower Right Longitude  40.27335 40.24909 
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 The colour composites were made using the GRASS GIS module “r.composite”. The 
following code used for the false color composite: “r.composite blue = L8_2023_03 green = 
L8_2023_04 red = L8_2023_05 output = L8_2023_rgb_FCC” (here, the example is given for 
the image of 2023, repeated likewise for 2015). The following code was used for generating 
the true color composite: “r.composite blue = L8_2023_02 green = L8_2023_03 red = 
L8_2023_04 output = L8_2023_rgb_TCC”.  
 The Landsat 8 true (or natural) color composite uses visible spectral bands where red 
corresponds for Band 4, green for Band 3 and blue for Band 2 in the respecting red, green, and 
blue spectral channels as color composites. This results in the image composed in a natural 
colored product, which is a representation of the Earth’s lanscapes on the photo image as 

naturally visible by human’s eyes. 
 

 Methods 
 The study utilizes the Geographic Resources Analysis Support System Geographic 
Information System (GRASS GIS) (Neteler and Mitasova, 2008; Neteler et al., 2008) as a 
major tool for cartographic data processing. The existing techniques and scripts of the GRASS 
GIS for mapping tasks were applied (Lemenkova, 2020). Image processing started from 

creating the color composites of the images which were generated for natural (true) and false 
colour composites (Figs. 5 and 6). 

 

Figure 5: True color composites of the Landsat 8-9 OLI/TIRS images. (a) Bands composed 

from the image on 14.01.2015; (b) Bands composed from the image on 14.01.2015. 
 

 To this end, the images were processed, visualised and saved as bitmap graphics using 
the following sequence of GRASS GIS commands and modules (here, the example for the 
false color composite): “d.mon wx0 g.region raster = L8_2023_rgb_FCC -p d.rast 
L8_2023_rgb_FCC d.out.file output = L8_2023_rgb_FCC”.  
 The false color composite with 5-4-3 band combination of the Landsat OLI/TIRS 

images is useful for monitoring plant density in wetlands and health monitoring of vegetation, 
since the chlorophyll contained in leaves of the plants strongly reflects NIR light while 
absorbing red, therefore the areas covered by vegetation are colored by bright red. In this way, 
the settlements and the areas of sparsely populated villages in the surroundings, as well as 
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exposed ground are coloured grey or tan/middle brown colors, while water appears blueish or 
black. In contrast, area covered by dense vegetation near the Lorian swamp is represented by 
bright red with differences visible for 2015 and 2023 (Fig. 6). 

Figure 6: False color composites of the Landsat 8-9 OLI/TIRS images: Band B05 as the Red 
channel, Band B04 in the Green channel, and Band B03 in the blue channel. (a) Bands 

composed of the image on 28.01.2023; (b) Bands composed of the image on 28.01.2023. 
 

 Spectral reflectance of the pixels that differ for each case visually breakes the satellite 
image as multi-color scene depending on colour composites of bands (e.g., false colour 
composites of true colour composites). The description and interpretation of the objects 

identified as various land cover types was based on the information on land cover types of 
Kenya obtained from the FAO. The annotations, descriptions, and locations of the land cover 
classes were performed for images of each target year. Creating the classes was possible using 
the “maximum-likelihood discriminant analysis classifier” due to the functionality of this 
algorithm which includes image discrimination techniques by clustering and the preceding 
procedure of k-means clustering. After the classification, the classes were annotated as objects 
and features including the extent of wetlands in Kenya for comparison in multiple years. 
 For a GRASS GIS-based environment, the commands are called using the following 
sequence of commands implemented by a sequence of modules. First, the module “r.import” 

calls a raster TIFF files and imports it to the working folder with bilinear resampling: “r.import 
input=/Users/polinalemenkova/grassdata/Kenya/LC09_L2SP_167059_20230128_20230309_0
2_T1_SR_B1.TIF output=L8_2023_01 resample=bilinear extent=region resolution=region --
overwrite”. The imported data were checked by the “g.list rast” command. As explained 
earlier, before using the algorithm, according to established GRASS GIS techniques using a 

sequence of modules “i.group”, “i.cluster”, “i.maxlik” (Lemenkova, 2022d), the snippets of 

the Landsat OLI/TIRS data were first visualized in the USGS to evaluate data quality and to 
define the cloudiness of the scenes. Both the scenes were selected with the cloudiness lesser 

then 2% to ensure correct classification. 
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 Afterwards, the metadata of the raster images were checked by the “r.info” module 
(e.g., r.info -r L8_2015_07), and “g.list rast” which was used for listing the imported raster 
files in the next step. Thereafter, the “i.group” modules was used to create the groups and 
subgroups of the Landsat bands to include visible spectral bands: “i.group group=L8_2023 
subgroup=res_30m input=L8_2023_01,<...>,L8_2023_07”. The following module “r.support” 
command was used to define semantic labels for all Landsat OLI/TIRS bands by considering 
the number of bands in the image: “r.support map=L8_2015_01 semantic_label=OLI_1”. 
 The MaxLike algorithm embedded in the GRASS GIS classifies pixels into those 
below the threshold as the target class objects using the centroids of the clusters generated by 
the “i.cluster” module in previous step: “i.cluster group=L8_2023 subgroup=res_30m 

signaturefile=cluster_L8_2023 classes=10 reportfile=rep_clust_L8_2023.txt --overwrite”. The 
rest of the image is classified automatically into the selected 10 target classes, based on the 
identified colour intensity of pixels. This is essentially done based on the discriminating of the 
breaks between the levels of the spectral reflectance of the pixels identified on the images and 
colour of the background of the Landsat OLI/TIRS scenes. The algorithm recognises spectral 
reflectance of the pixels and identifies those that do not reach the threshold level as not 
belonging to the target class and vice versa. 
 The procedure was performed using the “i.maxlike” algorithm, a commonly used 
robust method in the unsupervised classification of image processing to classify the cell 

spectral reflectances in imagery data as follows: “i.maxlik group=L8_2023 subgroup=res_30m 
signaturefile=cluster_L8_2023 output=L8_2023_cl_classes reject=L8_2023_cl_reject”. The 
aim is to select the correct inlier correspondences of the pixels to the target classes given a set 
of the one-to-one matches. In this model, the algorithm uses the clusters generated previously 
as a signature file to fit the pixels into the target groups. Using the defined parameters, the 
pixels were discriminated against the groups of the centroids of clusters using the objects 
parameters defined in a threshold. The boolean array of cells was defined as a class in each 
case. Thus, pixels with values excessed the threshold indicated another land cover class 
different from the given one, while pixels within the given class were used for data processing. 

Similar to object recognition, the maximal classifier is used to define the threshold of objects 
parameters for identification of the land cover classes and wetlands as a target class. 
 The maps were plotted based on the implemented algorithm and the comparison of the 
actual land cover classes was performed within the several years.The image was partitioned 
using a threshold by assigning/rejecting pixels to/from the classed of land cover types. The 
object tracking was done iteratively until the Landsat image is classified and classes detected 
for the target region of Kenya. The procedure was repeated for each image for all the relevant 
years. Here, the commands used in the GRASS GIS workflow have the following meaning: 

1. “g.region” – Lists the region of the images and sets region to match the scene; 
2. “i.group” – Lists the necessary Landsat bands from visible spectrum available on 

Landsat band collection (the panchromatic and TIR are excluded); 
3. “i.cluster” – Creates a new group of the classes using k-means clustering algorithm for 

a given image. It partitions the image and finds optimal parameters for pixels for a 
given target number of classes. The input signature file is generated for the following 
“i.maxlike” algorithm; 

4. “r.support” – Creates the semantic labels for repetitive entries for automation; 
5. “i.maxlike” algorithm ‒ Classified the image into land cover classes. 
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 The classification of the images consists of training the algorithm of classifiers that 
discriminates pixels forming clusters from the spectral bands of the image, detecting their 
spectral reflectance, assigning to clusters according to the centroids. The clusters of the pixels 
are defined by a series of the automatic trial tests with defined parameters, changing pixels’ 
distance to the centroids of the clusters and closeness to the centers of the clusters to reach 
optimal combination. Natural clusters of the land cover classes are based on the location or 
attribute values using the k-means algorithm embedded in the GRASS GIS. Plotting the 
classified maps is implemented using the “d.mon wx0” command by the “d.rast.leg 

L8_2014_cluster_classes” command that defines color legends and visualizes them on the maps. 
 

 RESULTS AND DISCUSSION 

 Figures 7 and 8 show the images representing classes for each of the two images with 
the assigned land cover classes for various groups of pixels, number of pixels in a class and 
percentage of the correctly classified pixels represented in grey colour. The cluster groups used 
as empirical testing and training data during K-means algorithm for identification of optimal 
classes in the landscapes of north-east Kenya are groups of land cover types. The assignment 
was performed without the replacements and visualised as a continuous plot for both images 

(Figs. 7 and 8) to visually compare the outputs. 

Figure 7: (a) Classification the Landsat 8-9 OLI/TIRS on 14.01.2015 of the Lorian Swamp 
wetland, Kenya with pixels classified into 10 classes. (b) Rejection probability values for 

image on 14.01.2015 with pixel classification confidence levels. 
 

 Land cover classification is applied to each image from the USGS. The clusters were 

optimized using the cycles of the k-means algorithm executed iteratively by the GRASS GIS 
until only the suitable pixels of the images are remained using the following parameters: 
number of clusters forming the scene, radius of pixel’s neighborhood and threshold of colour 
intensity. Similar classes of the landscapes (tree cover: open, deciduous broadleaved, 
evergreen broadleaved, mixed type, unknown type, evergreen needle-leaved) defined by the k-
means parameters were merged according to the landscape structure and resolution of the 
Landsat images (30 m) where combined classes signify the common type of the landscapes. 
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 Each land cover class on the image was identified with dominated vegetation patterns 
crossing the landscapes and indicating the presence or absence of wetlands. This resulted in a 
series of the segments visualised assigned to the land cover classes as randomly coloured 
areas. The classified images were then converted to maps with added legends explaining the 
land cover types, computed correctness of the pixels assigned for data quality control, and 
compared with the original raster files of the Landsat 8-9 OLI/TIRS scenes. Quality control of 
the classified images was performed in pixels’ level with identified examples (Figs. 7 and 8). 

 

Figure 8: (a) Classification the Landsat 8-9 OLI/TIRS on 28.01.2023 of the Lorian Swamp 
wetland, Kenya with pixels classified into 10 classes. (b) Rejection probability values for 

image on 28.01.2023 with pixel classification confidence levels. 
 

 Here, the white colour signify the high rejection probability values with pixel 
classification confidence levels, while black to dark grey colours in the middle of the       
images signify the successfully classified pixels. Middle grey coloured pixels crossing the 
main image mean the successfully classified land cover classes, slant grey pixels mean the 
occasional pixels with occasional noise. The interpretation of the land cover classes and 

wetlands in Kenya by GRASS GIS approach performed well, while the overlapping of the 
neighboring classes required more attention when defining the parameters for automatic land 
cover class detection. The overlap cases existed between the two neighbor classes with similar 
spectral reflectance due to similar vegetation patters. In these cases, border classes were 
reclassified. The correction of such cases was done semi-automatically by checking the border 
regions of land cover classes and ignoring the overlapped segments in the neighbouring classes. 
 The final data structure of the mosaic patters in the north-eastern Kenya is presented 
by the areas of the 10 land cover classes. The presented maps were compared with the original 
raster TIFF files of the Landsat OLI/TIRS images for quality control and visual inspections in 

the GRASS GIS environment. The following 10 land cover classes were mapped using data 
adopted from ESA CCI-LC project derived from Kenya Land Degradation Neutrality Target 
Setting Final Report, Secretariat and the Global Mechanism of the UNCCD, based on UN 
Land Cover Classification System developed by FAO: 1) Cropland (rainfed and irrigated); 2) 
Wetlands, swamps and flooded areas; 3) Grassland; 4) Forests and tree cover (broadleaved, 
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evergreen); 5) Forests and tree cover (broadleaved, deciduous); 6) Mosaic natural vegetation of 
mixed leave type (broad-leaved and needle-leaved); 7) Shrubland (deciduous); 8) Settlements 
and urban areas; 9) Bare areas; 10) Water bodies. 
 For classification, we applied two possible algorithm steps provided by the GRASS 
GIS modules “i.cluster” and “i.maxlik” for fusing pixels into the structured land cover classes 
which represent a complex mosaic of the wetland landscapes in Kenya. A k-means clustering 
method was used for partition of the images into 10 classes using estimation of distance from 
each pixel to the cluster centroid. A more principled approach is presented by the “i.maxlik” 
module which selects the 10 cluster categories as land cover classes, and performs the 
assignment of pixels into these classes according to their spectral reflectance and spectral 

signature file generated earlier by the “i.cluster”. Such sequence of the GRASS GIS modules 
demonstrated an integrated workflow concept for the task of vegetation objects detection, 
showing how structured classes support image classification process for multi-spectral imagery 
with a case of the Landsat scenes. 

 CONCLUSIONS 

 Mapping land cover types is necessary to meet the environmental needs of the 
sustainable development in Africa. It is usefull for monitoring land resources to support 
ecosystem in Kenya. Here, we presented a way to integrate remote sensing data and process 
them using GRASS GIS scripts for the task of image classification, analysis and monitoring 
landscape changes. In particular, we incorporated the clustering technique by k-means using 
“i.cluster” module in the training process of image partition. The module “i.maxlik” enabled to 

assign pixels into valid land over classes and perform image partition according to adjacent 
object categories. During image classification, a topological description of the land cover 
classes by FAO was adopted for a selected region in the Lorian swamp surroundings for 
exploring structured pattern of the land cover types in the north-eastern Kenya. 
 Scripting algorithm of GRASS GIS provides classification more accurate and faster 
than the GIS tools, since the processing of one image takes few seconds. Such performance is 
achieved due to automation of image processing through the GRASS GIS scripting approach. 
Image capture from the USGS format was performed using the EarthExplorer repository which 
enables the repeatability of the workflow in similar projects. We demonstrated the sequential 

use of several modules of the GRASS GIS. Selecting visual spectral Landsat bands was 
performed by “i.group”; assigning semantic labels was done by “r.support”; “i.cluster” was 
used for image partition by k-means clustering algorithm, and the unsupervised classification 
by the maximum likelihood discriminant analysis classifier was implemented by “i.maxlik”. 
 To classify the Landsat imagery using GRASS GIS scripts, we used a workflow in 
GRASS GIS interface and several modules as described and explained in the Methodology 
section. The GRASS GIS modules were used as a sequence of separate tools to run the 
GRASS GIS scripts on the MacOS machine through a high-level scripting language of GRASS 
GIS, with an example for the images covering Lorian swamp, north-east Kenya. The workflow 

consisted of the following steps: image capture and preprocessing, grouping and sorting data 
by “i.group”, creating semantic labels by “r.support”, clustering by “i.cluster” module, 
“classification by i.maxlike” module, plotting, analysis and visualization of the completed 
images by “d.mon” and “d.legend” modules of the GRASS GIS. The cartographic workflow in 
the GRASS GIS scripting environment for classification of the satellite images included 
running the scripts of the GRASS GIS algorithm. 
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 Two sensors were tested for image analysis with OLI-8 sensor for image on 2015 and 
OLI-9 sensor for image on 2023. We provided GRASS GIS scripting for both of them: 
clustering by k-means and maximum-likelihood classification for detecting changes in wetland 
and decline of vegetation. The GRASS GIS approach demonstrated superior results when 
compared to traditional GIS due to the high level of automation by scripts which resulted in 
higher speed and accuracy of image classification. We compared the results of classification 
based on the GRASS GIS algorithm and the existing state-of-the-art land cover maps of Kenya 
with an example of GIS performed through both digitizing the landscapes and remote sensing 
data processing, as well as technical assessment of image analysis. The performance of the 
GRASS GIS demonstrated effective approach to classification of the land cover classes aimed 

to find changes in vegetation patterns over the Lorian swamp wetlands, north-eastern Kenya. 
The study contributed to the environmental monitoring of wetlands by mapping Lorian Swamp 
area of Kenya, east Africa using GRASS GIS scripts for remote sensing data processing. 
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