Mohamed El Bouazzati
email: mohamed.el-bouazzati@univ-ubs.fr

Russell Tessier
email: tessier@umass.edu

Philippe Tanguy
email: philippe.tanguy@univ-ubs.fr

Guy Gogniat
email: guy.gogniat@univ-ubs.fr

A Lightweight Intrusion Detection System against IoT Memory Corruption Attacks

Keywords: IoT Security, RISC-V, Network Processor Architecture, HIDS, LoRa, HPC

Attacks against internet-of-things (IoT) end-devices represent a significant threat since their wireless communication capabilities provide a potential attack entry point. To address this threat, we demonstrate the use of hardware performance counters (HPCs) in a host-based intrusion detection system (HIDS). The counter-based monitors are customized to support IoT enddevices which use low data rate GHz and sub-GHz protocols. Our solution implements a hardware unit that performs data tracing for a 32-bit RISC-V based wireless connectivity unit. The unit can detect ongoing remote attacks in real time. We demonstrate the effectiveness of our system by detecting a packet injection exploit. Our FPGA implementation of HIDS has a logic overhead of about 6% and design frequency penalty of less than 1% for a RISC-V processor.

I. INTRODUCTION

Systems-on-chip (SoCs) [START_REF] Instruments | Simplelink™ multi-band cc1352r wireless mcu launchpad™ development kit[END_REF] for IoT end-devices are typically deployed with security protections such as cryptography primitives, an update mechanism, and secure boot. SoCs with wireless capabilities, such as LoRaWAN and Bluetooth Low Energy (BLE), that are currently deployed in the field do not integrate dedicated hardware mechanisms to counteract remote attacks that exploit wireless communication [START_REF] Garbelini | SweynTooth: Unleashing mayhem over bluetooth low energy[END_REF], [START_REF] Aras | Exploring the security vulnerabilities of LoRa[END_REF].

In this paper, we evaluate an implementation of a hostbased intrusion detection system (HIDS) based on hardware performance counters (HPCs). These performance counters can detect wireless remote attacks related to LoRaWAN and Bluetooth protocols. We implement the lightweight HIDS in hardware with a tracer module to monitor data and a detector module to analyze and classify attacks.

The HIDS tracer uses a network processor which supports wireless connectivity. It monitors hardware HPCs that indicate the current activity status of the network processor. The HIDS detection module, located outside the network processor, uses a machine learning classification model to analyze cumulative HPC values. To assess our approach, the detection accuracy and resource utilization of the implemented host-based intrusion detection system are quantified.

The remainder of this paper is structured as follows. Section II provides an overview of the security issues associated with wireless IoT. Section III details previous intrusion detection system implementations. Section IV presents our HIDS concept and describes its deployment. Section V describes our experimental setup and implemented architecture, and Section VI quantitatively evaluates our HIDS.

II. SECURITY CONTEXT

Attacks against IoT end-devices are a significant threat since they contain wireless communication capabilities that may be vulnerable to attacks. In this section, we list common vulnerabilities and attacks, present the considered threat model and give an overview of related work regarding countermeasures.

A. Vulnerabilities and Attacks

Recently several vulnerabilities were discovered in IoT device communication for selected protocols. AMNESIA33 [START_REF] Labs | Amnesia:33, how tcp/ip stacks breed critical vulnerabilities in iot, ot and it devices[END_REF] exposed 33 new critical vulnerabilities found in open source TCP/IP stack based protocols (uIP, FNET, picoTCP and Nut/Net) used by millions of IoT devices supplied by over 150 vendors. BLEEDINGBIT [START_REF]Bleedingbit[END_REF] and LoRaDawn [START_REF]Loradawn -multiple lorawan security vulnerabilities[END_REF] are attacks related to memory corruption that exploit vulnerabilities in the packet parsers of the BLE and LoRaWAN software stacks. An attacker can exploit the lower layers of a protocol stack, such as the MAC layer or the physical layer, to perform denial-ofservice (DoS), packet injection, man-in-the-middle (MITM) attacks, and remote code execution (RCE).

Attacks that exploit LoRaWAN MAC and physical layer vulnerabilities to perform DoS, packet injection and replay attacks have also been reported [START_REF] Aras | Exploring the security vulnerabilities of LoRa[END_REF], [START_REF] Hessel | ChirpOTLE: A framework for practical LoRaWAN security evaluation[END_REF], [START_REF] Avoine | Rescuing LoRaWAN 1.0[END_REF]. Similar attacks are possible for the BLE stack [START_REF] Cayre | Injectable: Injecting malicious traffic into established bluetooth low energy connections[END_REF]- [START_REF] Antonioli | Key Negotiation Downgrade Attacks on Bluetooth and Bluetooth Low Energy[END_REF]. IoT protocols are often subject to packet injection based attacks resulting in exploits such as DoS, MITM, RCE and privilege escalation. Systems-on-chip (SoCs) for IoT devices [START_REF] Instruments | Simplelink™ multi-band cc1352r wireless mcu launchpad™ development kit[END_REF] frequently have two or more supported protocols, resulting in a need for an independent protocol security mitigation solution. Our HPCsbased HIDS approach targets the detection of packet injection attacks exploiting memory corruption vulnerabilities within a network processor.

B. Mitigation

Hardware and software based security mechanisms that can detect IoT attacks have been developed [START_REF] Davi | HAFIX: Hardware-Assisted Flow Integrity eXtension[END_REF], [START_REF] Matsakis | The rust language[END_REF]. Generally, these mechanisms provide at least one of the three elements 979-8-3503-3277-3/23/$31.00 ©2023 IEEE of the triad (C/I/A): confidentiality, integrity and availability. Software-based security mechanisms include secure boot and code instrumentation, while hardware-based mechanisms include information flow tracking. Davis et al. [START_REF] Davi | HAFIX: Hardware-Assisted Flow Integrity eXtension[END_REF] use a hardware-based control flow integrity extension to prevent code re-use attacks, such as return-oriented programming (ROP), in Intel processors. Such mechanisms require compilerlevel and architectural modifications, including changes inside the processor pipeline. Other countermeasures include memory protection by design with a safe programming language (e.g., RUST [START_REF] Matsakis | The rust language[END_REF]). Saeed et al. [START_REF] Saeed | Intelligent intrusion detection in low-power IoTs[END_REF] performed code instrumentation by adding tags to memory locations for every memory allocation, and using extra tag-checking instructions for all memory accesses to detect illegal accesses. Such mechanisms typically require memory layout changes, which result in memory overhead. Static analysis tools can be used to detect bugs at the compilation stage.

Intrusion and anomaly detection approaches were proposed for IoT environments to detect attacks using an attack signature [START_REF] Sousa | An intrusion detection system for denial of service attack detection in internet of things[END_REF] or by learning a pattern of legitimate system activities [START_REF] Yan | PHY-IDS: A physicallayer spoofing attack detection system for wearable devices[END_REF]. These solutions are divided into three parts: acquisition, analysis and alert. Acquisition uses hardware probes and/or software to collect information from the system. Collected information is then analyzed to identify in-progress attacks. If a malicious action is detected, the system notifies the user. Such mechanisms [START_REF] Tabassum | A survey on recent approaches in intrusion detection system in IoTs[END_REF] have been shown to accurately detect attacks. However, the performance (detection rate) and area, code size and power consumption overheads remain challenging.

In this work, we target resource-constrained IoT end-devices that have an approximate power consumption of 1 to 2 Watts and a memory capacity of 100 to 300 kB [START_REF] Instruments | Simplelink™ multi-band cc1352r wireless mcu launchpad™ development kit[END_REF]. In previous work [START_REF] Bourdon | Hardware-performance-counters-based anomaly detection in massively deployed smart industrial devices[END_REF], an end-device collects metrics and sends them to a server or a gateway for remote analysis and detection. Rather, in our approach, tracing and detection are both implemented on the IoT end-device.

III. RELATED WORK

Our HIDS, detailed in Section IV, uses hardware metrics to prevent intrusions. Several research studies [START_REF] Bourdon | Hardware-performance-counters-based anomaly detection in massively deployed smart industrial devices[END_REF]- [START_REF] Kuruvila | Time series-based malware detection using hardware performance counters[END_REF] have demonstrated the use of HIDS with hardware metrics to detect attacks. Bourdon et al. [START_REF] Bourdon | Hardware-performance-counters-based anomaly detection in massively deployed smart industrial devices[END_REF] describe an anomaly detection approach based on the analysis of data from hardware performance counters (HPCs). The data is used to identify compromised devices among a massive population of similar IoT devices. An accurate behavioral model of the device was built using hardware performance event values from an ARM Cortex A53 processor: memory cache, instructions, exceptions, prediction branches, and bus access. The values reflect the current state of the CPU. A kernel tracing module is installed in device software for monitoring. The tracer stores the HPC data in a local file every 5 seconds. The analysis and detection module deployed on the server receives a data file every 30 minutes.

The detection strategy was assessed with multiple attack scenarios on a population of 10, 000 devices. The simulated attacks mainly consider DoS and packet injection exploits. The detection accuracy of the approaches was determined using machine learning algorithms via two metrics: the true positive rate (TPR) and the false positive rate (FPR). Since the analysis and detection modules are remotely deployed on a server, the real-time detection of IoT device intrusions is quite challenging. The distributed implementation is needed due to the limited resources available on the IoT device (power, memory and CPU, etc.).

Our approach differs from the one noted above in two main ways. First, we detect ongoing remote packet injection attacks on the network processor of the wireless connectivity unit. Second, our monitoring and detection modules are implemented on the IoT platform and do not require remote detection using a server or gateway.

IV. METHODOLOGY

A. Threat Model

Fig. 1 shows the wireless IoT threat model. The victim is an IoT SoC with a CPU used for user applications and a wireless connectivity subsystem which uses one or more protocol stacks managed by the network processor. Since most of the vulnerabilities described in Section II are found in the physical and MAC layers, these layers of the IoT protocol stack form the attack surface. The attacker is remote and can use a software-defined radio (SDR) platform or a protocolspecific dongle to perform an attack. The attacker attempts to perform packet injection into the victim's wireless connectivity network processor to achieve one of the following exploits: DoS, MITM, RCE and privilege escalation. 2 shows the processing flow for our hardware-based host intrusion detection system. The software operating on the network processor processes the MAC layer of an IoT protocol stack. It parses packets that are received from the physical layer. Simultaneously, the HIDS, which is implemented in hardware, monitors hardware performance events using HPCs available on the network processor, as demonstrated in Fig. 3.

The cumulative values of the hardware events provide insight into network processor behavior during packet parsing. The produced values of the counters are used within the detection module to identify intrusions and attacks. V. EXPERIMENTAL SETUP Our HIDS approach in Fig. 3 has been designed, implemented and evaluated. A complete system, including HIDS hardware, has been evaluated using cycle-accurate simulation with Verilator [START_REF] Snyder | [END_REF], a Verilog simulator. Following simulation, the entire system was implemented using Xilinx Vivado in an Artix-7 35T FPGA on a Digilent Arty 35T/100T board, and has been tested for the LoRa protocol stack with a simplified MAC layer using a physical testbed.

A. Simulation Testbed

The use of a simulation testbed to generate a large data set to train and build machine learning models has been a common approach in the field of machine learning. By simulating various scenarios and conditions, this approach can also be useful in reducing the cost and complexity of obtaining realworld data for training and testing.

Fig. 4 shows the SoC system built with LiTeX [START_REF]Enjoy-digital/litex: Build your hardware, easily![END_REF], a SoC builder. A RISC-V soft-core CV32E41P, developed by the Open Hardware Group [START_REF]Openhw group cv32e41p user manual[END_REF], serves as the network processor for wireless connectivity. This small, 32-bit, in-order RISC-V core has a 4-stage pipeline that implements the RV32IM RISC-V instruction set architecture according to the RISC-V privileged specification [START_REF] Waterman | The RISC-V Instruction Set Manual v2.1[END_REF]. Fig. 4 shows a minimal SoC including network processor (CV32E41P), RAM and UART, interconnected via a Wishbone bus.

The CV32E41P includes a set of 64-bit HPCs that are placed with the control and status registers (CSRs). The CV32E41P implements a clock cycle counter and a retired instruction counter, which are always activated, and 29 configurable event counters. The event counters can be accessed with a parameter of 0 and 2 through 29. The CV32E41P tracks a set of hardware events using the counters listed in Tab. I. These events are each assigned to an event counter using a CSR event selector. The Tracer shown in the HIDS block diagram in Fig. 3 is directly connected to the CPU core. It captures behavioral information of a process running on the network processor by accumulating values of selected hardware events during network packet parsing. A developer can access the Tracer (called HP M tracer in our implementation) to enable monitoring based on a predefined security policy.

The Software components shown in Fig. 4 include the firmware executed by the network processor. The software executes specific parts of a full IoT protocol stack including the MAC layer of the IoT protocol stack shown in Fig. 3. The firmware controls the HPMtracer using three signals: HPM Reset, HPM Enable and HPM Stop.

Network Traffic Generator and Machine Learning Processing operations, displayed in Fig. 4, are performed offline using Python for data set generation and processing. Additional details regarding attack scenarios and machine learning processing are presented in the two next subsections.

B. Attack Scenarios

We consider packet injection attacks based on software vulnerabilities. The attacks focus on memory corruption resulting in buffer overflow in the stack or the heap.

S1: Stack Overflow Exploit: The LoRaDawn CVE-2020-11068 vulnerability can cause a buffer overflow in the Lo-RaWAN protocol stack due to a lack of buffer size checks.

The exploitation of this vulnerability may result in a remote denial of service for the LoRaWAN node. This vulnerability was reproduced by declaring a 10-or 23-byte reception buffer in the packet parser software. The reception buffer receives the data contained in the network packet. Using the packet generator module, we generated 1,000,000 network packets with 5-to 10-byte packet sizes. These packets fit within the allocated reception buffer size. We also generated 1,000,000 network packets with sizes between 13 and 23 bytes. These packets caused buffer overflows as shown in Tab. II.

S2: Heap Overflow Exploit: A heap overflow vulnerability based on CVE-2022-0204 in Bluez, an open source Bluetooth stack, was also evaluated. The vulnerability is found in GATT protocol implementations. We reproduced the vulnerability by declaring a reception buffer in the heap using a malloc() statement in the packet parser software. We followed the same methodology as the stack overflow scenario using packet sizes shown in Tab. II.

C. Generated Data Set

The data set used in this study consisted of 3, 000, 000 samples, collected from the simulation testbed in Fig. 4, covering the scenarios outlined in Tab. II. We used 11 features for our dataset, which are a collection of cumulative hardware event values that were then fed into a machine learning classifier for training. Fig. 5 plots the behavior of two events among 11 events listed in Tab. I : BRANCH STALL, LD STALL. The figure profiles events for 3,000,000 network packet samples in terms of stack overflow, heap overflow and legitimate packet processing. The results shown in green reflect the normal behavior of the network processor with software in the MAC layer handling legitimate packets without attack. The red and yellow results illustrate the network processor behavior during stack overflow and heap overflow attacks. The magnitudes of HPCs increase during buffer overflow conditions compared to conditions caused by legitimate packet processing.

The highest HPC values in Fig. 5 result from network processor software execution based on the flow diagram shown in Fig. 2. This processing employs two reception buffers, one allocated on the stack and the other dynamically allocated on the heap. Both buffers store each incoming network packet. When a network packet exceeds the buffer size and a stack or heap buffer overflow occurs, increased event counter values occur.

In Fig. 5, counter values BRANCH TAKEN and LD STALL count the number of branch instructions that are taken and the number of load instructions that are stalled. Our attack scenarios involve writing more data to a buffer than it can handle. The extra data results in the alteration of CPU behavior to include unexpected branches and large delays in data retrieval from memory. Increased BRANCH TAKEN and LD STALL counter values can be used to identify potential attacks against the MAC layer of a protocol stack.

D. Machine Learning-Processed Data Set

To generate classifier results for subsequent real-time processing, the training data set of 11 hardware events listed in Tab. I and collected in simulation was processed offline. A decision tree machine learning classifier, a supervised machine learning approach in which training samples provide decisions in a structured tree model, was used. The classifier differentiates between three categories of accumulated hardware values (heap overflow, stack overflow and legitimate). Once training was complete, the classifier was implemented in hardware using a SystemVerilog implementation. Decision tree models are suitable for FPGA implementation given their limited hardware overhead and suitable classification speed [START_REF] Elkanishy | FPGA-Accelerated Decision Tree Classifier for Real-Time Supervision of Bluetooth SoC[END_REF], [START_REF] Choudhury | Efficient Hardware Implementation of Decision Tree Training Accelerator[END_REF]. Fig. 6 illustrates a decision tree model block diagram produced with our data set. The model splits the generated data set from Fig. 5 into three classes: (legitimate, stack overflow, heap overflow). In this case BRANCH TAKEN and LD STALL HPC values form a set selected by the decision classifier among the 11 hardware events. Indeed during the learning phase BRANCH TAKEN and LD STALL HPC values demonstrate their high capacity to detect attacks. As we target a low complexity solution for IoT end-devices, using a minimal set of HPCs values is important. These values are used for decision making based on thresholds K1 and K2 determined from the training data: BRANCH TAKEN < 65.5 and LD STALL < 14. The values are directly related to the code used to process the received packets and to store the received data in buffers. A demonstrator was built based on these two events which represent values needed to construct an efficient and low complexity detector.

E. FPGA Implementation

The FPGA design shown in Fig. 3 includes three components: the soft-core CV32E41P RISC-V processor imported from GitHub [START_REF]Openhw group cv32e41p user manual[END_REF] and the two modules of the HIDS: the HPMtracer and the Detector, including the decision tree model. The design operates at a maximum clock frequency

F. LoRa Stack Testbed with HIDS

Following simulation, further experiments were conducted to test and validate the HIDS units using a physical testbed. As shown in Fig. 7, this use case, which includes the LoRa physical layer (PHY) and a simplified medium access control (MAC) layer, was used. LoRa wireless communication operates in the sub-GHz frequency band (868 M Hz). Our SoC (Sec. V-A) was adapted to support the LoRa protocol stack by including the board support package (BSP) required for the LoRa SX1276 transceiver. The BPC also includes the HIDS elements V-E) and a Litescope debugging unit. We used a microcontroller with a LoRa SX1276 transceiver to perform the attack scenarios listed in Tab. II. In this section, we discuss the detection accuracy, resource utilization, and performance results of our security mechanism.

A. Detection Accuracy

The LoRa study described in the previous section analyzed 400, 000 network packets. The network traffic used in this evaluation consisted of 200, 000 legitimate (benign) packets and 200, 000 packets that were subject to stack and heap buffer overflows. The packet loss rate (PLR) in the testbed was approximately 2.72%, and a total of 389, 097 packets were received out of the 400, 000 packets sent. The PLR value was considered to be within an acceptable range for LoRaWAN networks. The loss rate occurred since the testbed is indoors and consists of two closed devices (20 cm), the spreading factor was set to SF 7 and the time between sent packets was minimal (∼ 250 ms). Tab. III reports true positive and negative and false positive and negative values and rates for the decision tree model in Fig. 6 using hardware implementation. The overall detection accuracy achieved is 99.98%. The cumulative hardware events data shown in Fig. 5 supports this high level of detection accuracy, as it allows for an efficient classification between legitimate and malicious network packets. A detection accuracy of 100% is not achieved with our decision tree model since we launched the worst case of our attack scenarios, where the sizes of legitimate and malicious packets were close (10 and 13 bytes, respectively).

B. Area and Performance Overhead

In Tab. IV we report area in lookup tables (LUTs) and flip flops (FF) and maximum frequency on the Arty-A7 35T FPGA (XC7A35TICSG324-1L). The results were generated using Xilinx Vivado v2020.2. Three versions of the network processor were evaluated (V1, V2, and V3). Our hardware HIDS design used two hardware performance counters on the CV32E41P to achieve effective results. For V2, the counter overhead is 6.5% in flip-flops and 6.4% in LUTs compared to the baseline V1. The extra flip flops were mostly present in the two counters. The HIDS design (V3) units do not affect the design's performance (compared to V1). The maximum frequency is largely unchanged at around 65 M Hz (Tab. IV). The results demonstrate that our HIDS is an efficient hardware-based solution in the context of resource-constrained IoT end-devices and that attacks can be detected at the network processor level.

VII. CONCLUSION AND FUTURE WORK

This paper describes and demonstrates a host-based detection module that uses hardware events profiling at the network processor level. Addressing security directly at the network processor level is an interesting approach as it allows an early detection of attacks that use the communication link to compromise IoT end-devices. The hardware implementation benefits from large data set decision tree classification trained using a machine learning algorithm. This classification detects packet injection in the LoRa protocol stack in our case study.

Our system is able to detect stack and heap overflow attacks in real time using a low complexity FPGA implementation. An FPGA allows for easy and efficient updates through reconfigurable hardware, eliminating the need to reprogram the entire system, which is important when new attack scenarios arise. The FPGA implementation exhibits detection accuracy at 99.98%. An area overhead of 6.4%, 6.5% of LUTs/FFs and a maximum clock frequency of 65 M Hz is preserved. Although we employed the RISC-V ISA in our testbed for open-source purposes, our HIDS units approach is adaptable to other existing ISA, as most modern processors incorporate HPCs. In future work, our HIDS will incorporate additional metric layers to enable detection of a wider range of attack classes.

Fig. 1 .

 1 Fig. 1. Wireless communication threat model B. Hardware Based HIDS Design Fig.2shows the processing flow for our hardware-based host intrusion detection system. The software operating on the network processor processes the MAC layer of an IoT protocol stack. It parses packets that are received from the physical layer. Simultaneously, the HIDS, which is implemented in hardware, monitors hardware performance events using HPCs available on the network processor, as demonstrated in Fig.3.The cumulative values of the hardware events provide insight into network processor behavior during packet parsing. The produced values of the counters are used within the detection module to identify intrusions and attacks.

Fig. 2 .Fig. 3 .

 23 Fig. 2. Flow diagram of network packet processing, HPC monitoring and detection.

Fig. 4 .

 4 Fig. 4. Wireless communications testbed including network processor.

Fig. 5 .

 5 Fig. 5. Density area of cumulative values of hardware events LD STALL, BRANCH TAKEN in attack scenarios

Fig. 7 .

 7 Fig. 7. LoRa Testbed with HIDS on Arty A7 FPGA board

•

 V1: Version 1 is the baseline version of the processor. There is no dedicated security protection related to our threat model. NUM MHPMCOUNTERS=1. • V2: Version 2 of the processor includes two hardware performance counters (BRANCH TAKEN, LD STALL) NUM MHPMCOUNTERS=2. • V3: Version 3 includes HPMtracer and Detector for our HIDS with two hardware performance counters NUM MHPMCOUNTERS=2.

TABLE II ATTACKS

 II SCENARIOS : THE PHYSICAL BUFFER SIZE IS 10 OR 23 BYTES. LARGER PACKETS RESULT IN A BUFFER OVERFLOW. Stack Overflow 13 -23 bytes 10 bytes 23 bytes S2: Heap Overflow 13 -23 bytes 23 bytes 10 bytes

	Attack Scenarios	Buffer Size
	Packet Type	Traffic Size	Stack	Heap
	Legitimate	5 -10 bytes	10 bytes 10 bytes
	S1:			

 The processor can enable/disable the HPMtracer by overwriting the corresponding bit in the mcountinhibit register.Analysis of HPC cumulative values is performed by the Detector at the end of processing each network packet. The HPMtracer reads the HPC counters one at a time and enables the Detector. The Detector requires two clock cycles to decide whether the network packet is malicious or legitimate. At end of the analysis, the Detector alerts the HPMtracer if an attack is detected. If so, an exception is raised by the network processor.

	Yes	LD_STALL < K1	No	
	Legitimate	Yes	BRANCH_TAKEN < K2	No
		Heap_Overflow		Stack_Overflow
	Fig. 6. Generated decision tree classifier model
	of 65 M Hz. The HPMtracer was implemented as a finite
	state machine controlled by the CV32E41P network processor.
	Monitoring is enabled when a new network packet is received
	and processed by the CV324E41P.	

TABLE IV IMPLEMENTATION

 IV RESOURCE UTILIZATION AND MAXIMUM FREQUENCY FOR THREE VERSIONS OF THE NETWORK PROCESSOR AND HIDS.

	HIDS elements	Overhead	Freq
	HPCs Tracer Detector	LUT	FF	MHz
	V1 ✓ (1)	-	-	4636(+00%) 1237(+00%) 65.86(+00%)
	V2 ✓ (2)	-	-	4802(+3.58%) 1318(+6.54%) 65.35(-0.77%)
	V3 ✓ (2) ✓	✓	4932(+6.38%) 1318(+6.54%) 65.47(-0.59%)