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A Generic Transform from Multi-Round Interactive Proof to NIZK

We present a new generic transform that takes a multi-round interactive proof for the membership of a language L and outputs a non-interactive zero-knowledge proof (not of knowledge) in the common reference string model. Similar to the Fiat-Shamir transform, it requires a hash function H. However, in our transform the zero-knowledge property is in the standard model, and the adaptive soundness is in the non-programmable random oracle model (NPROM). Behind this new generic transform, we build a new generic OR-composition of two multi-round interactive proofs. Note that the two common techniques for building OR-proofs (parallel OR-proof and sequential OR-proof) cannot be naturally extended to the multi-round setting. We also give a proof of security for our OR-proof in the quantum oracle model (QROM), surprisingly the security loss in QROM is independent from the number of rounds.

Introduction

Non-interactive zero-knowledge (NIZK) proofs [START_REF] De Santis | Non-interactive zero-knowledge proof systems[END_REF][START_REF] Goldreich | How to play any mental game or A completeness theorem for protocols with honest majority[END_REF] can prove a statement without leaking any additional information about the witness. Since its first introduction, NIZK plays an important role in constructing almost every primitive from the basic ones like chosen-ciphertext encryption [START_REF] Naor | Public-key cryptosystems provably secure against chosen ciphertext attacks[END_REF], signature [START_REF] Feige | Zero knowledge proofs of identity[END_REF] to complex cryptographic protocols like e-voting [START_REF] Cramer | A secure and optimally efficient multi-authority election scheme[END_REF], and e-cash system [START_REF] Chaum | Blind signature system[END_REF].

Fiat-Shamir and Random Oracle Model. The most common and efficient way to construct a non-interactive zero-knowledge proof in the random oracle model (ROM) is via the Fiat-Shamir transform [START_REF] Feige | Zero knowledge proofs of identity[END_REF]. One first constructs a Σ-protocol (1-round interactive proof), then turns it into non-interactive by simulating the random challenge using a hash function modeled as a random oracle.

Since its first introduction [START_REF] Bellare | Random oracles are practical: A paradigm for designing efficient protocols[END_REF], the random oracle model (ROM) has been controversial. The advantage of ROM is that, it is generally easier to build cryptographic primitives with it, and the resulting primitives are usually more efficient than their standard model version (without random oracle). However, a decade after its introduction Canetti, Goldreich and Halevi [START_REF] Canetti | On the random-oracle methodology as applied to length-restricted signature schemes[END_REF] discovered that the instantiation of RO is theoretically impossible. More precisely, there exist cryptosystems that are secure in the random oracle model, but for which replacing the random oracle by any implementation leads to an insecure cryptosystem. Therefore, standard model constructions are usually considered as more secure than the constructions in ROM.

Beside of theoretical impossibility, ROM also suffers from some security concerns in real world applications. For example, a common way to instantiate the random oracle is with hash functions (like MD5, SHA-1, SHA-2, SHA-3 etc.). Therefore, any progress in cryptanalysis of hash functions could potentially make the ROM-based schemes insecure. As a concrete example, the work of [START_REF] Wang | How to break MD5 and other hash functions[END_REF][START_REF] Stevens | The first collision for full SHA-1[END_REF] have shown that standard hash functions like MD5 or SHA-1 are far from behaving like random oracles. Based on these attacks, Stevens et al. [START_REF] Stevens | Chosen-prefix collisions for MD5 and colliding X.509 certificates for different identities[END_REF] showed an attack on constructing two colliding X.509 certificates for different identities and public keys, while the system is still secure in the ROM.

NIZK without random oracle. Efficient NIZK in the standard model is considered as a challenging problem. In the classical setting, a quite efficient NIZK in the standard model has been proposed by [START_REF] Groth | Efficient non-interactive proof systems for bilinear groups[END_REF]. However, the situation of the efficient standard model NIZK in the post-quantum setting is less clear. Several works have constructed efficient post-quantum NIZK schemes by relaxing the soundness definition (only average-case soundness [START_REF] Chen | Does fiat-shamir require a cryptographic hash function?[END_REF] against classical worst-case soundness) or the syntax of NIZK itself (Designated-Verifier NIZK [START_REF] Lombardi | New constructions of reusable designated-verifier NIZKs[END_REF], NIZK in the preprocessing model [START_REF] Kim | Multi-theorem preprocessing NIZKs from lattices[END_REF]). The fullfledged post-quantum NIZK in the standard model is only due to a new framework in the recent breakthrough results [START_REF] Canetti | Fiat-Shamir and correlation intractability from strong KDM-secure encryption[END_REF][START_REF] Canetti | Fiat-Shamir: from practice to theory[END_REF], which gives the first lattice-based NIZK without RO [START_REF] Peikert | Noninteractive zero knowledge for NP from (plain) learning with errors[END_REF]. As another instantiation of this framework, a new NIZK based on Learning Parity with Noise assumption and Trapdoor Hash Functions has also been proposed [START_REF] Brakerski | NIZK from LPN and trapdoor hash via correlation intractability for approximable relations[END_REF]. However, the efficiency of all these constructions in the standard model is still far from that of post-quantum NIZK in ROM [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures[END_REF][START_REF] Bünz | Bulletproofs: Short proofs for confidential transactions and more[END_REF][START_REF] Muhammed | Practical exact proofs from lattices: New techniques to exploit fully-splitting rings[END_REF].

Non-programmable random oracle. In recent years, there is another research direction of NIZK consists of replacing the ROM by its weaker variant non-programmable random oracle model NPROM, while preserving the efficiency [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF][START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF]. These constructions are both generic transforms from Σ-protocols to NIZK. Interestingly, they both have zero-knowledge property in the standard model, and soundness property in the non-programmable random oracle model (NPROM).

Another interesting point about these two constructions is that, their zero-knowledge property is independent of the random oracle model. Therefore, in many applications, such as e-voting or authenticated encryptions, it guarantees that even the hash function is broken in the future, the privacy is still preserved.

Limits of NIZK in NPROM. One big problem of both transforms [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF][START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] is that, they only work for Σ protocols but not the more generic multi-round public-coin interactive proofs (PCIP). As several recent results of interactive proofs are exploiting the multi-round property of PCIP to gain efficiency, such as bullet proofs [START_REF] Bünz | Bulletproofs: Short proofs for confidential transactions and more[END_REF], exact proofs [START_REF] Muhammed | Practical exact proofs from lattices: New techniques to exploit fully-splitting rings[END_REF] or amortized exact proofs [START_REF] Bootle | More efficient amortization of exact zero-knowledge proofs for LWE[END_REF], an interesting question would be to extend the [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF][START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] transforms to multi-round interactive protocols. Moreover, between these two transforms, [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] not only requires less properties of the starting Σ-protocol than [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF] (optimal soundness against special soundness) but it is also more efficient. Therefore, we have chosen to focus on extending [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] in this paper. Unfortunately, it cannot be easily extended, as its principal building block is an OR-composition of two Σ-protocol, and the existing OR-composition techniques do not apply to multi-round PCIP. We will give below a quick overview of the existing OR-proofs.

OR-proof. The OR-composition of Σ-protocols has been initially used to construct ring-signature schemes by [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] based on the programmable random oracle. Another OR-composition technique has been proposed by [START_REF] Abe | 1-out-of-n signatures from a variety of keys[END_REF] to weaken the model, they only require the NPROM, and [START_REF] Abe | 1-out-of-n signatures from a variety of keys[END_REF] has a shorter proof than [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] (one hash value less in the proof.) However, neither of them can be extended to the OR-composition of multiround public-coin interactive proofs. Note that, for multi-round interactive proofs, we can firstly use Fiat-Shamir transform to reduce the number of rounds, then apply [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] or [START_REF] Abe | 1-out-of-n signatures from a variety of keys[END_REF] to construct NIZK. But, the Fiat-Shamir transform requires programmability of the random oracle for the zero-knowledge property. As our goal is to keep the zeroknowledge property in the standard model, this approach does not work. This raises a natural question:

Can we build a generic OR-composition of multi-round PCIP, with zero-knowledge in the standard model and soundness in NPROM?

We will answer this question positively by giving a new technique for OR-composition.

Security in the Quantum Random Oracle model (QROM). Security of random oracle model in the quantum setting is not a trivial problem. Intuitively, a quantum adversary can build the hash function and run the primitive himself by querying quantum states. Therefore, the adversary can get a superposition of exponentially many samples of the random oracle, which gives him more advantage than a classical adversary. Many recent works address this issue [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF][START_REF] Don | Security of the Fiat-Shamir transformation in the quantum random-oracle model[END_REF][START_REF] Liu | Revisiting post-quantum Fiat-Shamir[END_REF], and they give detailed analysis for the Fiat-Shamir transform in this setting. As we claim that we have a post-quantum zero-knowledge proof, we also give an analysis of our transform in the QROM.

Our contributions

In this paper, we bring several contributions. -We propose in this paper a new generic transform from multi-round public-coin interactive proofs (PCIP) to a non-interactive zero-knowledge proof system (NIZK). Compared to Fiat-Shamir transform, the zero-knowledge property of our transform is in the standard model, and soundness property is in the non-programmable random oracle model (NPROM) (RO without programmability). While comparing with similar type of transforms [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF][START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF], ours additionally supports multi-round PCIP. -Behind our generic transform, we have developed a new technique to generate an OR-proof from two optimal sound PCIP: PCIP 0 , PCIP 1 . The direct approach consists of using Fiat-Shamir transform to turn both PCIP 0 and PCIP 1 into Σprotocols, then apply either [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] or [START_REF] Abe | 1-out-of-n signatures from a variety of keys[END_REF] transform to get an OR-proof. Compared to the direct approach, the zero-knowledge property of our transform is in the standard model, and our adaptive soundness property is in the NPROM. We believe that this new OR-composition has other applications and independent interests. -Finally, we analyze the soundness property of our OR-proof in the QROM. Note that the zero-knowledge property of our OR-proof is in the standard model, therefore it is naturally secure in the QROM. Moreover, our transform from PCIP to NIZK has the same security loss as our OR-proof. Surprisingly, the security loss of the soundness is O Q 4 H which is independent of the number of rounds.

Technical overview

Our main technique consists in constructing the OR-proof for multi-round PCIPs. We dedicate this section to explain the intuition behind our OR-proof. Firstly, we will give a quick overview of the existing parallel OR-proof [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] and sequential OR-proof [START_REF] Abe | 1-out-of-n signatures from a variety of keys[END_REF][START_REF] Fischlin | Signatures from sequential-OR proofs[END_REF] as we will borrow ideas from both transforms. Then, we explain why they can not be extended to n-round PCIPs, and our new techniques of OR-proof.

Why [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] does not work for n-round PCIPs? Given Σ 0 and Σ 1 two Σ-protocols with transcripts {R 0 , h 0 , s 0 } and {R 1 , h 1 , s 1 }, the intuition behind the parallel [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] transform is that, after generating the first round commitments (R 0 , R 1 ), the corresponding challenges are chosen such that h 0 ⊕ h 1 = H(R 0 , R 1 ). Therefore any adversary can freely choose one (and only one) between h 0 and h 1 even before seeing (R 0 , R 1 ). By using the HVZK property of the Σ-protocol, once h 0 (or h 1 ) chosen, the adversary can simulate the proof (R 0 , s 0 ) or (R 1 , s 1 ) without knowing any witness.

Let us now see why this approach can not be extended to n-round interactive protocols when n > 1. The natural extension of [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] would be to define the i-th round challenges (i

∈ [n]) such that h i,0 ⊕ h i,1 = H({R j,0 , R j,1 } i j=1
). This transform is not secure. To show this, we construct below an example of two 2-round protocols that are secure individually, but once combined, the resulting OR-proof is not secure anymore.

Counter-example of [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] applying on 2-round PCIPs. Given two Σ-protocols Σ 0 and Σ 1 , we will construct two 2-round protocols PCIP 0 , PCIP 1 by adding one unused round into each of Σ 0 , Σ 1 but in different order. Namely, valid transcripts of PCIP 0 and PCIP 1 are of the form ( R0 , h0 , R 0 , h 0 , s 0 ) and (R 1 , h 1 , R1 , h1 , s 1 ), where ( R0 , h0 , R1 , h1 ) are just random strings and ignored in the verification process. If we apply the naive extension of [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] transform to PCIP 0 and PCIP 1 , an adversary A can randomly choose h 0 , h 1 , then use HVZK to simulate (R 0 , h 0 , s 0 ) and (R 1 , h 1 , s 1 ). As ( R0 , h0 , R1 , h1 ) are ignored by the individual verification of PCIP 0 and PCIP 1 , A can define R0 , R1 to be random strings and

h0 := h 1 ⊕ H( R0 , R 1 ), h1 := h 0 ⊕ H(R 0 , R1 ).
By the correctness of PCIP 0 and PCIP 1 ,

( R0 , h0 , R 0 , h 0 , s 0 , R 1 , h 1 , R1 , h1 , s 1
) is a valid proof for which A does not need to know any witness in order to produce it, so he can easily break soundness of the OR-proof composition.

The above attack works because we have given too much "freedom" to A. He can freely chose one challenge per round. Therefore, we need to limit A to only be able to freely choose the challenges from the same interactive protocol.

Overview of sequential OR-proof [START_REF] Abe | 1-out-of-n signatures from a variety of keys[END_REF][START_REF] Fischlin | Signatures from sequential-OR proofs[END_REF]. Given two Σ-protocols Σ 0 and Σ 1 , together with two statements x 0 , x 1 and a witness w 0 . (w.l.o.g. we can assume that we know w 0 .) The intuition of the sequential OR-proof is that H(R 0 ) is used as the challenge h 1 for Σ 1 and H(R 1 ) is used as the challenge h 0 for Σ 0 . The honest generation of the proof is given as in Figure 1. For n-round PCIPs, we can notice that before the honest side (b) has been executed until the (n -1)th round, the simulation side (1b) doesn't have all the challenges, therefore even an honest prover with w b cannot generate a valid proof when n > 1.

Intuition behind our approach. Let us consider two n-round public-coin interactive proofs PCIP 0 and PCIP 1 for proving the membership of two languages L 0 and L 1 . For simplicity, we assume PCIP 0 and PCIP 1 have same number of rounds in this section. We will prove that x 0 ∈ L 0 or x 1 ∈ L 1 without revealing exactly which witness is used.

Let Trans 0 = ({R i,0 , h i,0 } n i=1 , s 0 ) and Trans 1 = ({R i,1 , h i,1 } n i=1
, s 1 ) be two transcripts of PCIP 0 and PCIP 1 respectively.

Our starting point is the parallel OR-proof. To prevent the above attack against multi-round parallel OR-proof, our idea is to combine all the challenges of the same side together by an offset. Therefore, once the offset and the first i rounds commitments are fixed, the challenges are fixed. More precisely, for b ∈ {0, 1}, we denote by A b = {a 1,b , . . . , a n,b } two offsets, we could compute the challenges of the i-th round as follows,

h i,0 = H({R j,0 } i j=1 ) + a i,0 , h i,1 = H({R j,1 } i j=1 ) + a i,1 . (1) 
Now, the challenges are all related. We emphasize the fact that the adversary can freely choose A b , where b ∈ {0, 1}, is equivalent to be able to choose every challenge of b side.

The second step is to only allow the adversary to freely choose one and only one offset between A 0 and A 1 . To do this, we borrow the idea from the sequential or-proof by putting A 0 and A 1 into the hash of the opposite side. More precisely, we have

h i,0 = H({R j,0 } i j=1 , A 1 ) + a i,0 , h i,1 = H({R j,1 } i j=1 , A 0 ) + a i,1 . (2) 
As in sequential OR-proof, the order of query A 0 and A 1 is crucial in our case. Namely, at least one of the two cases must happen:

-Before the RO query on ({R j,0 } i j=1 , A 1 ), there exists a query of the form (•, A 0 ). -Before the RO query on ({R j,1 } i j=1 , A 0 ), there exists a query of the form (•, A 1 ). This forces the adversary to choose A 0 before having seen H({R j,0 } i j=1 , A 1 ) or A 1 before having seen H({R j,1 } i j=1 , A 0 ). We can use this property to reduce the adaptive soundness of our OR-proof to the optimal soundness of the underlying PCIPs.

Security in the QROM. In our QROM security proof, we apply the Measure-then-Reprogram 2.0 technique [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF]. There is a price to pay for proving our transform in the QROM, that is we need the programmability of the random oracle. Moreover, if we want to prove our transform for round-by-round, we need to program the random oracle in every round, this will introduce an exponential security loss in the number of rounds. Therefore, we restrict our transform to only optimal-sound PCIPs, then we can prove our transform with only O Q 4 H security loss. Note that, despite the fact that our OR-proof is a composition of two multi-round PCIPs, we only need to apply the Measure-then-Reprogram 2.0 technique on 2 entries. This is due to the fact that our OR-proof is not a proof of knowledge, but only a proof of membership, which is already useful in many applications such as voting schemes etc.

Therefore, we do not need all the entries to be able to extract the witness. This observation makes our security loss of the adaptive soundness as low as O Q 4 H in QROM, which is independent from the number of rounds n. Different from our result, [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF] has considered the soundness with proof of knowledge (stronger than our adaptive soundness) of Fiat-Shamir transform and their security loss is O Q 2n H .

Very recently, there is a new semi-generic transformation [START_REF] Katsumata | A new simple technique to bootstrap various lattice zero-knowledge proofs to QROM secure NIZKs[END_REF] from PCIPs to noninteractive proofs in the QROM while achieving proof of knowledge. However it requires the prover's response to be in linear form. As a comparison, our transformation is generic and does not impose any restriction on the prover's response.

In comparison, Unruh's transform [START_REF] Unruh | Non-interactive zero-knowledge proofs in the quantum random oracle model[END_REF] works for any Σ-protocol, but introduces a noticeable overhead depending on the size of the challenge set. In [START_REF] Chen | SOFIA: MQ-based signatures in the QROM[END_REF], Chen et al extend Unruh's framework for a 3-round protocol where the second challenge is binary.

Preliminaries

2.1 Notations.

For n ∈ N, let [n] = {1, . . . , n}. For a finite set S, we denote the sampling of a uniform random element x by x $ ← S. For simplicity of the notations, we omit that every algorithm takes as input the public parameter par. For an algorithm A which takes x as input, we denote its computation by y $ ← A(x). We assume all the algorithms (including adversaries) in this paper to be probabilistic unless stated otherwise. We denote an algorithm A with access to an oracle O by A O .

For an NP language L, we denote by x ∈ w L the fact that the statement x is in the language L with the witness w.

We use code-based games [START_REF] Bellare | The security of triple encryption and a framework for code-based game-playing proofs[END_REF] to present our definitions and proofs. We implicitly assume all Boolean flags to be initialized to 0 (false), numerical variables to 0, sets to ∅ and strings to ⊥. We make the convention that a procedure terminates once it has returned an output. Exp G Σ,A (1 λ ) = b denotes the final (Boolean) output b of the adversary A running the security experiment G on the scheme Σ with security parameter λ, and if b = 1 we say A wins G. The randomness in Pr[Exp G Σ,A (1 λ ) = 1] is over all the random coins in experiment G. Within a procedure, "abort " means that we terminate the run of an adversary A.

n-Round Public Coin Interactive Proof (PCIP)

The general structure of an n-round Public-Coin Interactive Proof of the form depicted in Figure 2 is defined as follows. 7 Notice that for n = 1, PCIP is a Σ-protocol, and PCIP is also named as identification scheme in some literatures.

Definition 1 (n-round Public-Coin Interactive Proof). Let L be an NP language. To prove a statement x ∈ w L, an n-round public-coin interactive proof consists of n + 2 PPT stateful algorithms PCIP = ({Prove i } n+1 i=1 , Verif) with the following syntax:

-Prove i (h i-1 , st i-1
) takes a challenge h i-1 and a state st i-1 as input, and returns a commitment R i and a new state st i , where st 0 = (x, w), and

R n+1 = s. -Verif(x, ({R i , h i } n i=1 , s)):
The verification Verif takes as input a statement x and a transcript ({R i , h i } n i=1 , s) and returns a decision 0 or 1.

We introduce the following definitions for a PCIP scheme: -Transcript: We define a transcript as all messages between the prover and the verifier of the form Trans = ({R i , h i } n i=1 , s). Moreover, we define a partial transcript Trans ′ as prefix of another transcript of the form ({R i , h i } j i=1 ) with j ≤ n.

We require the following properties for an n-round PCIP:

-Correctness: For all (x, w) such that x ∈ w L and for all honestly generated transcripts Trans = ({R i , h i } n i=1 , s) using (x, w), we say that PCIP is ρ-correct if we have:

Pr[Verif(x, ({R i , h i } n i=1 , s)) = 0] ≤ ρ.
-Honest-Verifier Zero-Knowledge: For all (x, w) such that x ∈ w L, we say that PCIP is ∆-HVZK, if there exists a PPT simulator Sim that takes x as input, and returns a transcript Trans, such that the distribution of Trans is at statistical distance at most ∆ from the distribution of an honestly generated transcript.

In particular, if ∆ = 0, we say that PCIP has perfect HVZK. -Round-by-Round Soundness: Let PCIP be an interactive-proof with i-th round challenge space Z ℓi . We say that PCIP is round-by-round sound if, there exists a "doomed set" D ∈ {0, 1} * such that,

• If x ̸ ∈ L, then (x, ∅) ∈ D, where ∅ denotes the empty transcript.

• For all partial transcript Trans, such that (x, Trans) ∈ D, for all next message R i given by the prover, there exists a negligible function negl(•) such that

Pr[(x, Trans∥R i ∥h i ) ̸ ∈ L | h i $ ← Z ℓi ] ≤ negl(λ).
• For any complete transcript Trans, if (x, Trans) ∈ D then Verifier(x, Trans) = false.

Notice that the round-by-round soundness originally proposed by [START_REF] Canetti | Fiat-Shamir: from practice to theory[END_REF] is a very weak security notion. Since we only consider the constant rounds interactive proofs, by [8, Proposition 5.3 and 5.4] round-by-round soundness and negligible soundness are equivalent. On the other hand, optimal soundness (c.f. Definition 9 which is a multi-round version of special soundness) is a commonly used term for many protocols. If a protocol is ε-optimal sound then it can be seen as no transcript can escape the doomed set except in one specific round with probability ε. Therefore, optimal soundness tightly implies round-by-round soundness. This provides us an alternative way to use our transform.

Non-Interactive Proof NIP

For the sake of completeness, we define two different types of non-interactive proofs NIP: Non-Interactive Zero-Knowledge proofs (NIZK) and Non-Interactive Witness Indistinguishable proofs (NIWI). Notice that we don't consider the proof of knowledge in this paper, and we use the adaptive soundness for NIPs.

Definition 2 (Non-Interactive Proof NIP). Let L be an NP language. To prove a statement x ∈ w L, a non-interactive proof consists of four PPT algorithms Π = (Setup, Prove, Verif, Sim = (Sim 0 , Sim 1 )) defined as follows:

-Setup(1 λ ) → CRS : The setup algorithm Setup returns a common reference string CRS. -Prove(CRS, x, w) → π : The prove algorithm Prove returns a proof π that x ∈ w L using w as witness. -Verif(CRS, x, π) → {0, 1} : The verification algorithm Verif returns a decision, 1

(acceptance) or 0 (rejection). -Sim 0 (1 λ ) → (CRS, τ ) : The first part of the simulation algorithm Sim 0 outputs a common reference string CRS and a simulation trapdoor τ . -Sim 1 (τ, x) → π : The second part of the simulation algorithm Sim 1 outputs a simulated proof π.

We will also define the completeness, adaptive soundness, zero-knowledge, witnessindistinguishability of NIP as follows.

Definition 3 (ρ-Completeness).

A NIP is ρ-complete if, for all x ∈ w L we have: 

Pr Verif(CRS, x, π) = 0 CRS $ ← Setup(1 λ ) π $ ← Prove(CRS, x, w) ≤ ρ. Definition 4 ((ε, Q H )-Adaptive Soundness). A NIP is (ε, Q H )-
Pr x ⋆ ∈ {0, 1} n \ L ∧ Verif(CRS, x ⋆ , π ⋆ ) = 1 CRS $ ← Setup(1 λ ) (x ⋆ , π ⋆ ) $ ← A OHash (CRS) ≤ ε.
We consider the hash function as an NPRO in the soundness proof.

Definition 5 (Zero-Knowledge).

A NIP is ∆-Zero-Knowledge, if there exists a simulator Sim = (Sim 0 , Sim 1 ) such that, the statistical distance between the output distributions of Game Sim and Game Real as defined in Figure 3 is at most ∆. Moreover, if ∆ = 0, NIP is perfectly zero-knowledge.

Game Sim:

01 (CRS, τ ) $ ← Sim0(1 λ ) 02 (x, w) $ ← A(CRS) x ∈w L 03 π $ ← Sim1(x, τ ) 04 return (CRS, π) Game Real: 05 CRS $ ← Setup(1 λ ) 06 (x, w) $ ← A(CRS)
x ∈w L 07 π $ ← Prove(CRS, x, w) 08 return (CRS, π) Fig. 3. Real and Sim experiments for the zero-knowledge property Definition 6 (Witness Indistinguishable for OR-Composition). Let L ∨ = L 0 ∨ L 1 be an OR-relation. A NIP is ∆-Witness Indistinguishable for L ∨ , if for the statement x = (x 0 , x 1 ) and the witness (w 0 , w 1 ) such that x 0 ∈ w0 L 0 ∨ x 1 ∈ w1 L 1 , the statistical distance between the output distributions of the Game 0 and the Game 1 as defined in Figure 4 is at most ∆. We define NIZK as NIP that satisfy completeness, adaptive soundness and zeroknowledge property while for NIWI, the zero-knowledge property is replaced with witness-indistinguishability.

Game 0: 01 CRS $ ← Setup(1 λ ) 02 π $ ← Prove(CRS, x, w0) 03 return π Game 1: 04 CRS $ ← Setup(1 λ ) 05 π $ ← Prove(CRS, x, w1) 06 return π

From Interactive to Non-Interactive

One of the most common way to construct a non-interactive zero-knowledge proof is via the Fiat-Shamir [START_REF] Fiat | How to prove yourself: Practical solutions to identification and signature problems[END_REF] transform. However, we additionally require the zero-knowledge property to be ROM-free, which is not the case using this transform. The two existing variants available for Σ-protocols (1-round protocols) are [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF] and its more efficient and more generic improvement [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF].

Lindell's transform [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF] In Lindell's transform, the challenge of Σ-protocol is of the form H(x, Com(R)), where R is the first round message of the Σ-protocol and Com is a dual-mode commitment [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF] (aka. hybrid trapdoor commitment [START_REF] Catalano | Hybrid commitments and their applications to zeroknowledge proof systems[END_REF]). However, if we want to generalize this transform to multi-round PCIP, this approach is not very efficient. That is because, we need to include the commitments and the decommitments of every round of PCIP into the final proof. Moreover, following the generic construction of dual-mode commitment from PCIP schemes in [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF], the size of one commitment and one decommitment is equal to the size of one PCIP proof. Therefore, if we directly apply the Lindell's transform, we will have a proof size blow-up of factor O n , where n is the number of rounds. Consequently, it may loose the efficiency gain of multi-round PCIP schemes over Σ-protocols.

Ciampi et al. transform [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] The transform in [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] requires only computational optimal soundness (weaker than special soundness) and computational HVZK of the underlying interactive protocols, and it is more efficient than [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF]. However, the [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] transform relies heavily on the existence of an OR-composition of interactive protocols. Unfortunately, the most efficient interactive lattice-based proof systems are all 2-round protocols [START_REF] Bootle | Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs[END_REF][START_REF] Muhammed | Practical exact proofs from lattices: New techniques to exploit fully-splitting rings[END_REF][START_REF] Bootle | More efficient amortization of exact zero-knowledge proofs for LWE[END_REF], and the previous OR-compositions of interactive proof systems [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF][START_REF] Abe | 1-out-of-n signatures from a variety of keys[END_REF][START_REF] Fischlin | Signatures from sequential-OR proofs[END_REF] cannot be applied to multi-round PCIPs.

In this section, we further improve the [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] transform by extending it to support ORcomposition of an n 0 -round computational HVZK and round-by-round sound PCIP 0 and an n 1 -round computational HVZK and round-by-round sound PCIP 1 . Notice that if we apply our transform to two 1-round PCIPs (Σ-protocols), the resulting NIZK scheme is almost as efficient as in [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF]. More precisely, in the case of Σ-protocol, we only have two more elements (a 0 , a 1 ) ∈ Z ℓ1,0 × Z ℓ1,1 than [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF], where ℓ 1,0 , ℓ 1,1 are the size of the challenge spaces of PCIP 0 and PCIP 1 . In Section 2.3 we recall the definitions of two different types of non-interactive proofs NIP: NIZK proofs and Non-Interactive Witness Indistinguishable (NIWI) proofs.

Construction of our OR-Proof

We recall that the intuition behind our OR-proof is explained in Section 1.2. We then directly give the construction of our OR-proof in this section.

Let PCIP 0 (resp. PCIP 1 ) be an n 0 -round (resp. n 1 -round) public coin interactive proof for proving the membership of two languages L 0 and L 1 , and we denote the size of challenge spaces by (ℓ 1,0 , . . . , ℓ n0,0 , ℓ 1,1 , . . . , ℓ n1,1 ). The goal is to prove that x 0 ∈ L 0 or x 1 ∈ L 1 without revealing exactly which witness is used. The idea behind this proof, using w b , is to first sample a random offset A b = (a 1,b , . . . , a nb,b ). Then, we simulate the proof PCIP 1-b for which we don't have a witness to build the second offset (a 1,1-b , . . . , a n1-b,1-b ), which depends on A b and on the commitments

{R i,1-b } n1-b j=1 .
Finally, we can use A 1-b to build the proof PCIP b for which we know the witness. To verify the proof, we first verify that all the {h i,b } have been correctly generated, then that both proofs pass their verification algorithm.

We give our transform in pseudo-code in Figure 5. We define C i,b as the challenge space of i-th round of PCIP b , we assume that C i,b is isomorphic to the additive group (Z ℓi,b , +).

Properties of our NIP. We will prove in the remaining part of this section that the non-interactive proof NIP constructed as in Figure 5 is correct (Theorem 1), witnessindistinguishable (Theorem 2), and adaptively sound (Theorem 3), if the underlying protocols PCIP 0 , PCIP 1 are both correct, HVZK and round-by-roudn sound. Moreover, Prove(x0, x1, wb):

01 Ab := (a1,b, . . . , an b ,b) $ ← Z ℓ 1,b × . . . × Z ℓ n b ,b 02 Trans1-b $ ← PCIP1-b.Sim(1 λ , x1-b) 03 ({Ri,1-b, hi,1-b} n 1-b i=1 , s1-b) =: Trans1-b 04 for i = 1..n1-b do 05 ai,1-b ← hi,1-b -H({Rj,1-b} i j=1 , Ab) 06 A1-b ← (a1,1-b, . . . , an 1-b ,1-b) 07 st0,b = ∅; h0,b = ⊥ 08 for i = 1..nb do 09 (Ri,b, sti,b) $ ← PCIPb.Provei(sti-1,b, hi-1,b, xb, wb) 10 hi,b := H({Rj,b} i j=1 , A1-b) + ai,b 11 sb $ ← PCIPb.Proven b (stn b -1,b, hn b -1,b, xb, wb) 12 return π := ({Ri,0} n 0 i=1 , {Ri,1} n 1 i=1 , A0, A1, s0, s1) Verif(x0, x1, π): 13 for i = 1..n0 do 14 hi,0 := H({Rj,0} i j=1 , A1) + ai,0 15 for i = 1..n1 do 16 hi,1 := H({Rj,1} i j=1 , A0) + ai,1 17 
Trans0 := ({Ri,0, hi,0} n 0 i=1 , s0) 18 Trans1 := ({Ri,1, hi,1} n 1 i=1 , s1) 19 if PCIP0.Verify(x0, Trans0) = 1 ∧ PCIP1.Verify(x1, Trans1) = 1 then 20
return 1 21 else return 0 Fig. 5. In this figure, we construct an NIP system Π = (Setup, Prove, Verif), which is an ORcomposition to prove that x0 ∈ L0 ∨ x1 ∈ L1. We recall that all challenge spaces are considered as an additive group. Namely, for all operations in the i-th round of PCIPb are modulo Z ℓ i ,b .

if PCIP 0 and PCIP 1 are both perfectly HVZK, then the resulting NIP is a NIWI proof with perfect witness-indistinguishability.

Theorem 1 (Correctness). If PCIP 0 and PCIP 1 are both ρ-correct and ∆-HVZK, then Π is 2ρ + ∆-correct.

Proof. We can observe that in the resulting proof π, we have randomly chosen a bit b, and the proof π can be divided into two parts (π 0 , π 1 ), where

π b = ({R i,b } nb i=1 , A b , s b
) is an honestly generated proof of PCIP b with correctness error at most ρ, and π 1-b is a simulated transcript of PCIP 1-b with correctness error at most ρ + ∆. Therefore, by the union bound over the correctness of π 0 and π 1 , we have π has correctness error at most 2ρ + ∆.

⊓ ⊔ Theorem 2 (Witness-Indistinguishability). If PCIP 0 and PCIP 1 are two ∆-HVZK (n 0 , n 1 )-rounds public-coin interactive proofs for the language L 0 and L 1 respectively, then Π is 2∆-Witness-Indistinguishable. Namely, given a statement x = (x 0 , x 1 ) such that x 0 ∈ w0 L 0 ∧x 1 ∈ w1 L 1 , the statistical distance between the proof generated using w 0 and the one generated using w 1 is at most 2∆.

Theorem 3 (Adaptive Soundness). For b ∈ {0, 1}, let PCIP b be an n b -round roundby-round ε ′ -sound interactive protocol, then Π is (t, ε, Q H )-adaptively sound, where

t = poly(λ), ε ≤ (Q H + 2n) 2 • n • ε ′ ,
with n = max(n 0 , n 1 ).

Proof. Assuming A a PPT adversary, running in polynomial time t, wins the adaptive soundness game within probability ε by generating a valid OR-proof π for (x 0 , x 1 ) where x 0 / ∈ L 0 and

x 1 / ∈ L 1 , π = ({R i,0 } n0 i=1 , {R i,1 } n1 i=1 , A 0 , A 1 , s 0 , s 1 )
. Moreover, we can compute A 0 = (a 1,0 , . . . , a n0,0 ), A 1 = (a 1,1 , . . . , a n1,1 ), and

h i,b = H({R j,b } i j=1 , A 1-b ) + a i,b
. We give the security proof via a sequence of games: -Game 0 : The Game 0 is the original adaptive soundness game.

-Game 1 : In this game, we assume that for i 0 ∈ [n 0 ], i 1 ∈ [n 1 ], all the queries of the form ({R i,0 } i0 j=1 , A 1 ) and ({R i,1 } i1 j=1 , A 0 ) have been queried to the random oracle. Remind that if the adversary A does not fulfil this condition, we can construct a new adversary B that additionally makes the above two queries with the same running time and winning probability against the adaptive soundness game. Therefore, we have Adv 0 = Adv 1 , but the number of queries has slightly increased We emphasize that the output distribution of the random oracle is uniformly random. Therefore, the distribution of h ib,b conditioned on the choice of A b , A 1-b is still uniformly random by using the One-Time Pad argument.

Q ′ H = Q H + n 0 + n 1 .

Analysis of the winning probability Adv

We recall that, for the round-by-round ε-soundness, for all j ∈ [n b ], given the prover's messages ({R i,0 } j i=1 ), if the challenge is selected uniformly, the partial transcript has probability 1 -ε to be "doomed". The adversary has (Q H + 2n) 2 choices over (A b , A 1-b ). On the other hand, the total transcript is in the "doomed set" with probability 1 -(1 -ε ′ ) n ≤ n • ε ′ . Therefore, we have that the success probability for the adversary in finding a pair of (A b , A 1-b ) such that the transcript of the side b is not doomed is at most

(Q H + 2n) 2 • n • ε ′ .
Summarizing all the hybrid games, we have

t = poly(λ), ε ≤ (Q H + 2n) 2 • n • ε ′ . ⊓ ⊔

Adaptively sound Non-Interactive Zero-Knowledge Proof

We follow the same framework of [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] for defining a transform from n-round interactive proof systems to NIZK: we use our OR-composition in Section 3.1 to let the prover combine the interactive proof system with a proof of hard membership problem. Since the transform of [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] (and ours) makes use of a membership-hard language L, let us first define it in Definition 7.

Definition 7 (NP membership problem [START_REF] Lindell | An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle[END_REF]). A language L is a (t, ε L )-hard NP membership language if there exists a PPT sampler S = (S 0 , S 1 ) such that for every PPT distinguisher D , running in polynomial time t, we have

Pr D(S 0 (1 λ ), 1 λ ) = 1 -Pr D(S 1 (1 λ ), 1 λ ) = 1 ≤ ε L ,
where S behaves as follows -S 0 (1 λ ) samples (x 0 , w 0 ) $ ← L, and returns x 0 . -S 1 (1 λ ) samples x 1 $ ← {0, 1} λ \ L, and returns x 1 .

Transform from interactive to non-interactive. Given a language L 0 and an instance x 0 ∈ w0 L 0 , our goal is to prove that x 0 ∈ L 0 without leaking any additional information about w 0 . We follow the same overall framework as [START_REF] Ciampi | A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles[END_REF] by adding a membershiphard langage L 1 together with an instance x 1 ∈ L 1 , then the NIZK proof consists of a proof that x 0 ∈ L 0 ∨ x 1 ∈ L 1 , and (x 1 , L 1 ) is the CRS of the NIZK proof system. We give below some intuitions behind the soundness and the zero-knowledge property of this general construction.

-Soundness: As L 1 is a membership-hard problem, we can switch x 1 ∈ w1 L 1 into x ′ 1 ∈ {0, 1} λ \ L 1 without the adversary noticing it. Since x ′ 1 ∈ {0, 1} λ \ L 1 , a valid proof π for the fact that x 0 ∈ L 0 ∨ x ′ 1 ∈ L 1 directly implies that x 0 ∈ L 0 . -Zero-Knowledge: We can simulate every proof using w 1 instead of w 0 . By the witness-indistinguishability of the OR-proof, this change is oblivious for the adversary. This proves the zero-knowledge property of the NIZK proof system. Formally, let PCIP 0 be a (k, ℓ)-sound n 0 -round interactive proof system for the NP language L 0 . We will consider a (t, ε L )-hard NP membership L 1 and its associated interactive proof system PCIP 1 . Let Π denote the NIWI scheme obtained by applying the OR-composition from Section 3.1 to PCIP 0 and PCIP 1 . We give the explicit transform from an IP protocol PCIP 0 to a NIZK scheme Σ in Figure 6.

The correctness of Σ is straightforward from Theorem 1:

Theorem 4 (Correctness). If PCIP 0 and PCIP 1 are both at least ρ-correct and ∆-HVZK, then Σ is 2ρ + ∆-correct.

Theorem 5 (Zero-Knowledge). If PCIP 0 and PCIP 1 are both ∆-HVZK multi-round (n 0 , n 1 rounds respectively) interactive protocols, then Σ is 2∆-Zero-Knowledge.

Proof. Since we have x 1 ∈ w1 L 1 , we can use w 1 to compute the NIWI proof, which simulates an honestly generated proof with statistical distance at most 2∆ by Theorem 2.

⊓ ⊔

Setup(1 λ ): 

01 (x1 , 
(t ′ , ε ′ L )-hard NP membership language L 1 , then Σ is (t, ε, Q H )-adaptively sound, where t ≈ t ′ , ε ≤ (Q H + 2n) 2 • n • ε ′ + ε ′ L , with ε ′ = max(ε 0 , ε 1 ) and n = max(n 0 , n 1 ).
Proof. We will give a simple game-based proof of this theorem. There are only 2 hybrids described as in Figure 7. The Game 0 is the original security game for the adaptive soundness of Σ. In game Game 1 , the only difference is that x 1 in CRS is chosen from the set {0, 1} λ \ L 1 . Therefore, we have

Exp AdSnd (1 λ ): 01 (x1, w1) $ ← L1 Game0 02 x1 $ ← {0, 1} λ \ L1 Game1 03 CRS := x1 04 (x ⋆ , π ⋆ ) $ ← A O Hash (CRS) 05 if x ⋆ ∈ {0, 1} n \L0∧Verif(CRS, x ⋆ , π ⋆ ) = 1 then 06 return 1 07 else return 0 OHash(R): 08 h $ ← C 09 return h
Adv 0 = ε, |Adv 1 -Adv 0 | ≤ ε ′ L .
where Adv 0 (respectively Adv 1 ) is the advantage of A in game Game 0 (respectively Game 1 ). Moreover, in Game 1 , since x 1 is not in L 1 and x 0 is neither in L 0 , π is a valid attack for the underlying NIWI scheme. Therefore, we have Adv 1 ≤ (Q H + 2n) 2 • n • ε ′ from Theorem 3. Combining hybrids together we have t ≈ t ′ and

ε ≤ (Q H + 2n) 2 • n • ε ′ + ε ′ L . ⊓ ⊔
4 Security of our Transform in the Quantum Random Oracle Model

In this section, we give a security proof of our OR-composition from two public-coin interactive proofs (n 0 -round and n 1 -round respectively) into one NIZK in the quantum random oracle model. Note that we can straightforwardly extend our proof in the QROM to our transform from PCIP to NIZK as described in Section 3.2. While it is an important achievement to prove security in the QROM for postquantum primitives, there is a price that one has to pay. One drawback is that there is a significant loss in the security argument. The second one is related to the programmability of the random oracle: proofs that were in the NPROM in the classical setting now need the quantum random oracle to be programmable in the security reduction. The last one is that we cannot prove our transform for round-by-round sound PCIP with acceptable security loss (polynomial in the number of rounds), due to the fact that we need to reprogram every round to fulfill a reduction, which introduces a exponential security loss in the number of rounds. Therefore, we limit our transform to optimal-sound PCIP protocols. Firstly, we introduce the notion of answerable challenge and provide the formal definition of optimal-soundness. Definition 8 (Answerable Challenges). Let Ans(Trans i , h i ) be a function that takes a partial transcript until i-th round Trans i = ({R j , h j } i-1 j=1 , R i ) and a challenge h i as input, and returns 1 if there exists Trans ′ = ({R j , h j } n j=i+1 , s) such that (Trans i , h i , Trans ′ ) is a valid transcript and 0 otherwise. We say that a challenge h i is an answerable challenge for round i if Ans(Trans i , h i ) = 1.

We emphasize that the function Ans can be a non-efficiently computable function here.

Definition 9 (Optimal Soundness). Let L be an NP language, we say that PCIP is (k, ℓ, i)-optimal sound if, for all statement not in the language x / ∈ L, and for all partial transcripts Trans i = ({R j , h j } i-1 j=1 , R i ) there exist at most k answerable challenges {h (j) i } j∈[k] such that Ans(Trans i , h (j) i ) = 1 for all j ∈ [k] and the size of the i-th challenge space is at least 2 ℓ . We note that, the optimal soundness is implied by the special soundness which is the case for most PCIP protocols. Moreover optimal soundness straightforwardly imply the negligible soundness, while the latter one is equivalent to the round-by-round soundness in our case. Thus, limiting our transform to the PCIPs with optimal soundness is indeed a restriction.

We will use the measure-and-reprogram 2.0 technique proposed in [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF] and we apply it to our NIZK transform in the same way that [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF] apply it for proving sequential-OR proof. Firstly, we give a quick overview of the measure-and-reprogram 2.0 technique proposed in [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF].

Fig. 1 .

 1 Fig. 1. Prove algorithm of sequential OR-proof

Fig. 2 .

 2 Fig. 2. An n-round Interactive Protocol
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 4 Fig. 4. Real and Sim experiments for the witness-indistinguishability

  1 of A in Game 1 . We define the bit b ∈ {0, 1} such that there is a random oracle query of the form (•, A b ) happens before any query of the form (•, A 1-b ).Since π is a valid proof, we have for i∈ [n b ] that h i,b = H({R j,b } j i=1 , A 1-b ) + a i,b . Note that in the proof given by the adversary is of the form π = (π 0 , π 1 ) where any query of the form (•, A 1-b ) happens after a query of the form (•, A b ). Therefore, the adversary A can only choose at most Q H + 2n different offsets as A b . Moreover, for all i ∈ [n b ], given {R j,b } i j=1 and A b = ({a j,b } nb j=1 ), there are at most Q H + 2n different challenge values h i,b := H({R j,b } i j=1 , A 1-b ) + a i,b depending on the choice of A 1-b . Thus, the adversary has in total at most (Q H + 2n) 2 choices of h i,b

Fig. 6 .

 6 Fig.6. Transform from an optimal-sound interactive protocol PCIP0 into adaptively sound NIZK scheme Σ.

Fig. 7 .

 7 Fig.7. The security games for proving the adaptive soundness of Σ. The line commented with Gamei is the pseudo-code that only exists in i-th hybrid.

In this paper, we use the convention that n-round PCIP has 2n + 1 moves.
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Measure-and-Reprogram 2.0, multiple input [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF]. Let A be a quantum adversary that has Q H quantum queries to a random oracle H : X → Y, where X , Y are both finite non-empty sets. Assuming that for a predicate (possibly quantum and not efficiently computable) Γ , the adversary A can output in polynomial time t a transcript Trans = (X 0 , . . . , X n-1 , z) such that Γ (Trans, H(X 0 ), . . . , H(X n-1 )) = True.

The goal is to build a multi-stage simulator R A such that stage by stage it outputs X i 's and takes the corresponding Θ i 's as input and finally outputs a (possibly quantum) z such that for the same predicate we have Γ (X 0 , . . . , X n-1 , z, Θ 0 , . . . , Θ n-1 ) = True.

Don et al. [START_REF] Don | The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more[END_REF] showed the existence of a quantum adversary R A that proceeds as follows: Firstly, it outputs a permutation σ together with a hash input x σ(0) and it takes as input Θ σ(0) from a third party V. Then for every stage 0 < i ≤ n -1, R A outputs a hash input x σ(i) and it takes as input Θ σ(i) from V. Finally, it outputs a possibly quantum z. We denote this procedure as (σ, σ(X), z) $ ← ⟨R A , σ(Θ)⟩, where X = (X 0 , . . . , X n-1 ) and Θ = (Θ 0 , . . . , Θ n-1 ). In the special case of PCIP protocols, V refers to the verifier.

More precisely, we have the following theorem:

Theorem 7 ([19, Theorem 6]). Let X and Y be the input and output sets of the hash function H : X → Y. Let A be a polynomial time oracle quantum algorithm that makes Q H random oracle queries to H and outputs an n-dimensional vector X = (X 0 , . . . , X n-1 ) and a possibly quantum z. There exists a (n + 1)-stage quantum algorithm R A that behaves as described above, satisfying the following property: For any X ⋆ ∈ X n without duplicate entries and for any predicate (possibly quantum and not efficiently computable) Γ , and a third party V, we have:

Application to our zero-knowledge proof. Formally, given a n 0 -round PCIP 0 and a n 1 -round PCIP 1 , for languages L 0 and L 1 respectively. We proposed a non-interactive proof of the form

We assume that for b ∈ {0, 1}, the interactive protocol PCIP b is (k b , ℓ b , i b )-optimal sound, and we have i ⋆ b such that given the first i

, there are only k b answerable challenges. This property is captured by the answerable predicates given in the optimal soundness Ans

optimal sound n b -round interactive protocol Let Π ∨ be the non-interactive zero-knowledge proof given by applying our transform in Section 3.1. Any quantum adversary A running in time t, making Q H quantum random oracle, breaks the adaptive soundness of Π ∨ with probability at most

Proof. Assuming A is a quantum adversary making Q H quantum random oracle queries against the adaptive soundness of Π ∨ . By the definition of adaptive soundness, given two false statements x 0 / ∈ L 0 and

with non-negligible advantage. For simplicity, we denote the challenge by,

Note that, in our non-interactive proof construction h i,b is used as the challenges in the underlying interactive protocols. Since π ∨ is a valid proof, for b ∈ {0, 1}, and i ∈ [n b ],

we have Ans b ({R j,b } i j=1 , h j,b ) = True. For our convenience, we will consider an adversary A ′ that proceeds exactly like A, except that it only outputs a partial proof

We also define a predicate Γ as follows:

). Here, we recall that h i ⋆ b ,b can be computed by using π ′ , H(X 0 ), H(X 1 ) as in Equation ( 4). By the definition of the answerable challenge predicate, assuming a valid proof π ∨ , the corresponding partial proof π ′ = (X 0 , X 1 ) verifies that Γ ((X 0 , X 1 ), (H(X 0 ), H(X 1 ))) = True. Now, it is easy to see that (A ′ , Γ ) fits into the requirement of Theorem 7. By simply applying Theorem 7, for all (X ⋆ 0 , X ⋆ 1 ), two uniformly chosen Θ 0 , Θ 1 and two instances (x 0 , x 1 ), we have an adversary B such that:

In the final step, we will construct an adversary C that helps us to choose (Θ 0 , Θ 1 ). More precisely, we describe the behavior of C as in Figure 8.

Note that the left side of Equation ( 5) can be bounded by k 2 ℓ . More precisely, since we have Γ ((X 0 , X 1 ), (Θ 0 , Θ 1 )) = True, we have also Ans 1) , Θ0, Θ1) Fig. 8. Assuming PCIP0 and PCIP1 are (k, ℓ, i)-optimal sound, we give the description of the adversary C which interacts with the verifier Verifier of the underlying PCIP. Note that B = (B1, B2, B3) is a 3-stage algorithm with an internal state st.
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