
HAL Id: hal-04163030
https://hal.science/hal-04163030v1

Submitted on 24 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anytime Index-Based Search Method for Large-Scale
Simultaneous Coalition Structure Generation and

Assignment
Redha Taguelmimt, Samir Aknine, Djamila Boukredera, Narayan Changder

To cite this version:
Redha Taguelmimt, Samir Aknine, Djamila Boukredera, Narayan Changder. Anytime Index-Based
Search Method for Large-Scale Simultaneous Coalition Structure Generation and Assignment. ECAI,
Accepted paper, Sep 2023, Kraków, Poland. �10.3233/FAIA230527�. �hal-04163030�

https://hal.science/hal-04163030v1
https://hal.archives-ouvertes.fr

Anytime Index-Based Search Method for Large-Scale
Simultaneous Coalition Structure Generation and

Assignment
Redha Taguelmimta;*, Samir Akninea, Djamila Boukrederab and Narayan Changderc

aUniv Lyon, UCBL, CNRS, INSA Lyon, Centrale Lyon, Univ Lyon 2, LIRIS, UMR5205, Lyon, France
bLaboratory of Applied Mathematics, Faculty of Exact Sciences, University of Bejaia, Bejaia, Algeria

cTCG Centres for Research and Education in Science and Technology, Kolkata, India

Abstract. Organizing agents into disjoint groups is a crucial chal-
lenge in artificial intelligence, with many applications where quick
runtime is essential. The Simultaneous Coalition Structure Genera-
tion and Assignment (SCSGA) problem involves partitioning a set of
agents into coalitions and assigning each coalition to a task, with the
goal of maximizing social welfare. However, this is an NP-complete
problem, and only a few algorithms have been proposed to address
it for both small and large-scale problems. In this paper, we address
this challenge by presenting a novel algorithm that can efficiently
solve both small and large instances of this problem. Our method is
based on a new search space representation, where each coalition is
codified by an index. We have developed an algorithm that can ex-
plore this solution space effectively by generating index vectors that
represent coalition structures. The resulting algorithm is anytime and
can scale to large problems with hundreds or thousands of agents. We
evaluated our algorithm on a range of value distributions and com-
pared its performance against state-of-the-art algorithms. Our exper-
imental results demonstrate that our algorithm outperforms existing
methods in solving the SCSGA problem, providing high-quality so-
lutions for a wide range of problem instances.

1 Introduction
An important research in artificial intelligence and game theory is
how to partition a set of agents into disjoint exhaustive coalitions to
maximize social welfare. Several paradigms have been explored in
this context. Coalition formation is a coordination paradigm that has
received extensive coverage in the last three decades in the literature.
This involves forming coalitions and finding the optimal set of coali-
tions among agents through Coalition Structure Generation (CSG),
with potential applications in several domains, including transporta-
tion [16], disaster response [22], distributed sensor networks [3], and
e-commerce [20]. A CSG problem is defined on a set of n agents
and a characteristic function v that assigns a value to each coalition.
It is NP-Complete [15], and several algorithms have been proposed
to solve it either optimally or approximately, ranging from dynamic
programming [23, 12, 7, 1] to branch-and-bound and tree search [14]
to hybrid algorithms [7, 2] to heuristic methods [17, 5, 4]. For this
problem and these methods, the value of a coalition depends only
on its members. However, for cases where a coalition of agents is

∗ Corresponding Author. Email: redha.taguelmimt@gmail.com.

not only evaluated with its members, but also by the task/goal it is
assigned to, the CSG process may fail to produce good-enough solu-
tions to the problems.

To illustrate this, consider the following example. Suppose we aim
to allocate a set of electric vehicles, needing to charge, to charging
stations. Notice that charging an electric vehicle takes significantly
more time than refueling a non-electric vehicle. Thus, we need to
minimize the amount of time electric vehicles wait to be charged.
Since charging stations could be in different locations and not have
the same power or capacity, assigning a group of electric vehicles
to one station or another will not have the same impact. Therefore,
if we do not consider the charging stations, we may form groups of
vehicles that are not good enough. Hence, we need to match each
group of vehicles with the charging station that maximizes the utility
of the system.

With this in mind, the goal of our present work is to investigate
how to solve the CSG problem in which the task/goal assigned to a
coalition affects its value. This problem is the Simultaneous Coali-
tion Structure Generation and Assignment (SCSGA) problem, in
which the coalitions are assigned to different tasks and have different
values/utilities given the task at hand. As discussed by [11], there is
just a handful of recent research works tackling SCSGA in a few ap-
plication domains. Among them, [9] introduces a search space repre-
sentation based on multiset permutations of integer partitions [13] to
prune large portions of the search space. Another work [10] proposes
a dynamic programming algorithm for optimally solving the SC-
SGA problem. These methods are optimal and outperform CPLEX—
a commercial state-of-the-art optimization software—when it comes
to finding optimal solutions for small-scale problems. However, they
can only be run with small numbers of agents, which limits their ap-
plicability to large-scale problems. Despite the interest, to the best
of our knowledge, [11] is the only work that investigates large-scale
SCSGA and compares the results of different heuristic algorithms,
including monte carlo tree search, simulated annealing and local
search. Hence, very few scalable solutions to the SCSGA problem
exist and scalability remains a challenging issue for this problem.

In light of this, we propose a new method for the SCSGA problem.
The following summarizes the contributions of this paper:

1. We design a new search space representation for the SCSGA prob-
lem. Specifically, we borrow ideas from the research [18], which
has been successful in quickly solving the coalition structure gen-

eration problem, and represent coalitions of agents as indexes that
indicate both the coalition to which agents belong and the task as-
signed to them. Additionally, we partition the solution space into
smaller subspaces. This representation allows anytime problem
solving of SCSGA.

2. We develop a new search method for exploring coalition struc-
tures, which relies on our search space representation. Our algo-
rithm is capable of running on large-scale problem instances with
hundreds of agents, and it is anytime, meaning it can be stopped
at any point to return the best solution found thus far.

3. We empirically demonstrate that our method outperforms the
state-of-the-art algorithms when generating high quality solutions
for solving both small and large problems. In addition to this, we
propose a formulation of the electric vehicle allocation problem
that motivated our work and design a value distribution for this
problem.

2 SCSGA Problem Formulation
We investigate the simultaneous coalition structure generation and
assignment problem (SCSGA). In this problem, we are given a set
A = {a1, a2, ..., an} of n agents, a set T = {t1, t2, ..., tk} of k
tasks or goals, and a value v(C, t) for each coalition-task pair, which
denotes the efficiency of the coalition when assigned to the task. A
coalition C is any subset of A, including the empty set. There are
2n possible coalitions for each task, resulting in a total of k2n coali-
tion values. An ordered coalition structure is a partition of the set
of agents into exactly k disjoint coalitions. Formally, given a set
of exactly k coalitions {C1, C2, ..., Ck}, an ordered coalition struc-
ture is a collection of k ordered coalitions CS = {C1, C2, ..., Ck}
that satisfies the following constraints:

⋃k
j=1 Ci = A and for all

i, j ∈ {1, 2, ..., k} where i ̸= j, Ci∩Cj = ∅. It is possible to pair the
coalitions to the tasks differently, but for simplicity in this paper, we
consider that the tasks are ordered, meaning that the coalitions in po-
sitions 1, 2, . . . , k are assigned to tasks t1, t2, . . . , tk, respectively.
For example, with 5 agents {a1, a2, a3, a4, a5} and k = 3, in the
ordered coalition structure {{a2, a3, a5}, ∅, {a1, a4}}, the coalition
{a2, a3, a5} is assigned to task t1, the empty coalition ∅ is assigned
to task t2, and the coalition {a1, a4} is assigned to task t3. Notice
that ordered coalition structures such as {{a2, a3, a5}, ∅, {a1, a4}}
and {∅, {a2, a3, a5}, {a1, a4}} are not equivalent, even if the coali-
tions are composed by the same agents, because they are not assigned
to the same task (the coalition {a2, a3, a5} is assigned to task t1 in
the first ordered coalition structure and to task t2 in the second one).

The value of an ordered coalition structure CS is assessed as
the sum of the values of the coalitions that comprise it: V (CS) =∑

C∈CS v(C, t(C)), where t(C) is the task assigned to the coalition
C. The goal of the SCSGA problem is to find the optimal solution,
which is the highest-valued ordered coalition structure. Hence, for
the remainder of this paper, we use the terms ordered coalition struc-
ture and solution interchangeably.

3 Related Work
Very few algorithms [11, 9, 10] have been developed for the SCSGA
problem. On the other, the closely related problem CSG has been ex-
tensively studied, and many algorithms have been developed to solve
it, which are discussed in Section 1. However, without redesigning
them, these methods are unsuitable for SCSGA and are specifically
designed to solve the CSG problem without tasks/goals, for which
they consider coalition structures of any size, whereas in SCSGA we

only consider ordered coalition structures of size k. Moreover, empty
coalition structures are not considered in CSG because they have no
impact since they correspond to the absence of coalition formation.
In contrast, in SCSGA, when a coalition assigned to a task/goal is of
size 0, it means that no agent is assigned to the task/goal. Addition-
ally, the order of coalitions in CSG is not important because there are
no tasks/goals to assign, whereas in SCSGA, the order of coalitions
is crucial since it determines which coalition is assigned to each task.
Thus, it is important to develop new algorithms specifically tailored
to the SCSGA problem.

4 Representing Ordered Coalition Structures
We build upon the representation of the search space proposed
by [13] and adopt a similar approach to that used by [9] to address
the specific challenge of considering coalition structures that con-
tain exactly k coalitions. To represent the coalitions and structures
with integers, we add an integer layer on top of this representation.
Recall that an integer partition of n is a vector of positive integers
that sum to n. For instance, for n = 4 agents, the integer parti-
tions are: [4], [1, 3], [2, 2], [1, 1, 2], [1, 1, 1, 1]. Specifically, we gen-
erate the set I1 of integer partitions of n of size at most k. For exam-
ple, for n = 5 and k = 3, I1 = {[5], [1, 4], [2, 3], [1, 1, 3], [1, 2, 2]}.
Then, we generate the set I2 of configurations by appending ze-
ros to the partitions of size less than k. For example, for n = 5
and k = 3, I2 = {[5, 0, 0], [1, 4, 0], [2, 3, 0], [1, 1, 3], [1, 2, 2]}.
Finally, we generate the set I3 of all the combinations of the
configurations of I2. This can efficiently be done using the al-
gorithm based on tree-traversal proposed in [19], or the algo-
rithm based on loopless generation proposed in [21]. For exam-
ple, for n = 5 and k = 3, I3 = {[5, 0, 0], [0, 5, 0], [0, 0, 5],
[1, 4, 0], [1, 0, 4], [4, 1, 0], [4, 0, 1], [0, 1, 4], [0, 4, 1],
[2, 3, 0], [2, 0, 3], [3, 2, 0], [3, 0, 2], [0, 2, 3], [0, 3, 2],
[1, 1, 3], [1, 3, 1], [3, 1, 1], [1, 2, 2], [2, 1, 2], [2, 2, 1]}.

I3 represents all subspaces of the search space, where each sub-
space (configuration) is represented by a filled integer partition of n
of size k. Specifically, each filled partition has k parts that sum to n,
and may contain 0 to k − 1 zeros. Each partition represents coali-
tion structures that contain exactly k coalitions where the sizes and
the order of the coalitions matches its parts. For example, [2, 1, 2]
represents all coalition structures that contain one coalition of size
2 assigned to the first task, one coalition of size 1 assigned to the
second task, and one coalition of size 2 assigned to the third task.

To account for cases where no coalition is assigned to a task, we
consider the empty set as a coalition of size 0. Therefore, when a task
has no assigned coalition, it is represented by a coalition of size 0.

4.1 Coalition Representation

Each configuration in I3 represents a set of coalition structures
that satisfy the criteria specified by the configuration. For example,
[0, 4, 1] represents all coalition structures that contain one coalition
C0 of size 0 assigned to the first task, one coalition C1 of size 4 as-
signed to the second task, and one coalition C2 of size 1 assigned to
the third task.

We adapt the representation presented in [18] to the configurations
of I3. For each configuration, we represent each coalition with its
index. For instance, C0 is represented with index 0, C1 with index
1, and so on. These indexes serve two purposes: they identify the
coalitions and determine their assigned tasks. For instance, index 0
identifies coalition C0 and specifies that it is assigned to task 0.

4.2 Ordered Coalition Structure Representation

Having described how we represent a coalition given a configuration,
we now focus on how we represent the coalition structures of the
configuration.

Similar to [18], we represent each coalition structure with a vec-
tor of indexes of size n = |A|: [x1, x2, .., xp, .., xn]. The in-
dexes in positions 1, 2, . . . , n represent the coalitions to which the
agents a1, a2, . . . , an belong, respectively. For instance, let A be
a set of n = 5 agents. Consider the coalition structure CS1 =
{∅, {a2, a3, a5}, {a1, a4}} of the subspace [0, 3, 2] containing three
coalitions: C0 = ∅ , C1 = {a2, a3, a5} and C2 = {a1, a4}. C0,
C1 and C2 are represented with indexes 0, 1 and 2, respectively.
CS1 is encoded by the vector of indexes [x1 x2 .. xp .. x6], where
xp/p=1..6 = j ⇔ ap ∈ Cj . Note that as the coalitions of size 0
have no agent and the vector represents the coalitions of the agents,
then the indexes that represent the coalitions of size 0 do not ap-
pear in the vectors that represent the coalition structures. Figure 1.a
shows the representation of the coalition structure CS1 using the
vector of indexes [2 1 1 2 1] of size n = 5, where the number of
different indexes in the vector equals the number of coalitions of
size more than 0 forming CS1. The index associated to a1 and a4

in the vector is 2 because a1 and a4 belong to C2 in CS1, while
the index associated to a2, a3 and a5 in the vector is 1 because a2,
a3 and a5 belong to C1 in CS1. However, index 0 is not associated
with any agent because the coalition of index 0 is empty. Neverthe-
less, it is important to have the index 0 as this allows to identify the
tasks of the other non-empty coalitions. Note that any permutation of
these indexes provides a different coalition structure. For example,
the vector of indexes [2 2 2 1 1] represents the coalition structure
CS2 = {∅, {a4, a5}, {a1, a2, a3}} (see Figure 1.b).

CS1 = {∅, {a2, a3, a5}, {a1, a4}} = [2 1 1 2 1]

a1 a2 a3 a4 a5

(a) CS1

0 1 2

CS2 = {∅, {a1, a2, a3}, {a4, a5}} = [1 1 1 2 2]

a1 a2 a3 a4 a5

(b) CS2

0 1 2

Figure 1: Representation of the coalition structures CS1 =
{∅, {a2, a3, a5}, {a1, a4}} and CS2 = {∅, {a1, a2, a3}, {a4, a5}}
using our approach. The indexes 0,1 and 2 represent the coalitions of
the agents and the task assigned to each coalition.

4.3 Generalization

We now extend this representation to any configuration in I3.
All configurations of I3 have k parts. We assign an index j ∈
0, 1, ..., k − 1 to each coalition Cj . To represent a coalition structure
CS gathered in a configuration, we create a vector of size n = |A|,
where each non-empty coalition Cj is represented l times in the vec-
tor, where l = |Cj |. The indexes associated with empty coalitions
are not included in the vector because l = 0. For example, consider
the configuration [0, 3, 2], which has three coalitions with sizes 0, 3,

and 2 respectively. Let C0, C1, C2 represent the empty, second, and
third coalition respectively. The vector representing a coalition struc-
ture of this configuration will have no occurrences of 0 because C0
is empty, three occurrences of 1 because C1 has three agents, and
two occurrences of 2 because C2 has two agents (see Figure 1). Fig-
ure 2 shows the vectors representing all the coalition structures for a
problem with n = 5 agents and k = 2.

Theorem 1. The entire solution space can be represented with our
ordered coalition structure representation.

Proof. We stated that each configuration in I3 represents a set of or-
dered coalition structures meeting the criteria of the configuration.
Assume that there exists an ordered coalition structure that is not
represented with our method, meaning that there is no vector of in-
dexes that represents this coalition structure. Now, as all of the or-
dered coalition structures of each configuration are represented with
our method (as defined in the subsection 3.3), this means that this
coalition structure is not represented within the configurations in I3.
However, as proved by [9], every ordered coalition structure belongs
to one of the configurations, so Theorem 1 holds.

5, 0

{{a1, a2, a3, a4, a5}, ∅}

[0 0 0 0 0]

0 1

0, 5

{∅, {a1, a2, a3, a4, a5}}

[1 1 1 1 1]

0 1

1, 4

{{a1}, {a2, a3, a4, a5}}

[0 1 1 1 1], [1 0 1 1 1], [1 1 0 1 1], [1 1 1 0 1], [1 1 1 1 0]

0 1

4, 1

{{a1, a2, a3, a4}, {a5}}

[0 0 0 0 1], [0 0 0 1 0], [0 0 1 0 0], [0 1 0 0 0], [1 0 0 0 0]

0 1

2, 3

{{a2, a4}, {a1, a3, a5}}

[0 0 1 1 1], [0 1 0 1 1], [0 1 1 0 1], [0 1 1 1 0], [1 0 0 1 1]

[1 0 1 0 1], [1 0 1 1 0], [1 1 0 0 1], [1 1 0 1 0], [1 1 1 0 0]

0 1

3, 2

{{a1, a4, a5}, {a2, a3}}

[0 0 0 1 1], [0 0 1 0 1], [0 0 1 1 0], [0 1 0 0 1], [0 1 0 1 0]

[0 1 1 0 0], [1 0 0 0 1], [1 0 0 1 0], [1 0 1 0 0], [1 1 0 0 0]

0 1

Figure 2: An example of the representation of all the coalition struc-
tures for a problem with five agents and k = 2. Our representation
complements that of [9]. Each vector in this figure corresponds to a
coalition structure. For example, the coalition structures highlighted
in the blue rectangles correspond to the vectors highlighted in the
green rectangles.

5 PISA Algorithm

In this section, we present our PISA (Permutation-based Index
Search and Assignment) algorithm. Our starting point is the set I3 of
configurations. Given this set, PISA partially generates the ordered
coalition structures of each configuration.

5.1 Step 1: Initial Vectors Generation

PISA generates the vectors that represent the ordered coalition struc-
tures by permuting the indexes of selected initial vectors. This pro-
cess begins with the generation of a set of indexesX = {0, 1, . . . , k}
and a set Y = {k, k− 1, . . . , 0} that is the reverse of X . Next, PISA
generates the set Z , which contains permutations of the sets X and
Y , as well as the sets X and Y themselves. The sets X and Y are
used because they are easily identifiable and can be used to gener-
ate a large number of different permutations in Z . To construct Z ,
PISA starts with the first index and permutes it with each of the other
indexes. Then, PISA moves to the next index and applies the same
permutation operations to it, until it reaches the last index. For ex-
ample if k = 3, then X = {0, 1, 2} and Y = {2, 1, 0}. The set Z
would contain the sets of indexes that result from the permutations
performed onX (which are: {1, 0, 2}, {2, 1, 0}, {0, 2, 1}), and those
performed on Y (which are: {1, 2, 0}, {0, 1, 2}, {2, 0, 1}). Hence,Z
= { {0, 1, 2}, {2, 1, 0}, {1, 0, 2}, {0, 2, 1}, {1, 2, 0}, {2, 0, 1} }, by
removing the duplicates. The sets X , Y , Z are the same for all con-
figurations as they all contain k coalitions.

Now, for each configuration, PISA generates some pre-initial vec-
tors that are used to generate the initial vectors. To generate the pre-
initial vectors, PISA takes each set of indexes in Z and generates the
corresponding pre-initial vector by positioning the indexes accord-
ing to the order of the indexes in the set, and repeating each index
as many times as the size of the coalition it represents. For example,
with 5 agents and the subspace [0, 3, 2], the pre-initial vector of the
set of indexes {0, 1, 2} is [1 1 1 2 2] because the coalitions repre-
sented with 0, 1, and 2 are of sizes 0, 3, and 2, respectively. To gener-
ate the initial vectors, PISA permutes the indexes of each pre-initial
vector. For each pre-initial vector, PISA starts with the first index and
permutes it with each of the other indexes. Then, PISA moves to the
next index and applies the same permutation operations to it, until it
reaches the last index. For example, with the pre-initial vector [1 1 1
2 2], PISA generates these initial vectors: [2 1 1 1 2], [2 1 1 2 1], [1
2 1 1 2], [1 2 1 2 1], [1 1 2 1 2], [1 1 2 2 1]. An illustration example
of this phase is shown in Figure 3.

5.2 Step 2: Ordered Coalition Structure Generation

In phase 2, PISA generates the ordered coalition structures using the
initial vectors obtained in phase 1. To do this, PISA permutes the in-
dexes of these vectors, and after each permutation, it obtains a new
vector that represents a new ordered coalition structure. To gener-
ate the ordered coalition structures, PISA starts by taking one initial
vector at a time. It then generates the permutations as follows: first,
PISA starts with the first index of the initial vector and permutes it
with each of the other indexes. Then, PISA moves to the next index
and applies the same permutation operations to it, until it reaches the
last index. This generates a new vector, which represents a different
ordered coalition structure. In each generated vector, the indexes de-
termine which agents belong to each coalition, and the index of each
coalition determines the task assigned to the coalition. If no agent
belongs to a coalition, meaning that no index of the coalition appears
in the vector, then that coalition is empty. For example, the vector [1
1 1 2 2] does not contain the index 0, meaning that the coalition of
index 0, which is assigned to the task of index 0, is empty. Figure 4
shows an illustration example of this phase.

X = {0, 1, 2}

{0, 1, 2} : {1, 0, 2}

{0, 1, 2} : {2, 1, 0}

{0, 1, 2} : {0, 2, 1}

[0, 3, 2]

0 1 2

[1 1 1 2 2]

[1 1 1 2 2] : [2 1 1 1 2]

[1 1 1 2 2] : [2 1 1 2 1]

[1 1 1 2 2] : [1 2 1 1 2]

[1 1 1 2 2] : [1 2 1 2 1]

[1 1 1 2 2] : [1 1 2 1 2]

[1 1 1 2 2] : [1 1 2 2 1]

Y = {2, 1, 0}

{2, 1, 0} : {1, 2, 0}

{2, 1, 0} : {0, 1, 2}

{2, 1, 0} : {2, 0, 1}

Figure 3: An illustration example of the initial vector generation for
the configuration [0, 3, 2]. We first generate the set Z by permuting
the indexes of the sets X and Y . Then we generate the pre-initial
vectors that we use to generate the initial vectors. In this example, we
only show the initial vectors generated using one pre-initial vector [1
1 1 2 2]. Note that when a coalition is of size 0, the vectors do not
contain the index of that coalition as no agent belongs to it.

5.3 Ordering the Configurations

As described in the previous subsections, PISA considers the con-
figurations one by one and performs the index permutations on the
initial vectors and computes the initial vectors for each configura-
tion. The order in which the configurations are considered can af-
fect the quality of the anytime solutions found during the execution,
and some configurations may be unlikely to improve the current best
solution. To order the configurations and to enable pruning out the
configurations that have no chance of containing an optimal solution,
PISA computes the upper bound of each configuration and sorts them
using these values. Let Maxs,i denote the highest value of the coali-
tions of size s assigned to task i. By computing Maxs,i for every
coalition size s and task i, it is possible to compute the upper bound
of a configuration S: UBS =

∑k−1
i=0 MaxIntegers(S)[i],i, where

Integers(S) is the set of integers that form the configuration S.
Note that the maximum value is 0 for empty coalitions of size 0 (i.e.
Max0,i = 0). For example, consider the configuration S = [0, 3, 2].
Here, Integers(S) = {0, 3, 2}, and we calculate the upper bound
of S as follows: UB[0,3,2] = Max0,0 +Max3,1 +Max2,2. PISA
uses the upper bounds of the configurations to order them and prune
out those that have no chance of improving the current best solution.
PISA repeats the subspace removal procedure each time it finishes
evaluating a configuration that improves the solution. This enables
PISA to remove configurations that do not have a better upper bound
than the last best solution found. By using the upper bound to order
and prune configurations, PISA can focus its search on those that are
most promising and improve the solution quality faster.

Algorithm 1 outlines the functioning of PISA. It initializes the
best coalition structure to be the grand coalition assigned to the first
task and then iteratively searches for better coalition structures as
described in lines 6-19. More specifically, PISA processes one sub-
space (configuration) at a time. It generates the initial vectors for

CS0 [2 1 1 1 2]⇔ {∅, {a1, a3, a4}, {a2, a5}}

CS1 [2 1 1 1 2]: [1 2 1 1 2]⇔ {∅, {a1, a2, a4}, {a3, a5}}

CS2 [2 1 1 1 2]: [1 1 2 1 2]⇔ {∅, {a1, a2, a3}, {a4, a5}}

CS3 [2 1 1 1 2]: [1 1 1 2 2]⇔ {∅, {a3, a4, a5}, {a1, a2}}

CS4 [2 1 1 1 2]: [2 2 1 1 1]⇔ {∅, {a2, a4, a5}, {a1, a3}}

CS5 [2 1 1 1 2]: [2 1 2 1 1]⇔ {∅, {a2, a3, a5}, {a1, a4}}

CS6 [2 1 1 1 2]: [2 1 1 2 1]⇔ {∅, {a2, a3, a4}, {a1, a5}}

Figure 4: An illustration example of the permutations performed by
PISA when searching the configuration [0, 3, 2] with the initial vector
[2 1 1 1 2]. With this initial vector, PISA performs 6 permutations and
generates 7 coalition structures.

the subspace as described in Section 5.1. Then, PISA permutes the
indexes of the initial vectors to obtain index vectors that represent or-
dered coalition structures. Each permutation, which corresponds to a
new ordered coalition structure, is then evaluated to determine if it
improves upon the value of the current best solution.

Algorithm 1: The PISA algorithm
Input: A set of n agents A and a set of k tasks T . Set of all

coalitions and the value v(C, t) of each coalition C and
task t.

Output: The best structure found CS+ and its value V+.
1 Generate partitions of n of size at most k and store them in I1
2 Add zeros to the partitions in I1 of size less than k and

generate the set I2
3 Generate the set I3 of combinations of the configurations in I2
4 CS+ ← A, t1 ▷ initialization with the grand coalition

assigned to the first task
5 V+ ← v(A, t1)
6 foreach Subspace S ∈ I3 do
7 Generate the initial vectors and store them in ϑ
8 foreach ς ∈ ϑ do
9 permute the indexes of ς and store them in the set

PM
10 foreach x ∈ PM do
11 CS ← g(x) ▷ g is the conversion function from

the vector x to a coalition structure CS
12 V(CS) =

∑l−1
j=0 v(Cj , tj), where (Cj , tj) ∈ CS

13 if V(CS) > V+ then
14 V+ ← V(CS)
15 CS+ ← CS
16 end
17 end
18 end
19 end
20 Return CS+, V+

In Theorem 2, we prove that the proposed algorithm is anytime,
meaning that it can provide a solution at any time during its execu-
tion, and the solution quality improves over time. This property is
desirable in many real-world scenarios where the available computa-

tion time may be limited or uncertain. This feature also makes PISA
a robust and flexible algorithm that can handle various problem in-
stances effectively.

Theorem 2. The PISA algorithm is an anytime algorithm.

Proof. The PISA algorithm starts with an initial coalition structure
and then repeatedly improves it over time by performing several per-
mutation operations. At any point during the execution, the algorithm
can return the currently best solution found so far. Moreover, since
the algorithm continues to improve the solution by iteratively explor-
ing the search space and refining the coalition structure, the quality
of the solution will continue to improve as long as the algorithm is
allowed to run. Therefore, we conclude that the PISA algorithm is an
anytime algorithm

In the following theorem, we show the time needed to search a
subspace by PISA.

Theorem 3. Given n agents and k tasks, a subspace is searched in
PISA in O(n4 × k2) time.

Proof. For any subspace (configuration), the number of permuta-
tions for a single initial vector is O(n

2

2
) = O(n2). With this, the

total operations performed T (n, k) is as follows:
T (n, k) = O(n2) × i(k), where O(n2) is the number of permuta-
tions and i(k) is the number of initial vectors. We will now compute
the number of initial vectors. PISA starts by generating two sets X
and Y of size k, and the set Z by permuting the sets X and Y . The
number of sets in Z , and hence of pre-initial vectors, isO(k2). Now,
given each pre-initial vector, PISA generates O(n2) initial vectors.
Hence, the total number of initial vectors is i(k) = O(k2)×O(n2).
As a result, the number of operations performed by PISA is:
T (n, k) = O(n2)×O(k2)×O(n2)
T (n, k) = O(n4 × k2).

6 Empirical Evaluation

We experimentally compare the PISA algorithm against represen-
tative state-of-the-art SCSGA algorithms for both small and large-
scale problems. We compare both the solution quality (for small-
scale problems) and the gain rate (for large-scale problems). We im-
plemented our algorithm in Java and in the comparisons we used the
codes provided by the authors of [11]. We compared our algorithms
to the random-restart hill climb algorithm (RHC) and the random-
restart hybrid algorithm (RHY) that combines the greedy algorithm
with the hill climb algorithm, which have been shown to achieve
state-of-the-art performance for large-scale SCSGA [11]. The al-
gorithms were run on an Intel Xeon 2.30GHz E5-2650 CPU with
256GB of RAM. To generate the problem instances, we considered
the following value distributions: NPD (normal probability distribu-
tion) [13], UPD (uniform probability distribution) [6], SNPD (sparse
UPD) and SUPD (sparse UPD) [11].

• NPD: Each value of a coalition is obtained from:
v(C, t) ∼ N (µ, σ2), where µ = 10× |C| and σ = 0.1 [13].

• UPD: v(C, t) ∼ U(0, a), with a = |C| [6].
• SNPD: v(C, t) ∼ N (µ1, σ

2) with probability 0.01, else
v(C, t) ∼ N (µ2, σ

2), with µ1 = 1, µ2 = 0.1, σ = 0.1 [11].
• SUPD: v(C, t) ∼ U(0, a1), where a1 = 1, with probability 0.01,

else v(C, t) ∼ U(0, a2), where a2 = 0.1 [11].

The result for each value distribution was produced by computing
the average result from 50 generated problem instances per value
distribution.

We also address the Electric Vehicle Allocation problem, which
involves assigning a set of electric vehicles to charging stations with
the aim of minimizing waiting time, given that charging an electric
vehicle takes considerably more time than refueling a non-electric
vehicle. For clarity, bear in mind that a charging station is a specific
physical location that has one or more charging posts. A charging
post itself may have one or more ports, where each port can charge
a single electric vehicle. A set of electric vehicles C is allocated to
a single charging station, and the utility function v(C, t) required by
coalition formation algorithms can be defined in various ways. In
this paper, we consider a simple model in which a set of n electric
vehicles is to be allocated to a set of k stations to minimize waiting
time.

We denote the power and capacity of each charging station cj as
ϕ(cj) and p(cj), respectively. The more power delivered, the faster
the electric vehicle charges. The capacity of each station varies be-
tween 1 and 10, and each electric vehicle requires a specific amount
of charge time, depending on its battery capacity, the charging sta-
tion’s power, and the state of the battery. To simplify the model,
we assume that each vehicle ai requires a charging time rij =

Si
min(ϕ(cj),Φi)

× 60 in each station cj , where Si is the battery ca-
pacity and Φi is the maximum charging power the electric vehicle
can handle.

The utility of a certain set C and a station cj is defined as v(C) =∑
i∈C rij/p(cj). This function can be customized based on the spe-

cific requirements of the application and designed by a domain ex-
pert.

Each coalition structure CS is multivalued and has two values that
need to be minimized. The first value, V1(CS) =maxC∈CSv(C), is
equal to the value of its highest-valued coalition and is used to min-
imize the time to finish charging the last vehicle. The second value,
V2(CS) =

∑
C∈CS v(C), is evaluated as the sum of the values of its

composing coalitions and is used to obtain the best overall perfor-
mance. To solve this SCSGA problem, both values need to be mini-
mized.

6.1 Small-Scale Benchmarks

In this subsection, we present a comparative analysis of our algo-
rithm’s performance against state-of-the-art methods on small-scale
problems involving a limited number of agents. To evaluate the per-
formance of the algorithms, we conducted experiments on five differ-
ent value distributions and measured the solution quality achieved by
each algorithm. It should be noted that the algorithms exhibit vary-
ing behaviors depending on the specific value distributions used in
the experiments.

To establish a benchmark for comparison, we also computed the
optimal solutions using CPLEX [8]. However, for problems with a
large number of agents, CPLEX is not able to generate feasible so-
lutions in a reasonable amount of time. As a result, we focused on
benchmarking the algorithms on problems with a limited number of
agents.

We present the solution quality obtained by each algorithm in com-
parison to the optimal solutions computed by CPLEX in Figure 5.
It is evident from the figure that all the algorithms, including our
proposed algorithm PISA, yield near-optimal solutions much faster
than CPLEX. Specifically, even for the most challenging problem
set, PISA achieves solutions that are approximately 99% of the op-

timal within just 1 second. Our algorithm outperforms the current
state-of-the-art and the other methods in terms of speed and solution
quality. Figure 6 shows the solution quality of the algorithms when
varying the number of agents. As can be seen, all algorithms quickly
produce high-quality solutions, and there is a clear general trend that
the PISA and RHC outperform RHY.

95 97 100
0

2

4

6

8

Solution quality (%)

Ti
m

e
(i

n
se

co
nd

s)

NPD

PISA
RHC
RHY

97 100
0

2

4

6

8

Solution quality (%)

Ti
m

e
(i

n
se

co
nd

s)

UPD

PISA
RHC
RHY

90 95 97 100
0

2

4

6

8

Solution quality (%)

Ti
m

e
(i

n
se

co
nd

s)
SNPD

PISA
RHC
RHY

90 95 97 100
0

2

4

6

8

Solution quality (%)

Ti
m

e
(i

n
se

co
nd

s)

SUPD

PISA
RHC
RHY

95 97 100
0

2

4

6

8

Solution quality (%)

Ti
m

e
(i

n
se

co
nd

s)

Electric Vehicles Allocation

PISA
RHC
RHY

Figure 5: Average solution quality obtained by PISA, RHC and RHY
for NPD, UPD, SNPD and SUPD value distributions with 15 agents
and 5 tasks. The optimal solutions are computed using CPLEX,
which always provides the optimal solution.

6.2 Large-Scale Benchmarks

CPLEX and other optimal algorithms have limited scalability and are
only able to handle problems with a small number of agents. In con-
trast, our proposed algorithm can efficiently handle large-scale prob-
lems involving hundreds or thousands of agents. While algorithms
such as RHC and RHY can also handle large-scale problems, it is
infeasible to guarantee to find an optimal solution in a feasible time
due to the exponential nature of the solution space. Therefore, it is
not possible to compute the solution quality by comparing the solu-
tions obtained to the optimal solutions. To compare the performance

10 11 12 13 14 15

99.7

99.8

99.9

100

Number of agents

S
ol

ut
io

n
qu

al
it

y
(%

)

NPD

PISA
RHC
RHY

10 11 12 13 14 15

99.3

99.7

99.9
100

Number of agents

S
ol

ut
io

n
qu

al
it

y
(%

)

UPD

PISA
RHC
RHY

10 11 12 13 14 15

97

98

99
99.5
100

Number of agents

S
ol

ut
io

n
qu

al
it

y
(%

)

SNPD

PISA
RHC
RHY

10 11 12 13 14 15

99

99.7
99.9100

Number of agents

S
ol

ut
io

n
qu

al
it

y
(%

)

SUPD

PISA
RHC
RHY

10 11 12 13 14 15

99

99.5

100

Number of agents

S
ol

ut
io

n
qu

al
it

y
(%

)

Electric Vehicles Allocation

PISA
RHC
RHY

Figure 6: Solution quality of PISA, RHC and RHY obtained after 8
seconds for sets of agents between 10 and 15 and 5 tasks.

of the algorithms on large-scale problems, we use the gain rate as a
metric, which measures the improvement of the solution achieved
by each algorithm relative to the value of the singleton coalition
structure. This approach allows us to evaluate the algorithms’ per-
formance without the need for an optimal solution as a benchmark,
which is not feasible for large-scale problems. We define the gain

rate as
v(CS)
v(CSs)

maxi(
v(CS+

i
)

v(CSs)
)

, where v(CSs) denotes the value of the sin-

gleton coalition structure, which represents a partition into n coali-
tions, each containing a single agent. The term v(CS) represents the
value of the coalition structure obtained by the algorithm being eval-
uated, and v(CS+

i) denotes the value of the best solution obtained by
algorithm i ∈ {PISA,RHC,RHY }.

In Figure 7, we present the results of our large-scale benchmarks,
comparing the performance of PISA, RHC, and RHY on instances of
different value distributions. To ensure that the algorithms are com-
peting on an equal search time, we used the same time limit for all
the algorithms. Our results demonstrate that PISA, RHY, and RHC
can quickly generate high-quality solutions for problems with im-
mense search spaces and large input sizes. We observe that PISA

consistently outperforms RHC and RHY on a majority of the tests,
especially on problem instances of the Electric Vehicles Allocation
and NPD distributions. Hence, our experiments demonstrate that our
proposed algorithm, PISA, can efficiently solve large-scale problems
and outperform the other algorithms on different value distributions.

30 50 100 500 1000 2000
80

85

90

95

100

Number of agents

G
ai

n
ra

te
(%

)

NPD

PISA
RHC
RHY

30 50 100 500 1000 2000

95

96

97

98

99

100

Number of agents

G
ai

n
ra

te
(%

)

UPD

PISA
RHC
RHY

30 50 100 500 1000 2000

94

96

98

100

Number of agents

G
ai

n
ra

te
(%

)

SNPD

PISA
RHC
RHY

30 50 100 500 1000 2000
95

96

97

98

99

100

Number of agents

G
ai

n
ra

te
(%

)

SUPD

PISA
RHC
RHY

30 50 100 500 1000 2000

98

99

100

Number of agents

G
ai

n
ra

te
(%

)

Electric Vehicles Allocation

PISA
RHC
RHY

Figure 7: Gain rate obtained by PISA, RHC and RHY for NPD, UPD,
SNPD and SUPD value distributions with 20 tasks.

7 Conclusion
This paper presents a novel algorithm for solving the simultane-
ous coalition structure generation and assignment (SCSGA) prob-
lem. Our approach involves a new search space representation, where
an index codifies each coalition. Using this representation, we de-
veloped an algorithm that efficiently explores the solution space by
generating index vectors that represent coalition structures. Our pro-
posed algorithm is anytime and can handle large-scale problems. We
evaluated our algorithm on a range of value distributions and com-
pared its performance against state-of-the-art algorithms. Our exper-
imental results demonstrate that our algorithm outperforms existing
approaches in solving the SCSGA problem, providing high-quality
solutions for a wide range of problem instances.

References

[1] Narayan Changder, Samir Aknine, and Animesh Dutta, ‘An effective
dynamic programming algorithm for optimal coalition structure gener-
ation’, in 2019 IEEE 31st International Conference on Tools with Arti-
ficial Intelligence (ICTAI), pp. 721–727. IEEE, (2019).

[2] Narayan Changder, Samir Aknine, Sarvapali D. Ramchurn, and Ani-
mesh Dutta, ‘Boss: A bi-directional search technique for optimal coali-
tion structure generation with minimal overlapping (student abstract)’,
in Proc. of AAAI, volume 35, pp. 15765–15766, (May 2021).

[3] Viet Dung Dang, Rajdeep K Dash, Alex Rogers, and Nicholas R Jen-
nings, ‘Overlapping coalition formation for efficient data fusion in
multi-sensor networks’, in Proc. of AAAI, volume 6, pp. 635–640,
(2006).

[4] Nicola Di Mauro, Teresa MA Basile, Stefano Ferilli, and Floriana Es-
posito, ‘Coalition structure generation with grasp’, in International
Conference on Artificial Intelligence: Methodology, Systems, and Ap-
plications, pp. 111–120. Springer, (2010).

[5] Helena Keinänen, ‘Simulated annealing for multi-agent coalition for-
mation’, in KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications, pp. 30–39. Springer, (2009).

[6] Kate S Larson and Tuomas W Sandholm, ‘Anytime coalition structure
generation: an average case study’, Journal of Experimental & Theo-
retical Artificial Intelligence, 12(1), 23–42, (2000).

[7] Tomasz Michalak, Talal Rahwan, Edith Elkind, Michael Wooldridge,
and Nicholas R Jennings, ‘A hybrid exact algorithm for complete set
partitioning’, Artificial Intelligence, 230, 14–50, (2016).

[8] Fredrik Präntare and Fredrik Heintz, ‘An anytime algorithm for simulta-
neous coalition structure generation and assignment’, in PRIMA 2018:
Principles and Practice of Multi-Agent Systems, eds., Tim Miller, Nir
Oren, Yuko Sakurai, Itsuki Noda, Bastin Tony Roy Savarimuthu, and
Tran Cao Son, pp. 158–174, Cham, (2018). Springer International Pub-
lishing.

[9] Fredrik Präntare and Fredrik Heintz, ‘An anytime algorithm for opti-
mal simultaneous coalition structure generation and assignment’, Au-
tonomous Agents and Multi-Agent Systems, 34(1), 1–31, (2020).

[10] Fredrik Präntare and Fredrik Heintz, ‘Hybrid dynamic programming for
simultaneous coalition structure generation and assignment’, in PRIMA
2020: Principles and Practice of Multi-Agent Systems, eds., Takahiro
Uchiya, Quan Bai, and Iván Marsá Maestre, pp. 19–33, Cham, (2021).
Springer International Publishing.

[11] Fredrik Präntare, Herman Appelgren, and Fredrik Heintz, ‘Anytime
heuristic and monte carlo methods for large-scale simultaneous coali-
tion structure generation and assignment’, Proceedings of the AAAI
Conference on Artificial Intelligence, 35(13), 11317–11324, (May
2021).

[12] Talal Rahwan and Nicholas R Jennings, ‘An improved dynamic pro-
gramming algorithm for coalition structure generation’, in Proc. of the
7th international joint conference on Autonomous agents and multia-
gent systems-Volume 3, pp. 1417–1420. International Foundation for
Autonomous Agents and Multiagent Systems, (2008).

[13] Talal Rahwan, Sarvapali D Ramchurn, Viet Dung Dang, and Nicholas R
Jennings, ‘Near-optimal anytime coalition structure generation’, in
Proc. of IJCAI, volume 7, pp. 2365–2371, (2007).

[14] Talal Rahwan, Sarvapali D Ramchurn, Nicholas R Jennings, and An-
drea Giovannucci, ‘An anytime algorithm for optimal coalition struc-
ture generation’, Journal of artificial intelligence research, 34, 521–
567, (2009).

[15] Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and
Fernando Tohmé, ‘Coalition structure generation with worst case guar-
antees’, Artificial Intelligence, 111(1), 209–238, (1999).

[16] Tuomas Sandholm and Victor R Lesser, ‘Coalitions among computa-
tionally bounded agents’, Artificial intelligence, 94(1), 99–138, (1997).

[17] Sandip Sen and Partha Sarathi Dutta, ‘Searching for optimal coalition
structures’, in Proceedings Fourth International Conference on Multi-
Agent Systems, pp. 287–292. IEEE, (2000).

[18] Redha Taguelmimt, Samir Aknine, Djamila Boukredera, and Narayan
Changder, ‘Code-based algorithm for coalition structure generation’,
in 2021 IEEE 33rd International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 1075–1082, (2021).

[19] Tadao Takaoka, ‘An o(1) time algorithm for generating multiset permu-
tations’, in Algorithms and Computation, pp. 237–246, Berlin, Heidel-
berg, (1999). Springer Berlin Heidelberg.

[20] Maksim Tsvetovat and Katia Sycara, ‘Customer coalitions in the elec-

tronic marketplace’, in Proc. of the fourth international conference on
Autonomous agents, pp. 263–264, (2000).

[21] Aaron Williams, ‘Loopless generation of multiset permutations using
a constant number of variables by prefix shifts’, in Proceedings of
the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’09, p. 987–996, USA, (2009). Society for Industrial and Ap-
plied Mathematics.

[22] Feng Wu and Sarvapali D Ramchurn, ‘Monte-carlo tree search for scal-
able coalition formation’, in Proc. of IJCAI, pp. 407–413, (2020).

[23] D Yun Yeh, ‘A dynamic programming approach to the complete set
partitioning problem’, BIT Numerical Mathematics, 26(4), 467–474,
(1986).

