
HAL Id: hal-04162998
https://hal.science/hal-04162998

Submitted on 17 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lightweight Intrusion Detection System against IoT
Memory Corruption Attacks

Mohamed El Bouazzati, Russell Tessier, Philippe Tanguy, Guy Gogniat

To cite this version:
Mohamed El Bouazzati, Russell Tessier, Philippe Tanguy, Guy Gogniat. A Lightweight Intrusion
Detection System against IoT Memory Corruption Attacks. 26th International Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS 2023), May 2023, Tallinn, Estonia.
pp.118-123, �10.1109/DDECS57882.2023.10139718�. �hal-04162998�

https://hal.science/hal-04162998
https://hal.archives-ouvertes.fr

A Lightweight Intrusion Detection System against
IoT Memory Corruption Attacks

Mohamed El Bouazzati∗, Russell Tessier†, Philippe Tanguy∗ and Guy Gogniat∗
∗ Univ. Bretagne-Sud, UMR 6285, Lab-STICC F-56100 Lorient, France

†Univ of Massachusetts, Department of Electrical and Computer Engineering, Amherst, MA, USA
∗ {mohamed.el-bouazzati, philippe.tanguy, guy.gogniat}@univ-ubs.fr

† tessier@umass.edu

Abstract—Attacks against internet-of-things (IoT) end-devices
represent a significant threat since their wireless communication
capabilities provide a potential attack entry point. To address this
threat, we demonstrate the use of hardware performance coun-
ters (HPCs) in a host-based intrusion detection system (HIDS).
The counter-based monitors are customized to support IoT end-
devices which use low data rate GHz and sub-GHz protocols. Our
solution implements a hardware unit that performs data tracing
for a 32-bit RISC-V based wireless connectivity unit. The unit
can detect ongoing remote attacks in real time. We demonstrate
the effectiveness of our system by detecting a packet injection
exploit. Our FPGA implementation of HIDS has a logic overhead
of about 6% and design frequency penalty of less than 1% for
a RISC-V processor.

Index Terms—IoT Security, RISC-V, Network Processor Ar-
chitecture, HIDS, LoRa, HPC.

I. INTRODUCTION

Systems-on-chip (SoCs) [1] for IoT end-devices are typi-
cally deployed with security protections such as cryptography
primitives, an update mechanism, and secure boot. SoCs with
wireless capabilities, such as LoRaWAN and Bluetooth Low
Energy (BLE), that are currently deployed in the field do not
integrate dedicated hardware mechanisms to counteract remote
attacks that exploit wireless communication [2], [3].

In this paper, we evaluate an implementation of a host-
based intrusion detection system (HIDS) based on hardware
performance counters (HPCs). These performance counters
can detect wireless remote attacks related to LoRaWAN and
Bluetooth protocols. We implement the lightweight HIDS in
hardware with a tracer module to monitor data and a detector
module to analyze and classify attacks.

The HIDS tracer uses a network processor which supports
wireless connectivity. It monitors hardware HPCs that indicate
the current activity status of the network processor. The HIDS
detection module, located outside the network processor, uses
a machine learning classification model to analyze cumulative
HPC values. To assess our approach, the detection accuracy
and resource utilization of the implemented host-based intru-
sion detection system are quantified.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of the security issues associated

with wireless IoT. Section III details previous intrusion detec-
tion system implementations. Section IV presents our HIDS
concept and describes its deployment. Section V describes
our experimental setup and implemented architecture, and
Section VI quantitatively evaluates our HIDS.

II. SECURITY CONTEXT

Attacks against IoT end-devices are a significant threat since
they contain wireless communication capabilities that may be
vulnerable to attacks. In this section, we list common vulner-
abilities and attacks, present the considered threat model and
give an overview of related work regarding countermeasures.

A. Vulnerabilities and Attacks

Recently several vulnerabilities were discovered in IoT
device communication for selected protocols. AMNESIA33 [4]
exposed 33 new critical vulnerabilities found in open source
TCP/IP stack based protocols (uIP, FNET, picoTCP and
Nut/Net) used by millions of IoT devices supplied by over 150
vendors. BLEEDINGBIT [5] and LoRaDawn [6] are attacks
related to memory corruption that exploit vulnerabilities in the
packet parsers of the BLE and LoRaWAN software stacks. An
attacker can exploit the lower layers of a protocol stack, such
as the MAC layer or the physical layer, to perform denial-of-
service (DoS), packet injection, man-in-the-middle (MITM)
attacks, and remote code execution (RCE).

Attacks that exploit LoRaWAN MAC and physical layer
vulnerabilities to perform DoS, packet injection and replay
attacks have also been reported [3], [7], [8]. Similar attacks
are possible for the BLE stack [9]–[12]. IoT protocols are
often subject to packet injection based attacks resulting in
exploits such as DoS, MITM, RCE and privilege escalation.
Systems-on-chip (SoCs) for IoT devices [1] frequently have
two or more supported protocols, resulting in a need for an
independent protocol security mitigation solution. Our HPCs-
based HIDS approach targets the detection of packet injection
attacks exploiting memory corruption vulnerabilities within a
network processor.

B. Mitigation

Hardware and software based security mechanisms that can
detect IoT attacks have been developed [13], [14]. Generally,
these mechanisms provide at least one of the three elements979-8-3503-3277-3/23/$31.00 ©2023 IEEE

of the triad (C/I/A): confidentiality, integrity and availabil-
ity. Software-based security mechanisms include secure boot
and code instrumentation, while hardware-based mechanisms
include information flow tracking. Davis et al. [13] use a
hardware-based control flow integrity extension to prevent
code re-use attacks, such as return-oriented programming
(ROP), in Intel processors. Such mechanisms require compiler-
level and architectural modifications, including changes inside
the processor pipeline. Other countermeasures include memory
protection by design with a safe programming language (e.g.,
RUST [14]). Saeed et al. [15] performed code instrumenta-
tion by adding tags to memory locations for every memory
allocation, and using extra tag-checking instructions for all
memory accesses to detect illegal accesses. Such mechanisms
typically require memory layout changes, which result in
memory overhead. Static analysis tools can be used to detect
bugs at the compilation stage.

Intrusion and anomaly detection approaches were proposed
for IoT environments to detect attacks using an attack sig-
nature [16] or by learning a pattern of legitimate system
activities [17]. These solutions are divided into three parts:
acquisition, analysis and alert. Acquisition uses hardware
probes and/or software to collect information from the system.
Collected information is then analyzed to identify in-progress
attacks. If a malicious action is detected, the system notifies
the user. Such mechanisms [18] have been shown to accurately
detect attacks. However, the performance (detection rate) and
area, code size and power consumption overheads remain
challenging.

In this work, we target resource-constrained IoT end-devices
that have an approximate power consumption of 1 to 2 Watts
and a memory capacity of 100 to 300 kB [1]. In previous work
[19], an end-device collects metrics and sends them to a server
or a gateway for remote analysis and detection. Rather, in our
approach, tracing and detection are both implemented on the
IoT end-device.

III. RELATED WORK

Our HIDS, detailed in Section IV, uses hardware metrics
to prevent intrusions. Several research studies [19]–[22] have
demonstrated the use of HIDS with hardware metrics to
detect attacks. Bourdon et al. [19] describe an anomaly de-
tection approach based on the analysis of data from hardware
performance counters (HPCs). The data is used to identify
compromised devices among a massive population of similar
IoT devices. An accurate behavioral model of the device
was built using hardware performance event values from an
ARM Cortex A53 processor: memory cache, instructions,
exceptions, prediction branches, and bus access. The values
reflect the current state of the CPU. A kernel tracing module
is installed in device software for monitoring. The tracer stores
the HPC data in a local file every 5 seconds. The analysis and
detection module deployed on the server receives a data file
every 30 minutes.

The detection strategy was assessed with multiple attack
scenarios on a population of 10, 000 devices. The simulated

attacks mainly consider DoS and packet injection exploits.
The detection accuracy of the approaches was determined
using machine learning algorithms via two metrics: the true
positive rate (TPR) and the false positive rate (FPR). Since
the analysis and detection modules are remotely deployed on
a server, the real-time detection of IoT device intrusions is
quite challenging. The distributed implementation is needed
due to the limited resources available on the IoT device (power,
memory and CPU, etc.).

Our approach differs from the one noted above in two
main ways. First, we detect ongoing remote packet injection
attacks on the network processor of the wireless connectiv-
ity unit. Second, our monitoring and detection modules are
implemented on the IoT platform and do not require remote
detection using a server or gateway.

IV. METHODOLOGY

A. Threat Model

Fig. 1 shows the wireless IoT threat model. The victim
is an IoT SoC with a CPU used for user applications and
a wireless connectivity subsystem which uses one or more
protocol stacks managed by the network processor. Since most
of the vulnerabilities described in Section II are found in the
physical and MAC layers, these layers of the IoT protocol
stack form the attack surface. The attacker is remote and can
use a software-defined radio (SDR) platform or a protocol-
specific dongle to perform an attack. The attacker attempts to
perform packet injection into the victim’s wireless connectivity
network processor to achieve one of the following exploits:
DoS, MITM, RCE and privilege escalation.

SoC: IoT end-point

Application

Firmware

Main CPU

USER

Wireless Connectivity

Network
Processor

Front end

New
Attack
Surface

Upper Layers

MAC MAC

PHYPHY

Stack Sub-GHz / GHz

IoT Gateway

Attacker
SDR Platform
Ex: LimeSDR

Packet
injection

Fig. 1. Wireless communication threat model

B. Hardware Based HIDS Design

Fig. 2 shows the processing flow for our hardware-based
host intrusion detection system. The software operating on the
network processor processes the MAC layer of an IoT protocol
stack. It parses packets that are received from the physical
layer. Simultaneously, the HIDS, which is implemented in
hardware, monitors hardware performance events using HPCs
available on the network processor, as demonstrated in Fig. 3.

The cumulative values of the hardware events provide
insight into network processor behavior during packet parsing.
The produced values of the counters are used within the
detection module to identify intrusions and attacks.

Received Packet

Enable Tracing

Parsing Packet

HPCs Monitoring

End of Parsing

Read HPCs

Analyze & Detect Raise Interrupt

 Software : MAC Layer

Hardware :
Tracer & Detector

Fig. 2. Flow diagram of network packet processing, HPC monitoring and
detection.

Wireless Connectivity

Network Processor

Tracer HPCs

Protocol Stack

Upper Layers

MAC Layer

Physical Layer

HIDS

Detector
Tracing

Warning

Front End

Antenna

Fig. 3. Wireless connectivity and HIDS (Host Intrusion Detection System)
block diagram

V. EXPERIMENTAL SETUP

Our HIDS approach in Fig. 3 has been designed, imple-
mented and evaluated. A complete system, including HIDS
hardware, has been evaluated using cycle-accurate simulation
with Verilator [23], a Verilog simulator. Following simulation,
the entire system was implemented using Xilinx Vivado in an
Artix-7 35T FPGA on a Digilent Arty 35T/100T board, and
has been tested for the LoRa protocol stack with a simplified
MAC layer using a physical testbed.

A. Simulation Testbed

The use of a simulation testbed to generate a large data set
to train and build machine learning models has been a common
approach in the field of machine learning. By simulating
various scenarios and conditions, this approach can also be
useful in reducing the cost and complexity of obtaining real-
world data for training and testing.

Fig. 4 shows the SoC system built with LiTeX [24], a SoC
builder. A RISC-V soft-core CV32E41P, developed by the
Open Hardware Group [25], serves as the network processor
for wireless connectivity. This small, 32-bit, in-order RISC-
V core has a 4-stage pipeline that implements the RV32IM
RISC-V instruction set architecture according to the RISC-
V privileged specification [26]. Fig. 4 shows a minimal SoC
including network processor (CV32E41P), RAM and UART,
interconnected via a Wishbone bus.

The CV32E41P includes a set of 64-bit HPCs that are placed
with the control and status registers (CSRs). The CV32E41P
implements a clock cycle counter and a retired instruction
counter, which are always activated, and 29 configurable event
counters. The event counters can be accessed with a parameter

of 0 and 2 through 29. The CV32E41P tracks a set of hardware
events using the counters listed in Tab. I. These events are each
assigned to an event counter using a CSR event selector.

TABLE I
LIST OF HARDWARE EVENTS MONITORED BY THE CV32E41P

PERFORMANCE COUNTERS

Hardware Event Description Counter
CYCLES Number of cycles 0
INSTR Number of instructions retired 2

LD STALL Number of load use hazards 3
JMP STALL Number of jump register hazards 4

IMISS Cycles waiting for instruction fetches 5
LD Number of load instructions 6
ST Number of store instructions 7

JUMP Number of jumps (unconditional) 8
BRANCH Number of branches (conditional) 9

BRANCH TAKEN Number of branches taken (conditional) 10
COMP INSTR Number of compressed instructions retired 11

The Tracer shown in the HIDS block diagram in Fig. 3
is directly connected to the CPU core. It captures behavioral
information of a process running on the network processor
by accumulating values of selected hardware events during
network packet parsing. A developer can access the Tracer
(called HPMtracer in our implementation) to enable moni-
toring based on a predefined security policy.

The Software components shown in Fig. 4 include the
firmware executed by the network processor. The software
executes specific parts of a full IoT protocol stack including
the MAC layer of the IoT protocol stack shown in Fig. 3. The
firmware controls the HPMtracer using three signals: HPM
Reset, HPM Enable and HPM Stop.

Network Traffic Generator and Machine Learning Process-
ing operations, displayed in Fig. 4, are performed offline using
Python for data set generation and processing. Additional
details regarding attack scenarios and machine learning pro-
cessing are presented in the two next subsections.

SoC : Hardware

CV32E41P RISC-V

HPMtracer

WISHBONE BUS

Tracer Network Processor

RAM UART

Software

 HPM Enable HPM Reset HPM Stop

Parsing Network Packets

MAC Layer

ML Processing

Pre-Processing

Training

Build ML Model

Attack classification

Detector

Log file

Header file

Network Traffic Generator

Number of Packet +
Length

Network Traffic

Fig. 4. Wireless communications testbed including network processor.

B. Attack Scenarios

We consider packet injection attacks based on software vul-
nerabilities. The attacks focus on memory corruption resulting
in buffer overflow in the stack or the heap.

S1: Stack Overflow Exploit: The LoRaDawn CVE-2020-
11068 vulnerability can cause a buffer overflow in the Lo-
RaWAN protocol stack due to a lack of buffer size checks.

The exploitation of this vulnerability may result in a remote
denial of service for the LoRaWAN node. This vulnerability
was reproduced by declaring a 10- or 23-byte reception buffer
in the packet parser software. The reception buffer receives
the data contained in the network packet. Using the packet
generator module, we generated 1,000,000 network packets
with 5- to 10-byte packet sizes. These packets fit within the
allocated reception buffer size. We also generated 1,000,000
network packets with sizes between 13 and 23 bytes. These
packets caused buffer overflows as shown in Tab. II.

S2: Heap Overflow Exploit: A heap overflow vulnerability
based on CVE-2022-0204 in Bluez, an open source Bluetooth
stack, was also evaluated. The vulnerability is found in GATT
protocol implementations. We reproduced the vulnerability by
declaring a reception buffer in the heap using a malloc()
statement in the packet parser software. We followed the same
methodology as the stack overflow scenario using packet sizes
shown in Tab. II.

TABLE II
ATTACKS SCENARIOS : THE PHYSICAL BUFFER SIZE IS 10 OR 23 BYTES.

LARGER PACKETS RESULT IN A BUFFER OVERFLOW.
Attack Scenarios Buffer Size

Packet Type Traffic Size Stack Heap
Legitimate 5− 10 bytes 10 bytes 10 bytes

S1: Stack Overflow 13− 23 bytes 10 bytes 23 bytes
S2: Heap Overflow 13− 23 bytes 23 bytes 10 bytes

C. Generated Data Set

The data set used in this study consisted of 3, 000, 000 sam-
ples, collected from the simulation testbed in Fig. 4, covering
the scenarios outlined in Tab. II. We used 11 features for our
dataset, which are a collection of cumulative hardware event
values that were then fed into a machine learning classifier
for training. Fig. 5 plots the behavior of two events among
11 events listed in Tab. I : BRANCH STALL, LD STALL. The
figure profiles events for 3,000,000 network packet samples in
terms of stack overflow, heap overflow and legitimate packet
processing. The results shown in green reflect the normal
behavior of the network processor with software in the MAC
layer handling legitimate packets without attack. The red and
yellow results illustrate the network processor behavior during
stack overflow and heap overflow attacks. The magnitudes of
HPCs increase during buffer overflow conditions compared to
conditions caused by legitimate packet processing.

The highest HPC values in Fig. 5 result from network
processor software execution based on the flow diagram shown
in Fig. 2. This processing employs two reception buffers, one
allocated on the stack and the other dynamically allocated on
the heap. Both buffers store each incoming network packet.
When a network packet exceeds the buffer size and a stack
or heap buffer overflow occurs, increased event counter values
occur.

In Fig. 5, counter values BRANCH TAKEN and LD STALL
count the number of branch instructions that are taken and the
number of load instructions that are stalled. Our attack scenar-
ios involve writing more data to a buffer than it can handle.
The extra data results in the alteration of CPU behavior to

include unexpected branches and large delays in data retrieval
from memory. Increased BRANCH TAKEN and LD STALL
counter values can be used to identify potential attacks against
the MAC layer of a protocol stack.

40 50 60 70
HPC Values

0.0

0.2

0.4

0.6

De
ns

ity

BRANCH_TAKEN

10 15 20 25
HPC Values

0.0

0.2

0.4

0.6

De
ns

ity

Overlap of SO and HO

LD_STALL

heap_overflow(HO) legitimate stack_overflow(SO)

Fig. 5. Density area of cumulative values of hardware events LD STALL,
BRANCH TAKEN in attack scenarios

D. Machine Learning-Processed Data Set

To generate classifier results for subsequent real-time pro-
cessing, the training data set of 11 hardware events listed
in Tab. I and collected in simulation was processed off-
line. A decision tree machine learning classifier, a super-
vised machine learning approach in which training samples
provide decisions in a structured tree model, was used. The
classifier differentiates between three categories of accumu-
lated hardware values (heap overflow, stack overflow and
legitimate). Once training was complete, the classifier was
implemented in hardware using a SystemVerilog implemen-
tation. Decision tree models are suitable for FPGA imple-
mentation given their limited hardware overhead and suitable
classification speed [27], [28]. Fig. 6 illustrates a decision
tree model block diagram produced with our data set. The
model splits the generated data set from Fig. 5 into three
classes: (legitimate, stack overflow, heap overflow). In this
case BRANCH TAKEN and LD STALL HPC values form a
set selected by the decision classifier among the 11 hardware
events. Indeed during the learning phase BRANCH TAKEN
and LD STALL HPC values demonstrate their high capacity
to detect attacks. As we target a low complexity solution
for IoT end-devices, using a minimal set of HPCs values
is important. These values are used for decision making
based on thresholds K1 and K2 determined from the training
data: BRANCH TAKEN < 65.5 and LD STALL < 14. The
values are directly related to the code used to process the
received packets and to store the received data in buffers.
A demonstrator was built based on these two events which
represent values needed to construct an efficient and low
complexity detector.
E. FPGA Implementation

The FPGA design shown in Fig. 3 includes three compo-
nents: the soft-core CV32E41P RISC-V processor imported
from GitHub [25] and the two modules of the HIDS: the
HPMtracer and the Detector, including the decision tree
model. The design operates at a maximum clock frequency

Yes NoLD_STALL
< K1

Legitimate Yes NoBRANCH_TAKEN
< K2

Heap_Overflow Stack_Overflow

Fig. 6. Generated decision tree classifier model

of 65 MHz. The HPMtracer was implemented as a finite
state machine controlled by the CV32E41P network processor.
Monitoring is enabled when a new network packet is received
and processed by the CV324E41P. The processor can en-
able/disable the HPMtracer by overwriting the corresponding
bit in the mcountinhibit register.

Analysis of HPC cumulative values is performed by the
Detector at the end of processing each network packet. The
HPMtracer reads the HPC counters one at a time and enables
the Detector. The Detector requires two clock cycles to decide
whether the network packet is malicious or legitimate. At
end of the analysis, the Detector alerts the HPMtracer if an
attack is detected. If so, an exception is raised by the network
processor.

F. LoRa Stack Testbed with HIDS

Following simulation, further experiments were conducted
to test and validate the HIDS units using a physical testbed.
As shown in Fig. 7, this use case, which includes the LoRa
physical layer (PHY) and a simplified medium access control
(MAC) layer, was used. LoRa wireless communication oper-
ates in the sub-GHz frequency band (868 MHz). Our SoC
(Sec. V-A) was adapted to support the LoRa protocol stack by
including the board support package (BSP) required for the
LoRa SX1276 transceiver. The BPC also includes the HIDS
elements (Sec. V-E) and a Litescope debugging unit. We used
a microcontroller with a LoRa SX1276 transceiver to perform
the attack scenarios listed in Tab. II.

RISC-VMCU LoRa
SX1276

LoRa
SX1276

LoRa Driver

Mac Layer

LoRa Driver

 Mac Layer

TX/RX TX/RX
SPI SPI

FPGA: Arty a7 - 100T

LiteScope

Host

Uart

So
ftw

ar
e

H
ar

dw
ar

e

HPC Tracing

Packet injection :
Buffer overflow
(Stack + Heap)

Attacker :
IoT Node 2

Victim:
IoT Node 1

Arduino

HIDS :
Tracer + Detector

Fig. 7. LoRa Testbed with HIDS on Arty A7 FPGA board

VI. RESULTS

In this section, we discuss the detection accuracy, resource
utilization, and performance results of our security mechanism.

A. Detection Accuracy

The LoRa study described in the previous section analyzed
400, 000 network packets. The network traffic used in this
evaluation consisted of 200, 000 legitimate (benign) packets
and 200, 000 packets that were subject to stack and heap
buffer overflows. The packet loss rate (PLR) in the testbed
was approximately 2.72%, and a total of 389, 097 packets were
received out of the 400, 000 packets sent. The PLR value was
considered to be within an acceptable range for LoRaWAN
networks. The loss rate occurred since the testbed is indoors
and consists of two closed devices (20 cm), the spreading
factor was set to SF7 and the time between sent packets was
minimal (∼ 250ms). Tab. III reports true positive and negative
and false positive and negative values and rates for the decision
tree model in Fig. 6 using hardware implementation. The
overall detection accuracy achieved is 99.98%. The cumulative
hardware events data shown in Fig. 5 supports this high level
of detection accuracy, as it allows for an efficient classification
between legitimate and malicious network packets. A detection
accuracy of 100% is not achieved with our decision tree model
since we launched the worst case of our attack scenarios,
where the sizes of legitimate and malicious packets were close
(10 and 13 bytes, respectively).

TABLE III
HARDWARE DECISION TREE IMPLEMENTATION EVALUATION METRICS

LoRa based FPGA Testbed
True Positives False Positives True Neg. False Neg.

195, 704 13 193, 327 53

False Negative Rate (FNR): 0.027%
False Positive Rate (FPR): 0.013%

Detection Accuracy : 99.98%

B. Area and Performance Overhead

In Tab. IV we report area in lookup tables (LUTs) and
flip flops (FF) and maximum frequency on the Arty-A7 35T
FPGA (XC7A35TICSG324-1L). The results were generated
using Xilinx Vivado v2020.2. Three versions of the network
processor were evaluated (V1, V2, and V3).

TABLE IV
IMPLEMENTATION RESOURCE UTILIZATION AND MAXIMUM FREQUENCY

FOR THREE VERSIONS OF THE NETWORK PROCESSOR AND HIDS.

HIDS elements Overhead Freq
HPCs Tracer Detector LUT FF MHz

V1 ✓ (1) - - 4636(+00%) 1237(+00%) 65.86(+00%)

V2 ✓ (2) - - 4802(+3.58%) 1318(+6.54%) 65.35(−0.77%)

V3 ✓ (2) ✓ ✓ 4932(+6.38%) 1318(+6.54%) 65.47(−0.59%)

• V1: Version 1 is the baseline version of the processor.
There is no dedicated security protection related to our
threat model. NUM MHPMCOUNTERS=1.

• V2: Version 2 of the processor includes two hardware
performance counters (BRANCH TAKEN, LD STALL)
NUM MHPMCOUNTERS=2.

• V3: Version 3 includes HPMtracer and Detector for
our HIDS with two hardware performance counters
NUM MHPMCOUNTERS=2.

Our hardware HIDS design used two hardware performance
counters on the CV32E41P to achieve effective results. For V2,
the counter overhead is 6.5% in flip-flops and 6.4% in LUTs
compared to the baseline V1. The extra flip flops were mostly
present in the two counters. The HIDS design (V3) units do
not affect the design’s performance (compared to V1). The
maximum frequency is largely unchanged at around 65 MHz
(Tab. IV). The results demonstrate that our HIDS is an efficient
hardware-based solution in the context of resource-constrained
IoT end-devices and that attacks can be detected at the network
processor level.

VII. CONCLUSION AND FUTURE WORK

This paper describes and demonstrates a host-based detec-
tion module that uses hardware events profiling at the network
processor level. Addressing security directly at the network
processor level is an interesting approach as it allows an
early detection of attacks that use the communication link to
compromise IoT end-devices. The hardware implementation
benefits from large data set decision tree classification trained
using a machine learning algorithm. This classification detects
packet injection in the LoRa protocol stack in our case study.
Our system is able to detect stack and heap overflow attacks
in real time using a low complexity FPGA implementation.
An FPGA allows for easy and efficient updates through re-
configurable hardware, eliminating the need to reprogram the
entire system, which is important when new attack scenarios
arise. The FPGA implementation exhibits detection accuracy
at 99.98%. An area overhead of 6.4%, 6.5% of LUTs/FFs
and a maximum clock frequency of 65 MHz is preserved.
Although we employed the RISC-V ISA in our testbed for
open-source purposes, our HIDS units approach is adaptable
to other existing ISA, as most modern processors incorporate
HPCs. In future work, our HIDS will incorporate additional
metric layers to enable detection of a wider range of attack
classes.

REFERENCES

[1] T. Instruments, “Simplelink™ multi-band cc1352r wire-
less mcu launchpad™ development kit,” 2019. [Online].
Available: https://www.ti.com/product/LAUNCHXL-CC1352R1/part-
details/LAUNCHXL-CC1352R1

[2] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sun, and E. Kurni-
awan, “SweynTooth: Unleashing mayhem over bluetooth low energy,”
Proceedings of the 2020 USENIX Annual Technical Conference, ATC
2020, pp. 911–925, 2020.

[3] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring
the security vulnerabilities of LoRa,” 2017 3rd IEEE International Con-
ference on Cybernetics, CYBCONF 2017 - Proceedings, no. December,
2017.

[4] F. R. Labs, “Amnesia:33, how tcp/ip stacks breed critical
vulnerabilities in iot, ot and it devices,” 2020. [Online]. Available:
https://www.forescout.com/research-labs/amnesia33/

[5] “Bleedingbit,” 2019. [Online]. Available:
https://www.armis.com/research/bleedingbit/

[6] “Loradawn - multiple lorawan security vulnerabilities,” 2020. [Online].
Available: https://blade.tencent.com/en/advisories/loradawn/

[7] F. Hessel, L. Almon, and F. Álvarez, “ChirpOTLE: A framework for
practical LoRaWAN security evaluation,” Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
pp. 306–316, 2020.

[8] G. Avoine and L. Ferreira, “Rescuing LoRaWAN 1.0,” in Financial
Cryptography and Data Security: 22nd International Conference, FC
2018, Nieuwpoort, Curaçao, Feb. 2018.

[9] R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche, and
G. Marconato, “Injectable: Injecting malicious traffic into established
bluetooth low energy connections,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2021, pp. 388–399.

[10] Y.Zhang, J.Weng, R.Dey, Y.Jin, Z.Lin, and X.Fu, “Breaking secure
pairing of bluetooth low energy using downgrade attacks,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 37–54.

[11] A. C. Santos, J. L. Filho, Á. Í. Silva, V. Nigam, and I. E. Fonseca, “BLE
injection-free attack: a novel attack on bluetooth low energy devices,”
Journal of Ambient Intelligence and Humanized Computing, 2019.

[12] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Key Negotiation
Downgrade Attacks on Bluetooth and Bluetooth Low Energy,” ACM
Transactions on Privacy and Security, vol. 23, no. 3, 2020.

[13] L. Davi, M. Hanreich, D. Paul, A. R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, “HAFIX: Hardware-Assisted Flow Integrity eX-
tension,” Proceedings - Design Automation Conference, vol. 2015-July,
2015.

[14] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM SIGAda
Ada Letters, vol. 34, no. 3. ACM, 2014, pp. 103–104.

[15] A. Saeed, A. Ahmadinia, A. Javed, and H. Larijani, “Intelligent intrusion
detection in low-power IoTs,” ACM Transactions on Internet Technol-
ogy, vol. 16, no. 4, 2016.

[16] B. F. L. M. Sousa, N. C. Soeiro, Z. Abdelouahab, W. F. Ribeiro, and
D. C. P. Ribeiro, “An intrusion detection system for denial of service
attack detection in internet of things,” ACM International Conference
Proceeding Series, 2017.

[17] W. Yan, S. Hylamia, T. Voigt, and C. Rohner, “PHY-IDS: A physical-
layer spoofing attack detection system for wearable devices,” WearSys
2020 - Proceedings of the 6th ACM Workshop on Wearable Systems and
Applications, Part of MobiSys 2020, pp. 1–6, 2020.

[18] A. Tabassum, A. Erbad, and M. Guizani, “A survey on recent approaches
in intrusion detection system in IoTs,” 2019 15th International Wireless
Communications and Mobile Computing Conference, IWCMC 2019, pp.
1190–1197, 2019.

[19] M. Bourdon, P.-F. Gimenez, E. Alata, M. Kaaniche, V. Migliore,
V. Nicomette, and Y. Laarouchi, “Hardware-performance-counters-based
anomaly detection in massively deployed smart industrial devices,” in
2020 IEEE 19th International Symposium on Network Computing and
Applications (NCA), 2020, pp. 1–8.

[20] R. Gassais, N. Ezzati-Jivan, J. M. Fernandez, D. Aloise, and M. R.
Dagenais, “Multi-level host-based intrusion detection system for Internet
of things,” Journal of Cloud Computing, vol. 9, no. 1, 2020.

[21] M. B. Bahador, M. Abadi, and A. Tajoddin, “HPCMalHunter: Behavioral
malware detection using hardware performance counters and singular
value decomposition,” Proceedings of the 4th International Conference
on Computer and Knowledge Engineering, ICCKE 2014, pp. 703–708,
2014.

[22] A. P. Kuruvila, S. Karmakar, and K. Basu, “Time series-based malware
detection using hardware performance counters,” in 2021 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST),
2021, pp. 102–112.

[23] W. Snyder. [Online]. Available:
https://veripool.org/verilator/documentation/

[24] Enjoy-Digital, “Enjoy-digital/litex: Build your hardware, easily!”
[Online]. Available: https://github.com/enjoy-digital/litex

[25] “Openhw group cv32e41p user manual.” [On-
line]. Available: https://docs.openhwgroup.org/projects/openhw-group-
cv32e41p/index.html

[26] A. Waterman, Y. Lee, D. Patterson, and K. Asanovi, “The RISC-V
Instruction Set Manual v2.1,” 2012 IEEE International Conference on
Industrial Technology, ICIT 2012, Proceedings, vol. I, pp. 1–32, 2012.

[27] A. Elkanishy, D. T. Rivera, P. M. Furth, A. H. A. Badawy, Y. Aly, and
C. P. Michael, “FPGA-Accelerated Decision Tree Classifier for Real-
Time Supervision of Bluetooth SoC,” 2019 International Conference on
Reconfigurable Computing and FPGAs, ReConFig 2019, no. 1, 2019.

[28] R. Choudhury, S. R. Ahamed, and P. Guha, “Efficient Hardware Imple-
mentation of Decision Tree Training Accelerator,” Proceedings - 2020
6th IEEE International Symposium on Smart Electronic Systems, iSES
2020, pp. 212–215, 2020.

