Anytime Index-Based Search Method for Large-Scale Simultaneous Coalition Structure Generation and Assignment
Redha Taguelmimt, Samir Aknine, Djamila Boukredera, Narayan Changder

To cite this version:
Redha Taguelmimt, Samir Aknine, Djamila Boukredera, Narayan Changder. Anytime Index-Based Search Method for Large-Scale Simultaneous Coalition Structure Generation and Assignment. ECAI, Accepted paper, Sep 2023, Kraków, Poland. hal-04163030

HAL Id: hal-04163030
https://hal.science/hal-04163030

Submitted on 24 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Anytime Index-Based Search Method for Large-Scale Simultaneous Coalition Structure Generation and Assignment

Redha Taguelmimta,b, Samir Akninea, Djamila Boukrederab and Narayan Changderc

aUniv Lyon, UCBL, CNRS, INSA Lyon, Centrale Lyon, Univ Lyon 2, LIRIS, UMR5205, Lyon, France
bLaboratory of Applied Mathematics, Faculty of Exact Sciences, University of Bejaia, Bejaia, Algeria
cTCG Centres for Research and Education in Science and Technology, Kolkata, India

Abstract. Organizing agents into disjoint groups is a crucial challenge in artificial intelligence, with many applications where quick runtime is essential. The Simultaneous Coalition Structure Generation and Assignment (SCSGA) problem involves partitioning a set of agents into coalitions and assigning each coalition to a task, with the goal of maximizing social welfare. However, this is an NP-complete problem, and only a few algorithms have been proposed to address it for both small and large-scale problems. In this paper, we address this challenge by presenting a novel algorithm that can efficiently solve both small and large instances of this problem. Our method is based on a new search space representation, where each coalition is codified by an index. We have developed an algorithm that can explore this solution space effectively by generating index vectors that represent coalition structures. The resulting algorithm is anytime and can scale to large problems with hundreds or thousands of agents. We evaluated our algorithm on a range of value distributions and compared its performance against state-of-the-art algorithms. Our experimental results demonstrate that our algorithm outperforms existing methods in solving the SCSGA problem, providing high-quality solutions for a wide range of problem instances.

1 Introduction

An important research in artificial intelligence and game theory is how to partition a set of agents into disjoint exhaustive coalitions to maximize social welfare. Several paradigms have been explored in this context. Coalition formation is a coordination paradigm that has received extensive coverage in the last three decades in the literature. This involves forming coalitions and finding the optimal set of coalitions among agents through Coalition Structure Generation (CSG), with potential applications in several domains, including transportation [16], disaster response [22], distributed sensor networks [3], and e-commerce [20]. A CSG problem is defined on a set of n agents and a characteristic function \(v \) that assigns a value to each coalition. It is NP-Complete [15], and several algorithms have been proposed to solve it either optimally or approximately, ranging from dynamic programming [23, 12, 7, 1] to branch-and-bound and tree search [14] to hybrid algorithms [7, 2] to heuristic methods [17, 5, 4]. For this problem and these methods, the value of a coalition depends only on its members. However, for cases where a coalition of agents is not only evaluated with its members, but also by the task/goal it is assigned to, the CSG process may fail to produce good-enough solutions to the problems.

To illustrate this, consider the following example. Suppose we aim to allocate a set of electric vehicles, needing to charge, to charging stations. Notice that charging an electric vehicle takes significantly more time than refueling a non-electric vehicle. Thus, we need to minimize the amount of time electric vehicles wait to be charged. Since charging stations could be in different locations and not have the same power or capacity, assigning a group of electric vehicles to one station or another will not have the same impact. Therefore, if we do not consider the charging stations, we may form groups of vehicles that are not good enough. Hence, we need to match each group of vehicles with the charging station that maximizes the utility of the system.

With this in mind, the goal of our present work is to investigate how to solve the CSG problem in which the task/goal assigned to a coalition affects its value. This problem is the Simultaneous Coalition Structure Generation and Assignment (SCSGA) problem, in which the coalitions are assigned to different tasks and have different values/utilities given the task at hand. As discussed by [11], there is just a handful of recent research works tackling SCSGA in a few application domains. Among them, [9] introduces a search space representation based on multiset permutations of integer partitions [13] to prune large portions of the search space. Another work [10] proposes a dynamic programming algorithm for optimally solving the SCSGA problem. These methods are optimal and outperform CPLEX—a commercial state-of-the-art optimization software—when it comes to finding optimal solutions for small-scale problems. However, they can only be run with small numbers of agents, which limits their applicability to large-scale problems. Despite the interest, to the best of our knowledge, [11] is the only work that investigates large-scale SCSGA and compares the results of different heuristic algorithms, including monte carlo tree search, simulated annealing and local search. Hence, very few scalable solutions to the SCSGA problem exist and scalability remains a challenging issue for this problem.

In light of this, we propose a new method for the SCSGA problem. The following summarizes the contributions of this paper:

\begin{enumerate}
 \item We design a new search space representation for the SCSGA problem. Specifically, we borrow ideas from the research [18], which has been successful in quickly solving the coalition structure gen-
\end{enumerate}
eration problem, and represent coalitions of agents as indexes that indicate both the coalition to which agents belong and the task assigned to them. Additionally, we partition the solution space into smaller subspaces. This representation allows anytime problem solving of SCSGA.

2. We develop a new search method for exploring coalition structures, which relies on our search space representation. Our algorithm is capable of running on large-scale problem instances with hundreds of agents, and it is anytime, meaning it can be stopped at any point to return the best solution found thus far.

3. We empirically demonstrate that our method outperforms the state-of-the-art algorithms when generating high quality solutions for solving both small and large problems. In addition to this, we propose a formulation of the electric vehicle allocation problem that motivated our work and design a value distribution for this problem.

2 SCSGA Problem Formulation

We investigate the simultaneous coalition structure generation and assignment problem (SCSGA). In this problem, we are given a set $A = \{a_1, a_2, ..., a_n\}$ of n agents, a set $T = \{t_1, t_2, ..., t_k\}$ of k tasks or goals, and a value $v(c, t)$ for each coalition-task pair, which denotes the efficiency of the coalition when assigned to the task. A coalition C is any subset of A, including the empty set. There are 2^n possible coalitions for each task, resulting in a total of $k2^n$ coalition values. An ordered coalition structure is a partition of the set of agents into exactly k disjoint coalitions. Formally, given a set of exactly k coalitions $\{C_1, C_2, ..., C_k\}$, an ordered coalition structure is a collection of k ordered coalitions $CS = \{C_1, C_2, ..., C_k\}$ that satisfies the following constraints: $\bigcup_{i=1}^{k} C_i = A$ and for all $i, j \in \{1, 2, ..., k\}$ where $i \neq j$, $C_i \cap C_j = \emptyset$. It is possible to pair the coalitions to the tasks differently, but for simplicity in this paper, we consider that the tasks are ordered, meaning that the coalitions in positions $1, 2, ..., k$ are assigned to tasks $t_1, t_2, ..., t_k$, respectively. For example, with 5 agents $\{a_1, a_2, a_3, a_4, a_5\}$ and $k = 3$, in the ordered coalition structure $\{\{a_2, a_3, a_5\}, \emptyset, \{a_1, a_4\}\}$, the coalition $\{a_2, a_3, a_5\}$ is assigned to task t_1, the empty coalition \emptyset is assigned to task t_2, and the coalition $\{a_1, a_4\}$ is assigned to task t_3. Notice that ordered coalition structures such as $\{\{a_2, a_3, a_5\}, \emptyset, \{a_1, a_4\}\}$ and $\{\emptyset, \{a_2, a_3, a_5\}, \{a_1, a_4\}\}$ are not equivalent, even if the coalitions are composed by the same agents, because they are not assigned to the same task (the coalition $\{a_2, a_3, a_5\}$ is assigned to task t_1 in the first ordered coalition structure and to task t_2 in the second one).

The value of an ordered coalition structure CS is assessed as the sum of the values of the coalitions that comprise it: $V(CS) = \sum_{C \in CS} v(C, t(C))$, where $t(C)$ is the task assigned to the coalition C. The goal of the SCSGA problem is to find the optimal solution, which is the highest-valued ordered coalition structure. Hence, for the remainder of this paper, we use the terms ordered coalition structure and solution interchangeably.

3 Related Work

Very few algorithms [11, 9, 10] have been developed for the SCSGA problem. On the other, the closely related problem of solving the CSP problem without tasks/goals, for which they consider coalition structures of any size, whereas in SCSGA we only consider ordered coalition structures of size k. Moreover, empty coalition structures are not considered in CSP because they have no impact since they correspond to the absence of coalition formation. In contrast, in SCSGA, when a coalition assigned to a task/goal is of size 0, it means that no agent is assigned to the task/goal. Additionally, the order of coalitions in CSP is not important because there are no tasks/goals to assign, whereas in SCSGA, the order of coalitions is crucial since it determines which coalition is assigned to each task. Thus, it is important to develop new algorithms specifically tailored to the SCSGA problem.

4 Representing Ordered Coalition Structures

We build upon the representation of the search space proposed by [13] and adopt a similar approach to that used by [9] to address the specific challenge of considering coalition structures that contain exactly k coalitions. To represent the coalitions and structures with integers, we add an integer layer on top of this representation. Recall that an integer partition of n is a vector of positive integers that sum to n. For instance, for $n = 4$ agents, the integer partitions are: $[4], [1, 1, 1, 1], [2, 1, 1], [2, 1], [3, 1]$. Specifically, we generate the set I_3 of integer partitions of n of size at most k. For example, for $n = 5$ and $k = 3$, $I_3 = \{[5], [1, 4], [2, 3], [1, 1, 3], [1, 2, 2]\}$. Then, we generate the set I_3 of configurations by appending zeros to the partitions of size less than k. For example, for $n = 5$ and $k = 3$, $I_3 = \{[5, 0, 0], [1, 4, 0], [2, 3, 0], [1, 1, 3], [1, 2, 2]\}$. Finally, we generate the set I_3 of all the combinations of the configurations of I_2. This can be efficiently done by using the algorithm based on tree-traversal proposed in [19], or the algorithm based on loopless generation proposed in [21]. For example, for $n = 5$ and $k = 3$, $I_3 = \{[5, 0, 0], [0, 5, 0], [0, 0, 5], [1, 4, 0], [1, 0, 4], [4, 1, 0], [4, 0, 1], [0, 1, 4], [0, 4, 1], [2, 3, 0], [2, 0, 3], [3, 2, 0], [3, 0, 2], [2, 0, 3], [0, 3, 2], [1, 1, 3], [1, 3, 1], [3, 1, 3], [1, 2, 2], [2, 1, 2], [2, 2, 1]\}$.

I_3 represents all subspaces of the search space, where each subspace (configuration) is represented by a filled integer partition of n of size k. Specifically, each filled partition has k parts that sum to n, and may contain 0 to $k−1$ zeros. Each partition represents coalition structures that contain exactly k coalitions where the sizes and the order of the coalitions matches its parts. For example, $[2, 1, 2]$ represents all coalition structures that contain one coalition of size 2 assigned to the first task, one coalition of size 1 assigned to the second task, and one coalition of size 2 assigned to the third task.

To account for cases where no coalition is assigned to a task, we consider the empty set as a coalition of size 0. Therefore, when a task has no assigned coalition, it is represented by a coalition of size 0.

4.1 Coalition Representation

Each configuration in I_3 represents a set of coalition structures that satisfy the criteria specified by the configuration. For example, $[0, 4, 1]$ represents all coalition structures that contain one coalition C_1 of size 0 assigned to the first task, one coalition C_1 of size 4 assigned to the second task, and one coalition C_1 of size 1 assigned to the third task.

We adapt the representation presented in [18] to the configurations of I_1. For each configuration, we represent each coalition with its index. For instance, C_1 is represented with index 0, C_2 with index 1, and so on. These indexes serve two purposes: they identify the coalitions and determine their assigned tasks. For instance, index 0 identifies coalition C_0 and specifies that it is assigned to task 0.
4.2 Ordered Coalition Structure Representation

Having described how we represent a coalition given a configuration, we now focus on how we represent the coalition structures of the configuration.

Similar to [18], we represent each coalition structure with a vector of indices of size \(n = |\mathcal{A}| = |x_1, x_2, \ldots, x_n| \). The indexes in positions 1, 2, \ldots, \(n \) represent the coalitions to which the agents \(a_1, a_2, \ldots, a_n \) belong, respectively. For instance, let \(\mathcal{A} \) be a set of 5 agents. Consider the coalition structure \(\mathcal{C} \mathcal{S}_1 = \{\emptyset, \{a_2, a_3, a_5\}, \{a_1, a_4\}\} \) of the subspace \([0, 3, 2]\) containing three coalitions: \(\mathcal{C}_0 = \emptyset, \mathcal{C}_1 = \{a_2, a_3, a_5\} \) and \(\mathcal{C}_2 = \{a_1, a_4\} \). \(\mathcal{C}_0 \), \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \) are represented with indexes 0, 1 and 2, respectively. \(\mathcal{C} \mathcal{S}_1 \) is encoded by the vector of indexes \([x_1 x_2 x_3 x_4 x_5]\) where \(x_{p/p+1 \ldots 6} = j \iff a_p \in \mathcal{C}_j \). Note that as the coalitions of size 0 have no agent and the vector represents the coalitions of the agents, then the indexes that represent the coalitions of size 0 do not appear in the vectors that represent the coalition structures.

Figure 1.a shows the representation of the coalition structure \(\mathcal{C} \mathcal{S}_1 \) using the vector of indexes \([2 1 1 2 1]\) of size \(n = 5 \), where the number of different indexes in the vector equals the number of coalitions of size more than 0 forming \(\mathcal{C} \mathcal{S}_1 \). The index associated to \(a_1 \) and \(a_4 \) in the vector is 2 because \(a_1 \) and \(a_4 \) belong to \(\mathcal{C}_2 \) in \(\mathcal{C} \mathcal{S}_1 \), while the index associated to \(a_2 \) and \(a_3 \) in the vector is 1 because \(a_2 \), \(a_3 \) and \(a_5 \) belong to \(\mathcal{C}_1 \) in \(\mathcal{C} \mathcal{S}_1 \). However, index 0 is not associated with any agent because the coalition of index 0 is empty. Nevertheless, it is important to have the index 0 as this allows to identify the tasks of the other non-empty coalitions. Note that any permutation of these indexes provides a different coalition structure. For example, the vector of indexes \([2 2 2 1 1]\) represents the coalition structure \(\mathcal{C} \mathcal{S}_2 = \{\emptyset, \{a_4, a_5\}, \{a_1, a_2, a_3\}\} \) (see Figure 1.b).

\[
\begin{align*}
\mathcal{C} \mathcal{S}_1 & = \{\emptyset, \{a_2, a_3, a_5\}, \{a_1, a_4\}\} = [2 1 1 2 1] \\
\mathcal{C} \mathcal{S}_2 & = \{\emptyset, \{a_1, a_2, a_3\}, \{a_4, a_5\}\} = [1 1 1 2 2]
\end{align*}
\]

Figure 1: Representation of the coalition structures \(\mathcal{C} \mathcal{S}_1 = \{\emptyset, \{a_2, a_3, a_5\}, \{a_1, a_4\}\} \) and \(\mathcal{C} \mathcal{S}_2 = \{\emptyset, \{a_1, a_2, a_3\}, \{a_4, a_5\}\} \) using our approach. The indexes 0,1 and 2 represent the coalitions of the agents and the task assigned to each coalition.

4.3 Generalization

We now extend this representation to any configuration in \(\mathcal{I}_3 \). All configurations of \(\mathcal{I}_3 \) have \(k \) parts. We assign an index \(j \in 0, 1, \ldots, k - 1 \) to each coalition \(\mathcal{C}_j \). To represent a coalition structure \(\mathcal{C} \mathcal{S} \) gathered in a configuration, we create a vector of size \(n = |\mathcal{A}| \), where each non-empty coalition \(\mathcal{C}_l \) is represented \(l \) times in the vector, where \(l = |\mathcal{C}_l| \). The indexes associated with empty coalitions are not included in the vector because \(l = 0 \). For example, consider the configuration \([0, 3, 2]\), which has three coalitions with sizes 0, 3, and 2 respectively. Let \(\mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2 \) represent the empty, second, and third coalition respectively. The vector representing a coalition structure of this configuration will have no occurrences of 0 because \(\mathcal{C}_0 \) is empty, three occurrences of 1 because \(\mathcal{C}_1 \) has three agents, and two occurrences of 2 because \(\mathcal{C}_2 \) has two agents (see Figure 1).

Figure 2 shows the vectors representing all the coalition structures for a problem with \(n = 5 \) agents and \(k = 2 \).

Theorem 1. The entire solution space can be represented with our ordered coalition structure representation.

Proof. We stated that each configuration in \(\mathcal{I}_3 \) represents a set of ordered coalition structures meeting the criteria of the configuration. Assume that there exists an ordered coalition structure that is not represented with our method, meaning that there is no vector of indexes that represents this coalition structure. Now, as all of the ordered coalition structures of each configuration are represented with our method (as defined in the subsection 3.3), this means that this coalition structure is not represented within the configurations in \(\mathcal{I}_3 \). However, as proved by [9], every ordered coalition structure belongs to one of the configurations, so Theorem 1 holds.

5 PISA Algorithm

In this section, we present our PISA (Permutation-based Index Search and Assignment) algorithm. Our starting point is the set \(\mathcal{I}_3 \) of configurations. Given this set, PISA partially generates the ordered coalition structures of each configuration.
5.1 Step 1: Initial Vectors Generation

PISA generates the vectors that represent the ordered coalition structures by permuting the indexes of selected initial vectors. This process begins with the generation of a set of indexes \(X = \{0, 1, \ldots, k\} \) and a set \(Y = \{k, k-1, \ldots, 0\} \) that is the reverse of \(X \). Next, PISA generates the set \(Z \), which contains permutations of the sets \(X \) and \(Y \), as well as the sets \(X \) and \(Y \) themselves. The sets \(X \) and \(Y \) are used because they are easily identifiable and can be used to generate a large number of different permutations in \(Z \). To construct \(Z \), PISA starts with the first index and permutes it with each of the other indexes. Then, PISA moves to the next index and applies the same permutation operations to it, until it reaches the last index. For example, if \(k = 3 \), then \(X = \{0, 1, 2\} \) and \(Y = \{2, 1, 0\} \). The set \(Z \) would contain the sets of indexes that result from the permutations performed on \(X \) (which are: \(\{1, 0, 2\} \), \(\{2, 1, 0\} \), \(\{0, 2, 1\} \), and \(\{0, 1, 2\} \)), and those performed on \(Y \) (which are: \(\{1, 2, 0\} \), \(\{0, 1, 2\} \), \(\{2, 0, 1\} \)). Hence, \(Z = \{ \{0, 1, 2\} \}, \{2, 1, 0\}, \{0, 2, 1\}, \{1, 2, 0\}, \{2, 0, 1\} \) by removing the duplicates. The sets \(X, Y, Z \) are the same for all configurations as they all contain \(k \) coalitions.

Now, for each configuration, PISA generates some pre-initial vectors that are used to generate the initial vectors. To generate the pre-initial vectors, PISA takes each set of indexes in \(Z \) and generates the corresponding pre-initial vector by positioning the indexes according to the order of the indexes in the set, and repeating each index as many times as the size of the coalition it represents. For example, with 5 agents and the subspace \([0, 3, 2] \), the pre-initial vector of the set of indexes \(\{0, 1, 2\} \) is \([1 1 1 2 2] \) because the coalitions represented with 0, 1, and 2 are of sizes 0, 3, and 2, respectively. To generate the initial vectors, PISA permutes the indexes of each pre-initial vector. For each pre-initial vector, PISA starts with the first index and permutes it with each of the other indexes. Then, PISA moves to the next index and applies the same permutation operations to it, until it reaches the last index. For example, with the pre-initial vector \([1 1 1 2 2] \), PISA generates these initial vectors: \([2 1 1 2 1], [1 2 1 1 2], [1 1 2 1 2], [1 1 2 1 2], [1 1 2 2 1] \). An illustration example of this phase is shown in Figure 3.

5.2 Step 2: Ordered Coalition Structure Generation

In phase 2, PISA generates the ordered coalition structures using the initial vectors obtained in phase 1. To do this, PISA permutes the indexes of these vectors, and after each permutation, it obtains a new vector that represents a new ordered coalition structure. To generate the ordered coalition structures, PISA starts by taking one initial vector at a time. It then generates the permutations as follows: first, PISA starts with the first index of the initial vector and permutes it with each of the other indexes. Then, PISA moves to the next index and applies the same permutation operations to it, until it reaches the last index. This generates a new vector, which represents a different ordered coalition structure. In each generated vector, the indexes determine which agents belong to each coalition, and the index of each coalition determines the task assigned to the coalition. If no agent belongs to a coalition, meaning that no index of the coalition appears in the vector, then that coalition is empty. For example, the vector \([1 1 1 2 2] \) does not contain the index 0, meaning that the coalition of index 0, which is assigned to the task of index 0, is empty. Figure 4 shows an illustration example of this phase.
the subspace as described in Section 5.1. Then, PISA permutes the
indexes of the initial vectors to obtain index vectors that represent
ordered coalition structures. Each permutation, which corresponds
to a new ordered coalition structure, is then evaluated to determine if
it improves upon the value of the current best solution.

Algorithm 1: The PISA algorithm

Input: A set of \(n \) agents \(\mathcal{A} \) and a set of \(k \) tasks \(\mathcal{T} \). Set of all
coalitions and the value \(v(\mathcal{C}, t) \) of each coalition \(\mathcal{C} \) and
task \(t \).

Output: The best structure found \(\mathcal{CS}^+ \) and its value \(V^+ \).

1. Generate partitions of \(n \) of size at most \(k \) and store them in \(\mathcal{I}_1 \)
2. Add zeros to the partitions in \(|\mathcal{I}_1| < k \) and store them in \(\mathcal{I}_2 \)
3. Generate the set \(\mathcal{I}_3 \) of combinations of the configurations in \(\mathcal{I}_2 \)
4. \(\mathcal{CS}^+ \leftarrow \mathcal{A}, t_1 \triangleright \triangleright \text{initialization with the grand coalition} \)
 assigned to the first task
5. \(V^+ \leftarrow v(\mathcal{A}, t_1) \)
6. foreach Subspace \(\mathcal{S} \in \mathcal{I}_3 \) do
 1. Generate the initial vectors and store them in \(\emptyset \)
 2. foreach \(\zeta \in \emptyset \) do
 1. Permute the vectors of \(\zeta \) and store them in \(\mathcal{PM} \)
 2. foreach \(x \in \mathcal{PM} \) do
 1. \(\mathcal{CS} \leftarrow g(x) \triangleright g \) is the conversion function from
 the vector \(x \) to a coalition structure \(\mathcal{CS} \)
 2. \(V(\mathcal{CS}) = \sum_{j=0}^{k-1} v(\mathcal{C}_j, t_j) \), where \((\mathcal{C}_j, t_j) \in \mathcal{CS} \)
 3. if \(V(\mathcal{CS}) > V^+ \) then
 1. \(V^+ \leftarrow V(\mathcal{CS}) \)
 2. \(\mathcal{CS}^+ \leftarrow \mathcal{CS} \)
 end
 end
end

19. Return \(\mathcal{CS}^+, V^+ \)

In Theorem 2, we prove that the proposed algorithm is anytime,
meaning that it can provide a solution at any time during its execution,
and the solution quality improves over time. This property is
desirable in many real-world scenarios where the available computa-
tion time may be limited or uncertain. This feature also makes PISA
a robust and flexible algorithm that can handle various problem
instances effectively.

Theorem 2. The PISA algorithm is an anytime algorithm.

Proof. The PISA algorithm starts with an initial coalition structure
and then repeatedly improves it over time by performing several permuta-
ations. At any point during the execution, the algorithm can return the currently best solution found so far. Moreover, since the
algorithm continues to improve the solution by iteratively explor-
ning the search space and refining the coalition structure, the quality
of the solution will continue to improve as long as the algorithm is
allowed to run. Therefore, we conclude that the PISA algorithm is an
time algorithm.

In the following theorem, we show the time needed to search a
subspace by PISA.

Theorem 3. Given \(n \) agents and \(k \) tasks, a subspace is searched in
PISA in \(O(n^k \times k^2) \) time.

Proof. For any subspace (configuration), the number of permuta-
tions for a single initial vector is \(\mathcal{O}(2^n) \). With this, the
total operations performed \(\mathcal{T}(n, k) \) is as follows:
\(\mathcal{T}(n, k) = \mathcal{O}(n^k) \times \mathcal{O}(k) \), where \(\mathcal{O}(n^k) \) is the number of permuta-
tions and \(k \) is the number of initial vectors. We will now compute the
number of initial vectors. PISA starts by generating two sets \(\mathcal{X} \)
and \(\mathcal{Y} \) of size \(k \), and then \(|\mathcal{Y}| \) by permuting the sets \(\mathcal{X} \) and \(\mathcal{Y} \). The
number of sets in \(|\mathcal{Z}| \), and hence of pre-initial vectors, is \(\mathcal{O}(k^2) \). Now,
given each pre-initial vector, PISA generates \(\mathcal{O}(n^k) \) initial vectors.
Hence, the total number of initial vectors is \(\mathcal{O}(k^2) \times \mathcal{O}(n^k) \).
As a result, the number of operations performed by PISA is:
\(\mathcal{T}(n, k) = \mathcal{O}(n^k) \times \mathcal{O}(k^2) \times \mathcal{O}(n^k) \).

6 Empirical Evaluation

We experimentally compare the PISA algorithm against repre-
sentative state-of-the-art SCSSGA algorithms for both small and large-
scale problems. We compare both the solution quality (for small-

scale problems) and the gain rate (for large-scale problems). We im-
plemented our algorithm in Java and in the comparisons we used the
codes provided by the authors of [11]. We compared our algorithms
to the random-restart hill climb algorithm (RHC) and the random-
restart hybrid algorithm (RHY) that combines the greedy algorithm
with the hill climb algorithm, which have been shown to achieve
state-of-the-art performance for large-scale SCSSGA [11]. The
algorithms were run on an Intel Xeon 2.30GHz E5-2650 CPU with
256GB of RAM. To generate the problem instances, we considered
the following value distributions: NPD (normal probability distribu-
tion) [6], SNPD (sparse UPD) [6], SUPD (sparse UPD) [11].

- NPD: Each value of a coalition is obtained from:
 \(v(\mathcal{C}, t) \sim \mathcal{N}(\mu, \sigma^2) \), where \(\mu = 10 \times |\mathcal{C}| \) and \(\sigma = 0.1 \) [13].
- UPD: \(v(\mathcal{C}, t) \sim \mathcal{U}(0, a) \), with \(a = |\mathcal{C}| \) [6].
- SNPD: \(v(\mathcal{C}, t) \sim \mathcal{N}(\mu_1, \sigma^2) \) with probability 0.01, else
 \(v(\mathcal{C}, t) \sim \mathcal{N}(\mu_2, \sigma^2) \), with \(\mu_1 = 1, \mu_2 = 0.1, \sigma = 0.1 \) [11].
- SUPD: \(v(\mathcal{C}, t) \sim \mathcal{U}(0, a_1) \), where \(a_1 = 1 \), with probability 0.01,
 else \(v(\mathcal{C}, t) \sim \mathcal{U}(0, a_2) \), where \(a_2 = 0.1 \) [11].
We also address the Electric Vehicle Allocation problem, which involves assigning a set of electric vehicles to charging stations with the aim of minimizing waiting time, given that charging an electric vehicle takes considerably more time than refueling a non-electric vehicle. For clarity, bear in mind that a charging station is a specific physical location that has one or more charging posts. A charging post itself may have one or more ports, where each port can charge a single electric vehicle. A set of electric vehicles C is allocated to a single charging station, and the utility function $v(C,t)$ required by coalition formation algorithms can be defined in various ways. In this paper, we consider a simple model in which a set of k electric vehicles is to be allocated to a set of k stations to minimize waiting time.

We denote the power and capacity of each charging station c_j as $\phi(c_j)$ and $p(c_j)$, respectively. The more power delivered, the faster the electric vehicle charges. The capacity of each station varies between 1 and 10, and each electric vehicle requires a specific amount of charge time, depending on its battery capacity, the charging station’s power, and the state of the battery. To simplify the model, we assume that each vehicle o_i requires a charging time $r_{ij} = S_i \times 60$ in each station c_j, where S_i is the battery capacity and Φ_i is the maximum charging power the electric vehicle can handle.

The utility of a certain set C and a station c_j is defined as $v(C) = \sum_{c \in C} r_{ij}/p(c_j)$. This function can be customized based on the specific requirements of the application and designed by a domain expert.

Each coalition structure CS is multivalued and has two values that need to be minimized. The first value, $V_1(CS) = \max_{C \in CS} v(C)$, is equal to the value of its highest-valued coalition and is used to minimize the time to finish charging the last vehicle. The second value, $V_2(CS) = \sum_{C \in CS} v(C)$, is evaluated as the sum of the values of its composing coalitions and is used to obtain the best overall performance. To solve this SCSGA problem, both values need to be minimized.

6.1 Small-Scale Benchmarks

In this subsection, we present a comparative analysis of our algorithm’s performance against state-of-the-art methods on small-scale problems involving a limited number of agents. To evaluate the performance of the algorithms, we conducted experiments on five different value distributions and measured the solution quality achieved by each algorithm. It should be noted that the algorithms exhibit varying behaviors depending on the specific value distributions used in the experiments.

To establish a benchmark for comparison, we also computed the optimal solutions using CPLEX [8]. However, for problems with a large number of agents, CPLEX is not able to generate feasible solutions in a reasonable amount of time. As a result, we focused on benchmarking the algorithms on problems with a limited number of agents.

We present the solution quality obtained by each algorithm in comparison to the optimal solutions computed by CPLEX in Figure 5. It is evident from the figure that all the algorithms, including our proposed algorithm PISA, yield near-optimal solutions much faster than CPLEX. Specifically, even for the most challenging problem set, PISA achieves solutions that are approximately 99% of the optimal within just 1 second. Our algorithm outperforms the current state-of-the-art and the other methods in terms of speed and solution quality. Figure 6 shows the solution quality of the algorithms when varying the number of agents. As can be seen, all algorithms quickly produce high-quality solutions, and there is a clear general trend that the PISA and RHC outperform RHY.

6.2 Large-Scale Benchmarks

CPLEX and other optimal algorithms have limited scalability and are only able to handle problems with a small number of agents. In contrast, our proposed algorithm can efficiently handle large-scale problems involving hundreds or thousands of agents. While algorithms such as RHC and RHY can also handle large-scale problems, it is infeasible to guarantee to find an optimal solution in a feasible time due to the exponential nature of the solution space. Therefore, it is not possible to compute the solution quality by comparing the solutions obtained to the optimal solutions. To compare the performance...
of the algorithms on large-scale problems, we use the gain rate as a metric, which measures the improvement of the solution achieved by each algorithm relative to the value of the singleton coalition structure. This approach allows us to evaluate the algorithms’ performance without the need for an optimal solution as a benchmark, which is not feasible for large-scale problems. We define the gain rate as $\frac{v(\text{CS}_i) - v(\text{CS}_s)}{v(\text{CS}_s)}$, where $v(\text{CS}_s)$ denotes the value of the singleton coalition structure, which represents a partition into n coalitions, each containing a single agent. The term $v(\text{CS}_i)$ represents the value of the coalition structure obtained by the algorithm being evaluated, and $v(\text{CS}_s)$ denotes the value of the best solution obtained by algorithm $i \in \{PISA, RHC, RHY\}$.

In Figure 7, we present the results of our large-scale benchmarks, comparing the performance of PISA, RHC, and RHY on instances of different value distributions. To ensure that the algorithms are competing on an equal search time, we used the same time limit for all the algorithms. Our results demonstrate that PISA, RHY, and RHC can quickly generate high-quality solutions for problems with immense search spaces and large input sizes. We observe that PISA consistently outperforms RHC and RHY on a majority of the tests, especially on problem instances of the Electric Vehicles Allocation and NPD distributions. Hence, our experiments demonstrate that our proposed algorithm, PISA, can efficiently solve large-scale problems and outperform the other algorithms on different value distributions.

7 Conclusion

This paper presents a novel algorithm for solving the simultaneous coalition structure generation and assignment (SCSGA) problem. Our approach involves a new search space representation, where an index codifies each coalition. Using this representation, we developed an algorithm that efficiently explores the solution space by generating index vectors that represent coalition structures. Our proposed algorithm is anytime and can handle large-scale problems. We evaluated our algorithm on a range of value distributions and compared its performance against state-of-the-art algorithms. Our experimental results demonstrate that our algorithm outperforms existing approaches in solving the SCSGA problem, providing high-quality solutions for a wide range of problem instances.
References

