
HAL Id: hal-04162879
https://hal.science/hal-04162879v2

Preprint submitted on 27 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A parameterized approximation scheme for the
2D-Knapsack problem with wide items

Mathieu Mari, Timothe Picavet, Michal Pilipczuk

To cite this version:
Mathieu Mari, Timothe Picavet, Michal Pilipczuk. A parameterized approximation scheme for the
2D-Knapsack problem with wide items. 2023. �hal-04162879v2�

https://hal.science/hal-04162879v2
https://hal.archives-ouvertes.fr

A parameterized approximation scheme for the
2D-Knapsack problem with wide items

Mathieu Mari ∗

University of Warsaw
IDEAS-NCBR

Timothé Picavet
ENS de Lyon

Aalto University

Michał Pilipczuk †

University of Warsaw

Abstract
We study a natural geometric variant of the classic Knapsack problem called 2D-Knapsack:

we are given a set of axis-parallel rectangles and a rectangular bounding box, and the goal is to
pack as many of these rectangles inside the box without overlap. Naturally, this problem is NP-
complete. Recently, Grandoni et al. [ESA’19] showed that it is also W[1]-hard when parameterized
by the size k of the sought packing, and they presented a parameterized approximation scheme (PAS)
for the variant where we are allowed to rotate the rectangles by 90° before packing them into the
box. Obtaining a PAS for the original 2D-Knapsack problem, without rotation, appears to be a
challenging open question.

In this work, we make progress towards this goal by showing a PAS under the following assump-
tions:

• both the box and all the input rectangles have integral, polynomially bounded sidelengths;
• every input rectangle is wide — its width is greater than its height; and
• the aspect ratio of the box is bounded by a constant.

Our approximation scheme relies on a mix of various parameterized and approximation techniques,
including color coding, rounding, and searching for a structured near-optimum packing using dynamic
programming.

1 Introduction
We study a natural geometric variant of the classic Knapsack problem, called 2D Knapsack and
defined as follows. On input, we are given a rectangular box B and a set R of items, each being a
rectangle. The task is to place as many items from R as possible in B so that the placed items do not
overlap. Note that this problem generalizes classic Knapsack: given an instance of Knapsack with
items of sizes a1, . . . , an and a knapsack of size K, we can create an instance of 2D Knapsack with B
being the K × 1 rectangle and R consisting of ai × 1 rectangles, for all i ∈ {1, . . . , n}.

As in the case of Knapsack, there are two natural variants of the problem depending on how the
input is encoded. In the binary variant, both B and the rectangles of R have integral sidelengths encoded
in binary, hence these sidelengths can be exponential in the total input size. In the unary variant the
difference is that the sidelengths are encoded in unary, or equivalently, one assumes that all the sidelengths
are bounded polynomially in the total input size. In this work we focus on the unary variant.

Again as in the case Knapsack, adopting the unary variant helps tremendously for the design of
algorithms for 2D Knapsack, for instance due to allowing to perform dynamic programming over the
dimensions of the box. While the problem remains NP-hard even in the unary variant [10], Adamaszek
and Wiese [1] gave a QPTAS for the problem in this setting. The best approximation factor known
to be achievable in polynomial time in the unary variant is 4/3 + ε due to Galvez et al. [6]; earlier, a
(2 + ε)-approximation was given in [8] and a (558/325 + ε)-approximation was given in [5]. It is believed
that the problem should admit a PTAS, but this question remains widely open to this day.

We remark that the abovementioned works also study the weighted variant of the problem. In this
work we only consider the unweighted version, hence an interested reader is invited to the relevant
discussion in the references.

∗Partially supported by the ERC CoG grant TUgbOAT no. 772346.
†This work is a part of project BOBR that has received funding from the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation programme (grant agreement No. 948057).

1

Recently, Grandoni et al. [7] proposed to approach the question about the existence of a PTAS for
2D Knapsack by adding parameterization by the solution size to the picture. That is, they presented a
parameterized approximation scheme (PAS) with running time of the form kO(k/ε) · nO(1/ε3) that either
finds a packing of size at least (1− ε)k or correctly concludes that there is no packing of size k. However,
this result applies only to the variant of the problem where each input rectangle can be rotated by 90◦
before packing it into the box, and the question about the existence of a PAS for 2D Knapsack without
rotation was explicitly left open by Grandoni et al. This is in contrast with the other mentioned works
on 2D Knapsack which all apply both to the variant with rotation and without rotation (for the variant
with rotation, Galvez et al. [6] reported a better approximation ratio of 5/4 + ε).

We note that the PAS of Grandoni et al. actually works in the binary variant of the problem. Also,
reliance on approximation is probably necessary: as proved in [7], the exact version of the problem is
W[1]-hard when parameterized by k.

Our contribution. In this work we approach — though not completely solve — the open problem
left by Grandoni et al. [7] by giving a parameterized approximation scheme with running time of the form
f(k, ε, δ) · ng(ε) for 2D Knapsack under the following assumptions:

• we consider the unary variant of the problem, thus the dimensions of the box are bounded polyno-
mially in n;

• we assume that every item is wide: its width is not smaller than its height; and
• we assume that the aspect ratio (ratio between the dimensions) of the box is at most δ.

See theorem 1 for a formal statement of our result and an explicit formula for the running time. Note that
in the context of the variant with rotation, the second assumption can be always achieved by rotating
every input rectangle so that it is wide, while the third assumption for δ = 1 can be obtained by scaling
both the box and all rectangles on input.

Let us elaborate on our approach and how it is different from the approach of Grandoni et al. [7].
The approach of [7] can be summarized as follows.

• Consider a hypothetical packing S of size k.
• Freeing a strip: Remove a small fraction of S and shift the items slightly in order to free up a

horizontal strip of height N/kb at the bottom of the box, where N is the sidelength of the box and
b = O(1/ε) is an integer. This strip can now accommodate all thin items: those of height at most
N/kb+1.

• Resource augmentation: After the previous step, we may assume that all items are large — both
dimensions are at least N/kb+1 — and there is still a considerable strip free at the bottom of
the box. Now, one can round the heights of items up to the nearest multiplicity of, say, N/kb+2

and argue that even the rounded items can be packed, due to the free strip at the bottom of the
box. After rounding the rectangles have at most kO(1) different heights, so keeping k narrowest
rectangles of each possible height gives us a polynomial in k number of candidate rectangles that
can be reasonably used in the packing. This easily leads to a PAS.

The possibility of rotating rectangles is crucially used in the second step, freeing a strip. Without this
assumption, thin rectangles come in two different flavors: there are wide rectangles, of very small height
and possibly large width, and symmetric tall rectangles. The strategy of freeing a strip presented in [7]
can be applied also in the setting without rotation, but then it results in either freeing a horizontal strip
at the bottom of the box, or a vertical strip at the left side of the box; there is no control over which strip
will be freed. Consequently, only one type of thin rectangles can be disposed of as a result of freeing the
strip, and there is no control over which one it is.

In the setting of Grandoni et al., our assumptions on the problem essentially mean that we allow the
existence of wide rectangles, but not of the tall ones. The application of the approach of Grandoni et al.
could result in freeing a vertical strip, in which the wide rectangles cannot fit. Consequently, we do not
see how to fix the approach presented in [7] to solve our case where only wide rectangles are present and
no rotation is allowed. We therefore abandon this approach and propose a completely new one.

Instead, we prove a different result about the existence of a well-structured near-optimum solution.
Our structural lemma (Lemma 9) says that at the cost of sacrificing a small fraction of rectangles, the
considered packing can be divided into regions B1, B2, . . . , Bm so that:

• Every region Bi is delimited by the left side of the box, the right side of the box, and two x-monotone
axis-parallel polylines connecting the left and the right side. Moreover, each of the polylines defining
the division B1, B2, . . . , Bm consists of O(1/ε) segments.

• Every region Bi is either light — contains only O(1/ε2) rectangles from the packing — or roundable
— rectangles within Bi could be packed inside Bi even after rounding them to the nearest multiple
of (roughly) N1/k

2, where N1 is the width of the box.
Having such a structural lemma, a near-optimum solution can be constructed using a bottom-up dynamic
programming that guesses the regions Bi one by one. For each region Bi we consider two cases: either

2

Bi is light and a solution within it can be guessed (essentially) by brute-force, or Bi is roundable and
using the same trick as in [7], one can restrict attention to kO(1) many different candidates for rectangles
that will be packed into Bi.

There is a technical caveat in the plan presented above. Namely, in dynamic programming we need
to make sure that we do not reuse the same rectangle from R in two or more different regions Bi. We
resolve this issue using color-coding. Namely, by applying color-coding upfront we may assume that all
the rectangles in R are colored with k colors, and we look for a packing consisting of rectangles of pairwise
different colors. Then our dynamic programming keeps track of the subset of colors that have already
been used, which adds only another dimension of size 2k to the dynamic programming table.

2 Preliminaries
Basic terminology. For a positive integer N , we write [N] = {1, 2, . . . , N}.
A rectangle is a pair of positive integers R = (w, h) ∈ Z2

+, and a placed rectangle is a set of the form
Q = [x, x+w]× [y, y+ h] ⊆ R2, where R = (w, h) is a rectangle and (x, y) ∈ Z2 is the bottom-left corner
of Q; we will also say that such Q is a placement of R. In the notation, we will sometimes treat placed
rectangles as their non-placed counterparts; the meaning of this will be always clear from the context.

Both for placed and non-placed rectangles, w and h are called the width and the height, respectively,
and may be denoted by w(P) and h(P), where P is the (placed) rectangle in question. The interior of a
placed rectangle Q = [x, x+w]× [y, y+h] is the set I(Q) = (x, x+w)× (y, y+h). Two placed rectangles
overlap if their interiors intersect.

A zone is simply a subset of R2. For a zone Z and a set of placed rectangles R, by R[Z] = {R ∈ R |
R ⊆ Z} we denote the set of all rectangles from R that are entirely contained in Z. For a zone Z and
a set of non-placed rectangles R, a packing of R in Z is a set R′ = {R′ : R ∈ R} consisting of pairwise
non-overlapping placed rectangles contained in Z, where R′ is a placement of R for each R ∈ R.

The problem and the main result. In the (parameterized variant of) 2D Knapsack problem,
we are given a rectangular zone B = [0, N1] × [0, N2] ⊆ R2 called the box, where N1, N2 are positive
integers, a set R of rectangles called items, and an integer k. The question is whether there exists a
packing of some k items from R in the box B.

In the context of an instance (B,R, k) of 2D Knapsack, the size of the box B is ‖B‖ = N1 + N2,
and the aspect ratio of B is δ(B) = max

(
N1
N2
, N2

N1

)
. Further, an item R ∈ R is wide if w(R) ≥ h(R). Note

that in the variant of the problem where rotations by 90◦ are allowed, one may always rotate the items
so that they are wide. When the instance (B,R, k) is clear from the context, by a packing we mean a
packing of a subset of R in B.

With these definitions in place, we can state our main result.

Theorem 1: There exists an algorithm that given an accuracy parameter ε > 0 and an instance
(B,R, k) of 2D Knapsack, where R consists only of wide items, either returns a packing of size
at least (1 − ε)k or correctly concludes that there is no packing of size k. The running time of the
algorithm is δ(B)O(k) · (k + 1/ε)O(k+1/ε2) · (|R|‖B‖)O(1/ε2).

Polylines and containers. In our algorithm for 2D Knapsack we will decompose the box into
zones delimited by borders of low complexity, allowing those borders to be efficiently guessed. Formally,
each border will be a polyline defined as follows.

Definition 2 (Axis-parallel polyline): An axis-parallel polyline P is a union of horizontal or vertical
segments S1, S2, . . . , Sm such that for 1 ≤ i ≤ m − 1, the end of segment Si is the beginning of
segment Si+1. Then m is called the complexity of P.

For brevity, axis-parallel polylines will be just called polylines. We will only work with monotone
polylines, meaning that all horizontal coordinates of points on Sj will not be smaller than the horizontal
coordinates of the points on Si, whenever i < j. A polyline P crosses a placed rectangle R if P intersects
the interior of R.

Next we introduce containers. We will use them to capture the idea of decomposing the box into zones.

3

Definition 3 (Container): A container C is a union of horizontal or vertical segments S1, S2, . . . , Sm

such that:
• for 1 ≤ i ≤ m− 1, the end of segment Si is the beginning of segment Si+1, and
• the end of segment Sm is the beginning of segment S1.

Furthermore, we require that C is weakly-simple (as introduced in [2, 3, 9]) in the following sense:
if γ : S1 → R2 is a parameterization of C, then for every ε > 0 there exists an injective continuous
γε : S1 → R2 such that ‖γ − γε‖∞ ≤ ε.
The inside of the container, denoted I(C), is the bounded open region delimited by the segments.
Moreover, the complexity of the container is defined as m.

Note that the inside of a container is not necessarily connected. For clarification, see Figure 1.

1
2

3
4

5

6

7
8

9
10

11

12

1
2

3

4
5

6

7
8

9
10

11

12

Figure 1: Left panel: an example of a container where the order of the segments is given by the numbers,
and some injective candidate γε in light blue. Right panel: an example of a non-container (the paths
cross in the middle), and some candidate γε in light red, that is not injective.

3 Exact algorithm

In this section, we give an exact algorithm for the problem, which will be later used as a subroutine
in the proof of Theorem 1. The point here is that we allow the box to be delimited by an arbitrary
container, and we measure the running time in the complexity of the container. Formally, we will prove
the following statement.

Lemma 4: Given a set of rectangles R and a container C of complexity m, one can determine whether
there is a packing of the rectangles of R inside C in time (m+ |R|)O(|R|).

The main idea of our algorithm is to push the packing bottom-left, as explained in the next definition.

Definition 5: A packing R inside a container C is said to be pushed bottom-left if for every rectangle
R ∈ R, its left (resp. bottom) side intersects either a vertical (resp. horizontal) segment of the
container, or a right (resp. bottom) side of another rectangle R′ ∈ R.

It is not hard to see that if a packing is pushed bottom-left, then there must be a rectangle in the
packing whose left and bottom sides rest on the perimeter of the container. This is formally proved in
the following statement.

Proposition 6: Suppose R is a non-empty packing of rectangles inside a container C that is pushed
bottom-left. Then there exists a rectangle R ∈ R such that its left side intersects a vertical segment
of the container and its bottom side intersects an horizontal segment of the container.

Proof: Create a directed graph D with vertex set R, where there is an edge (R,R′) if the bottom side
of R intersects the top side of R′ on more than a single point, or if the left side of R intersects the right
side of R′ on more than a single point. Let us show that D has no directed cycle, so for contradiction
suppose R1, . . . , R` is a directed cycle in D. In what follows, all indices behave cyclically modulo `.

4

For each i ∈ [`], select an arbitrary point pi in the intersection of Ri−1 and Ri that is neither a corner
of Ri−1 nor a corner of Ri. Further, observe that one can construct a curve γi : [0, di]→ Ri, where di

is the length of γi, such that:
• γi is smooth (formally, C1) and monotone in both directions,
• ‖γ′i(t)‖2 = 1 for all t ∈ [0, di],
• γi(0) = pi and γi(di) = pi+1, and
• the tangent of γi at pi and pi−1 is perpendicular to the respective side and faces the inside (resp.

outside) of Ri. For instance if pi is on the top side of Ri, we require γ′i(0) = (0,−1), and if pi+1
is on the left side of Ri, we require γ′i(di) = (−1, 0).

An example of such a construction is shown below.

a

b

a

b

a
b a

b

Concatenating all the curves γi in order yields a smooth closed curve γ : S →
⋃`

i=1 Ri without self-
crossings such that ‖γ′(t)‖2 = 1 for all t ∈ S, where S is the circle of length

∑`
i=1 di. Here is the

crucial observation: by the way we oriented the arcs in D, the vector γ′(t) is never in the positive
orthant (i.e. γ′(t) has not both coordinates positive), for any t ∈ S.

γ

However by Theorem 2 of [4, section 5-7, page 402], a smooth closed curve in the plane without
self-crossings has rotation index ±1, where the rotation index of a curve is the number of times its
tangent vector turns around the origin. This means that by the intermediate value theorem, for every
α ∈]0, 2π[, there exists a point of the curve where the tangent vector is at angle α with the x-axis,
and hence belongs to the positive orthant. This is a contradiction.
We conclude that D is acyclic, hence it has a sink R — a rectangle with out-degree 0. Therefore, R
is the rectangle we want: its left side intersects a vertical segment of container and its bottom side
intersects a horizontal segment of the container. �

With Proposition 6 established, we can conclude our goal using a simple branching strategy.

Proof of Lemma 4: We prove a stronger statement where we allow C to be the union of several
disjoint containers, and we let m be the sum of their complexities.
Suppose there is a packing packing S of the rectangles of R into C. We can assume without loss of
generality that S is pushed bottom-left within every container of C. Now by Proposition 6, there
exists a rectangle R such that its left (resp. bottom) side intersects a vertical (resp. horizontal)
segment of a container in C.
So here is a recursive procedure to solve the problem. First, guess (by trying all possibilities) the
rectangle R satisfying the condition above; there are n different possibilities for R, where n = |R|.
Second, guess which pair of segments of the containers intersect the left and the bottom side of R;
there are at most m2 possibilities. Place rectangle R according to the latter guess and verify that it
is indeed fully contained in C. Then, “carve out” the rectangle, i.e., define a new union of containers
C′ so that the I(C′) = I(C) \R.
It is easy to see that the total complexity of the new union of containers C′ is at most m + 6 and it
can be computed in time polynomial in m. Then, recurse on R′ and C′ where R′ = R \ {R}.
It is clear that the algorithm is correct. To analyze its running time, note that the recursion tree has

5

depth bounded by n and branching bounded by n(m+ 6n)2, hence it consists of (m+ n)O(n) nodes.
The internal computation at each node take time polynomial in n and m, so the total running time
of (m+ n)O(n) follows. �

4 Giving structure to the packing

In this section we prove structural results that can be summarized as follows: at the cost of sacrificing
a small fraction of the packing, one can apply resource augmentation — round the packing — so that it
gains a certain structure. Once this structure is achieved, we will argue later that structured packings
can be efficiently computed using dynamic programming.

Throughout this section we fix an instance (B,R, k) of 2D Knapsack, where B = [0, N1] × [0, N2]
and R consists only of wide rectangles: w(R) ≥ h(R) for all R ∈ R.

To perform resource augmentation, we need the following notion of rounding a rectangle. Informally, a
rounded rectangle is the original rectangle with its width rounded up to the nearest multiple of `′ = `2/N1;
here is a formal definition.

Definition 7 (Rounded rectangles): Let R = (w, h) be a rectangle and ` > 0 be a positive real. Then
the `-rounded rectangle round`(R) is the rectangle (`′ dw/`′e , h) where `′ = `2/N1. For a set R of
rectangles, we define similarly round`(R) = {round`(R) : R ∈ R}.

As mentioned, the key idea behind our algorithm is to look for a specifically structured packing. This
structure is quantified formally in the following definition. Broadly speaking, we look for a packing that
is partitioned into regions of low complexity and such that the rectangles in each region behave well.

Definition 8 (Structured packing): Fix any ε, ` > 0. Consider a set of pairwise non-intersecting
monotone polylines P1, P2, . . . , Pm contained in the box B, where each Pi starts at the left side of B
and finishes at the right side of B, and the polylines P1, . . . , Pm are naturally numbered from bottom
to top. We define the partition of the box B into regions B0, B1, . . . , Bm so that each region Bi

is delimited by the polylines Pi and Pi+1 and the left and the right side of B (here we define for
convenience P0 to be the bottom side of B and Pm+1 to be the top of B).
We say that a packing of rectangles Q in B is an (ε, `)-structured packing if every rectangle in Q
has width at least 2` and there exist polylines P1, P2, . . . , Pm as above, each of complexity at most
4/ε+ 1, such that no rectangle of Q is crossed by any polyline Pi, i ∈ [m], and for each i,0 ≤ i ≤ m
at least one of the following conditions holds:

• |Q[Bi]| ≤ 2/ε2, or
• round`(Q[Bi]) can be packed into Bi.

The rest of the section is dedicated to proving the following structural lemma (recall that the instance
(B,R, k) is fixed in the context):

Lemma 9 (structural lemma): Suppose ` > 0 is a positive real such there is a packing of size k consisting
of rectangles of width at least 2` each. Then for every ε > 0, there exists also an (ε, `)-structured
packing of size at least (1− 3ε)k.

This section is divided into 3 parts. In the first subsection we study the assumed packing of size k
and define an associated conflict graph, which turns out to be planar. In the second subsection, we show
that if there exists a packing of rectangles in a specific zone on the box, then at the cost of removing
a few rectangles, there exists a packing of the rounded rectangles into a slightly bigger rounded version
of the zone. In the last section, we define the specific polylines that will divide the zones and finish the
proof of the Lemma 9.

By assumption, there exists a packing S in B consisting of k rectangles from R, each of width at
least 2`. Fix S for the remainder of this section.

6

4.1 Conflict graph

For the definition of the conflict graph, we need the following notion of horizontal visibility.

Definition 10: Two different placed rectangles R,R′ ∈ S see each other if there is an horizontal
segment s intersecting the interior of the right side of R and the interior of the left side of R′ (or vice
versa) such that s does not intersect any other rectangle of S. Notice that s may consist of a single
point, if R and R′ are touching. For convenience, we extend this definition to the case where R is
the left side of B or R′ is the right side of B. For instance with the left side we associate the placed
rectangle Rleft = [−1, 0] × [0, N2] and say that R and the left side see each other if Rleft and R see
each other; similarly for the right side. The left side and the right side do not see each other.

Note two rectangles intersecting only at their common corner do not see each other.

Definition 11 (Conflict graph): For a packing S, we define the conflict graph of S to be the graph
G defined as follows: the vertex set contains all the rectangles of S, and in addition there are two
special vertices s and t identified with the left side and the right side of B, respectively. Two vertices
of G are adjacent if and only if they see each other.

It is easy to see that the conflict graph is planar; see Figure 2.

1

2 3
4
5
6

7

8 9

10

11

12 13 14

15
16s

t

Figure 2: Example of a conflict graph.

We formalize this intuition in the following lemma.

Lemma 12: For any packing S, the conflict graph of S is planar.

Proof: Let G be the conflict graph of S. For a rectangle R ∈ S, we denote its associated vertex in
G by vR. We define a planar embedding of G as follows. We define the position of a vertex vR to be
the center c(R) = (x(R) +w(R)/2, y(R) +h(R)/2) of the corresponding rectangle. If there is an edge
e = vRvR′ , choose y ∈ R such that the horizontal segment s = [x(R) + w(R), x(R′)]× {y} witnesses
that R and R′ that see each other, where we assume w.l.o.g. that x(R) + w(R) ≤ x(R′). We define
the embedding γe of e as the union of 3 internally disjoint segments:

• s1
e = [c(R), (x(R) + w(R), y))],

• s2
e = s,

• s3
e = [(x(R′), y), c(R′)].

It is straightforward to check that all the curves γe e ∈ E(G) are pairwise internally disjoint, hence
they constitute a planar embedding of G. �

7

4.2 Packing rounded rectangles

Next, we analyze a packing within some zone Z ⊆ R2, with the goal of understanding when and how the
rectangles of this packing can be rounded to obtain a rounded packing of substantial size. We fix some
positive real ` > 0 for the rest of this subsection.

First, we need some definitions about expanding zones.

Definition 13: Let Z ⊆ R2. We define:
• the negatively shifted zone ←−Z〈`〉 =

(⋃
(x,y)∈Z [x− `, x]× {y}

)
∩ [0, N1 − `]× [0, N2],

• the positively shifted zone −→Z〈`〉 =
(⋃

(x,y)∈Z [x, x+ `]× {y}
)
∩ [0, N1]× [0, N2],

• and the rounded zone ←→Z 〈`〉 =
(⋃

(x,y)∈Z [x− `, x+ `]× {y}
)
∩ [0, N1]× [0, N2].

Note that if Z ′ =←−Z〈`〉 then ←→Z 〈`〉 =
−→
Z ′〈`〉, and that the first two definitions are not symmetric.

Our main goal in this subsection is to prove the following lemma. It intuitively says that at the cost
of removing an st-separator in the conflict graph, one can find a packing of the rounded rectangles into
a slightly extended zone. Here, an st-separator is a set of vertices (rectangles) that hits every s-t path.

Lemma 14: Let Q be a packing in a zone Z ⊆ B such that every rectangle of Q has width at least
2`. Further, let C be an st-separator in the conflict graph of Q. Then round`(Q \ C) can be packed
inside the zone ←→Z 〈`〉.

The first step towards the proof of Lemma 14 is to repack Q into the negatively shifted zone Z at the
cost of deleting a few rectangles.

Proposition 15: Let Q be a packing in a zone Z ⊆ B such that every rectangle of Q has width at
least 2`. Further, let C be an st-separator in the conflict graph of Q. Then Q \ C can be packed
inside the zone ←−Z〈`〉.

For an illustration of the proof, see Figure 3.

Proof: Let G be the conflict graph of Q. Since C is an st-separator in G, we may partition Q into
three disjoint sets X, C, and Y so that vertices of X are not connected to t, vertices of Y are not
connected to s, and no vertex of X is adjacent to any vertex of Y . Now, construct a new set of placed
rectangles Q′ by removing all rectangles of C and shifting every rectangle of Y by ` to the left. It
remains to prove that Q′ is a packing and that all rectangles of Q′ are entirely contained in ←−Z〈`〉.
For the second assertion, we need to prove that (i) no R′ ∈ Q′ crosses the left side of the box, i.e.,
no R′ ∈ Q′ is such that x(R′) < 0, and (ii) no rectangle R′ ∈ Q′ contains a point with horizontal
coordinate larger than N2 − `, i.e. x(R′) + w(R′) > N2 − `. To prove (i), suppose for the sake of a
contradiction that there exists R′ ∈ Y such that x(R′) < 0. We must have R′ ∈ Y because R′ was
shifted, and hence R′ cannot see the left side of the box. Let R ∈ Q be R′ before shifting. We know
that x(R) < `, therefore as every rectangle has width at least `, there is no rectangle in Q that would
be placed between R and the left side of the box. Therefore, the R must see the left side of the box,
which is a contradiction because R ∈ Y . A symmetric argument involving the right side of the box
proves (ii).
For the first assertion, we need to prove that no two rectangles in Q′ overlap. The only case when
this could a priori happen is if R1 ∈ X and R2 ∈ Y are overlapping after the shift. This would mean
that x(R1)+w(R1) < x(R2)− `. However, again in Q there cannot be any rectangle lying in between
R1 and R2, because every rectangle has width at least `. Therefore, the R1 and R2 must see each
other, which is a contradiction because R1 ∈ X and R2 ∈ Y . �

8

Z

1

2 3
4
5
6

7

8 9

10

11

12 13 14

15
16s

t

1

2 3
4
5
6

7

8 9

10

11

12 13 14

15
16s

t

←−
Z〈`〉

←−
Z〈`〉

Figure 3: Illustration of the proof of Proposition 15. From top to bottom: First, a blue conflict graph
of the gray packing. The packing is entirely in Z, delimited by the blue border. Secondly, we remove
the orange separator C and want to pack the leftover rectangles inside the red region ←−Z〈`〉. The set of
rectangles referred to as Y in the proof is in light blue, and X is left gray. Finally, we pack in ←−Z〈`〉 by
shifting the rectangles at the right of the separator by ` to the left.

Now that we have emptied a strip to the right of the zone, we can do some resource augmentation
in order to replace the original rectangles by their rounded versions, while still being able to pack them
inside the rounded zone.

Proposition 16: Let Q be a packing in a zone Z ⊆ [0, N1− `]× [0, N2] such that every rectangle of Q
has width at least 2`. Then round`(Q) can be packed inside the zone −→Z〈`〉.

For clarification, see Figure 4.

Proof: First, scale horizontally every rectangle in Q by a factor λ = 1 + `/N1, i.e., for a rectangle
R = [x, x+ w]× [y, y + h] we define the rectangle R× = [λx, λ(x+ w)]× [y, y + h]. These rectangles
fit inside round`(Z). Indeed, the maximum possible displacement of a point is N1 · `/N1 = `, i.e.
the image of a point under scaling is at horizontal distance at most ` to the right of the original
point. Next, observe that every rectangle round`(R) can be entirely placed inside the corresponding
rectangle R×, because

λw = w + w`/N1 ≥ w + `2/N1 = `′ + w = `′(1 + w/`′) ≥ `′ dw/`′e .
(Recall here that we assumed all rectangles to have width at least `.) Now, Q′ can be obtained from
Q by replacing each R ∈ Q′ with R×, fitting round`(R) inside R×, and finally shifting all rectangles
to the left so that they have integer coordinates. The last step is always possible as every rectangle
has integer length. �

9

Z
R

−→
Z〈`〉

R×

×(1 + `/N1)

−→
Z〈`〉

round`(R)

Figure 4: Illustration of the proof of Proposition 16. From top to bottom: First, Q is packed into Z
(blue zone). Then, the rectangles in Q are scaled horizontally by a factor λ = 1 + `/N1. We argue in the
proof that these scaled-up rectangles are packed in −→Z〈`〉 (red zone). Finally, we replace each scaled-up
rectangle by its rounded version, which has smaller width.

We may now combine Proposition 15 and Proposition 16 to achieve our goal.

Proof of Lemma 14: Apply Proposition 15 and Proposition 16 to get that round`(Q \ C) can be
packed in

−→
Z ′〈`〉, where Z ′ =←−Z〈`〉. As

−→
Z ′〈`〉 =←→Z 〈`〉, the proof is finished. �

4.3 Proof of the Structural Lemma

Finally, in this subsection we define the polylines that we are interested in and prove some results about
zones and polylines to finish the proof of Lemma 9. The main idea is to construct some well-chosen
polylines by looking at the rectangles on short s-t paths. These polylines are then used to delimit zones
in which we can find a separator of bounded size, and apply the ideas of the previous subsections.

Recall that we are working with a packing S of size k consisting of rectangles of width at least 2`
each. Let G be the conflict graph of S. For every R ∈ S, by vR we denote the vertex of G corresponding
to R. First, we need to understand how s-t paths in G can be mapped to polylines.

Definition 17 (Bottom polyline of a path): Consider an s-t path P = (s, vR1 , vR2 , . . . , vRm
, t) in G, and

suppose that for each i ∈ {0, 1, . . . ,m}, that Ri and Ri+1 see each other is witnessed by the segment
si = [x(Ri) + w(Ri), x(Ri+1)]× {yi} (where R0 = s and Rm+1 = t). Then define the bottom polyline
of P as the polyline P formed by the union of the following segments:

• [x(Ri), x(Ri) + w(Ri)]× {y(Ri)} for each i ∈ [m],
• {x(Ri)} × [min{y(Ri), yi−1},max{y(Ri), yi−1}] for each i ∈ [m],
• {x(Ri) + w(Ri)} × [min{y(Ri), yi},max{y(Ri), yi}] for each i ∈ [m], and
• si for each i ∈ {0, 1, . . . ,m}.

Less formally, P is the union of the segments si joining the rectangles of the path, the bottom sides

10

of the rectangles, and parts of the left/right sides of the rectangles to join the segments to the bottom
sides.

Similarly, we define the notion of the top polyline of an s-t path in G. When defining at the same time
the top and the bottom polyline of the same path, we always use the same segments si to define how
rectangles Ri and Ri+1 should be linked. Finally, we will also need the middle polyline.

Definition 18 (Middle polyline of a path): Consider an s-t path P = (s, vR1 , vR2 , . . . , vRm , t) in G, and
suppose that for each i ∈ {0, 1, . . . ,m}, that Ri and Ri+1 see each other is witnessed by the segment
si = [x(Ri) + w(Ri), x(Ri+1)]× {yi} (where R0 = s and Rm+1 = t). Then define the middle polyline
of P as the polyline P formed by the union of the following segments:

• {x(Ri) + w(Ri)/2} × [min{y(Ri) + h(Ri)/2, yi},max{y(Ri) + h(Ri)/2, yi}] for each i ∈ [m],
• {x(Ri) +w(Ri)/2}× [min{y(Ri) +h(Ri)/2, yi+1},max{y(Ri) +h(Ri)/2, yi+1}] for each i ∈ [m],

and
• [max(x(Ri) + w(Ri)/2, 0),min(x(Ri+1) + w(Ri+1)/2, N2)]× {yi} for each i ∈ {0, 1, . . . ,m}.

Less formally, P is the union of:
• a vertical segment from the center of each Ri to the vertical position of si,
• a vertical segment from the center of each Ri to the vertical position of si+1,
• all segments si extended so that they reach the horizontal coordinates of the centers of the

corresponding rectangles.

For a visual representation, see Figure 5.

top

R1

middle

bottom

R2

R3

R4

R5

Figure 5: In orange, the top polyline of the st-path formed by R1, R2, R3, R4 and R5. In blue, its bottom
polyline, and in green, its middle polyline. The dashed lines split their respective rectangles into 4 equal
parts.

The following is clear.

Proposition 19: The top, bottom and middle polylines of a path P have complexity at most 4|P |+ 1,
where |P | denotes the number of vertices on P .

Moreover, the middle polyline is defined so that we have space to the left and the right when performing
resource augmentation. This will be made clear in the following definitions and lemmas; see Figure 6.

s

←−
Q〈`〉

Q

P t

P

Figure 6: In green, the middle polyline P of the blue st-path P constituted of the gray rectangles. In
light orange, Q, and in orange,←−Q〈`〉. Notice that the green polyline does not cross any orange rectangles.

11

Proposition 20: Suppose P is an s-t path in the conflict graph G of the packing S. Let P be the middle
polyline of P and let Q be the packing obtained from S by removing all the rectangles participating
in P . Then P does not cross ←−Q〈`〉. The same goes for −→Q〈`〉, and therefore also for ←→Q〈`〉.

Proof: Suppose P crosses ←−R〈`〉 for some R ∈ Q. Then there exists R1, R2 ∈ V (P) (which are
possibly the left or the right side of the box) such that R1 and R2 see each other through a segment
s = [x(R1) + w(R1), x(R2)]× {y} and R crosses one of the following segments:

1. {x(R1) + w(R1)/2} × [min{y(R1) + h(R1)/2, y},max{y(R1) + h(R1)/2, y}],
2. [x(R1) + w(R1)/2, x(R2) + w(R2)/2]× {y},
3. {x(R2) + w(R2)/2} × [min{y, y(R2) + h(R2)/2},max{y, y(R2) + h(R2)/2}].

We show that every case leads to a contradiction.
1. Assume case 1. P crosses ←−R〈`〉 but not R so x(R) ≥ x(R1) +w(R1)/2 and x(R)− ` ≤ x(R1) +
w(R1)/2. Therefore x(R1) ≤ x(R) ≤ x(R1)+w(R1)/2+` ≤ x(R1)+w(R1) because w(R1) ≥ 2`.
Moreover, [min{y(R1) +h(R1)/2, y},max{y(R1) +h(R1)/2, y}] ⊆ [y(R1), y(R1) +h(R1)] by the
definition of y. This means that R and R1 intersect at (x(R), y′) where y′ ∈ [y(R), y(R) +
h(R)] ∩ [min{y(R1) + h(R1)/2, y},max{y(R1) + h(R1)/2, y}], which is not possible.

2. Assume case 2. This would mean that y ∈ [y(R), y(R) + h(R)], x(R) ≥ x(R2) + w(R2)/2 and
x(R)− ` ≤ x(R2) +w(R2)/2 because |[x(R1) +w(R1)/2, x(R2) +w(R2)/2]| ≥ 2` and P crosses
←−
R〈`〉 but not R. Therefore x(R2) ≤ x(R) ≤ x(R2) + w(R2)/2 + ` ≤ x(R2) + w(R2) because
w(R2) ≥ 2`. This means that R and R2 intersect at (x(R), y), which is not possible.

3. Assume case 3. This is a similar argument as case 1, replacing R1 by R2. �

Next, we need the following graph-theoretic observation.

Proposition 21: Let G be a graph containing vertices s and t. Suppose every s-t path in G at least
1/ε internal vertices. Then G contains an st-separator of size at most ε(|V (G)| − 2).

Proof: As every s-t path in G contains at least 1/ε internal vertices, one cannot find more than
ε(|V (G)| − 2) internally disjoint s-t paths in G. By Menger’s theorem, there is an st-separator of size
at most ε(|V (G)| − 2). �

We can now wrap up the section by proving the Structural Lemma.

Proof of Lemma 9: Based on the assumed packing S, we construct another packing S ′ and then
we prove that it is structured and has size at least (1 − 3ε)k. Let G be the conflict graph of S. Let
F be an inclusion-wise maximal family F of internally disjoint s-t paths in G, each with at most 1/ε
internal vertices. As the paths from F are internally disjoint, we can naturally enumerate them from
bottom to top: F = {P1, P2, . . . , Pm}. For convenience, let P0 = Pm+1 = ∅.
Because the conflict graph is planar by Lemma 12, by the Jordan Curve theorem, for each i ∈
{0, 1, . . . ,m} there is a set Vi of vertices of G that lies inside the cycle Pi ∪ Pi+1. By construction of
the conflict graph, Vi is exactly the set of rectangles lying in the area Zi delimited by the box, the
top polyline of Pi and the bottom polyline of Pi+1. For each Vi we construct a separating polyline Pi

as follows:
• If |Vi−1| ≤ 1/ε2 and |Vi| ≤ 1/ε2, select the bottom polyline of Pi as the separating polyline.
• Otherwise, select the middle polyline of Pi as the separating polyline.

All the polylines created are of complexity at most 4/ε + 1 by Proposition 19. They partition the
box into regions B0, B1, . . . , Bm+1 ⊆ B, from the bottom to the top. Note that Bi ⊇ Zi for each
relevant i.
Notice that in G[Vi ∪ {s, t}] there is no s-t path of length at most 1/ε, because F is maximal. Let Ci

be the separator given by Proposition 21 for the graph G[Vi ∪ {s, t}]. Then we have |Ci| ≤ ε|Vi|.
We can now specify which rectangles we want include in S ′. We define S ′ to be the union of sets V ′i
for i ∈ {0, 1, . . . ,m}, where

V ′i =

Vi ∪ V (Pi) \ {s, t} if |Vi−1| ≤ 1/ε2 and |Vi| ≤ 1/ε2,

Vi if |Vi−1| > 1/ε2 and |Vi| ≤ 1/ε2,

Vi \ Ci otherwise.

12

We now argue that for each i ∈ {0, 1, . . . ,m}, either |V ′i | ≤ 2/ε2 and V ′i ⊆ S[Bi], or round`(V ′i) can
be packed in Bi.
First, observe that if |Vi| ≤ 1/ε2, then |V ′i | ≤ |Vi ∪ V (Pi) \ {s, t}| ≤ 1/ε2 + 1/ε ≤ 2/ε2. Further,
if |Vi−1| > 1/ε2 then V ′i = Vi and trivially S[Bi] ⊇ S[Zi] = Vi, and if |Vi−1| ≤ 1/ε2 then Pi is the
bottom polyline of Pi and we have S[Bi] ⊇ Vi ∪ V (Pi) \ {s, t} = V ′i as well.
Second, consider the case when |Vi| > 1/ε2. Notice that then Pi is the middle polyline of Pi and
Pi+1 is the middle polyline of Pi+1, and V ′i = Vi \ Ci. Because Vi can be packed inside Zi, we
can use Lemma 14 on Vi and Zi to pack round`(V ′i) into

←−→
(Zi)〈`〉. By Proposition 20, we know that

←−→
(Zi)〈`〉 ⊆ Bi, hence we can pack round`(V ′i) into Bi.
We conclude that indeed, S ′ is an (ε, `)-structured packing, as witnessed by the polylines Pi for
i ∈ [m]. What is left to show is that |S ′| ≥ (1 − 3ε)k. Call an index i ∈ [m] heavy if
|Vi| > 1/ε2. Observe that S ′ ⊇ S \

⋃
i : heavy Ci ∪ V (Pi) ∪ V (Pi+1), hence it suffices to prove

that
∣∣∣⋃i : heavy Ci ∪ V (Pi) ∪ V (Pi+1) \ {s, t}

∣∣∣ ≤ 3εk. Fix a heavy index i. First, observe that
|V (Pi) ∪ V (Pi+1) \ {s, t}| ≤ 2/ε ≤ 2ε|Vi|, as each path Pi has at most 1/ε internal vertices. Second,
by construction we have |Ci| ≤ ε|Vi|. Summing those inequalities throughout all heavy i yields that∣∣∣∣∣∣

⋃
i : heavy

Ci ∪ V (Pi) ∪ V (Pi+1) \ {s, t}

∣∣∣∣∣∣ ≤
∑

i : heavy
3ε|Vi| ≤ 3εk,

as required. �

5 The algorithm

In this section we finalize the proof of Theorem 1. The section is divided into two parts. The first
subsection describes an algorithm working under the assumption that the input set R only contains
rectangles of width at least 2`, for some ` > 0. In the second subsection, we show how to obtain the
assumption that R only contains rectangles of width at least 2` for ` = N1/(δ(B)k2), at the expense of
deleting an ε fraction of the rectangles in the packing. Therefore, we get a full algorithm as a corollary.

Throughout this section, fix an instance (B,R, k) of 2D Knapsack, where B = [0, N1]× [0, N2] and
R consists of wide items.

5.1 The algorithm for rectangles of substantial width

The dynamic programming algorithm will gradually guess a good partition of the box into regions (that
we know exists by Lemma 9), and then solve the problem in each region independently. In order to avoid
repeating the use of the same rectangles in different regions, we use color-coding.

Definition 22 (Good coloring): Given a set of rectangles R and a subset S ⊆ R of size k, a function
col : R → [k] is a good coloring for S if rectangles of S have pairwise different colors under col.

We cannot directly guess a good coloring of the rectangles, as a priori there are too many candidates.
We instead use the following classic result of Naor et al. [11], which says that there is only an fpt-sized
family of candidates for a good coloring.

Proposition 23 (Naor et al. [11]): For every set R and positive integer k, there exists a family F of
colorings of R with color set [k] such that |F| ≤ ekkO(log k) log |R| and for every S ⊆ R of size k, in
F there is a good coloring for S. Moreover, F can be computed in time ekkO(log k)|R| log |R|.

Next, we observe that once the number of different widths in the instance has been bounded, one
can restrict attention to a small set of candidate rectangles. For this, notice the following: if we have a

13

colored packing of size k that contains a rectangle R, and in the packing we did not use another rectangle
R′ of the same color and width as R, but satisfying h(R′) ≤ h(R), then we can replace R with R′ and
we will still have a colored packing. This observation leads to defining the following operation.

Definition 24 (reducek(R, col)): Suppose col : R → [k] is a coloring of a set of rectangles R with color
set [k]. Then for a positive integer w and color i ∈ [k], letRw,i be the set of k smallest-height rectangles
among the rectangles of {R ∈ R | w(R) = w, col(R) = i}. In case |{R ∈ R | w(R) = w, col(R) =
i}| < k, we set Rw,i = {R ∈ R | w(R) = w, col(R) = i}. We define reducek(R) =

⋃
w∈w(R),i∈[k]Rw,i.

Notice that reducek(R) contains at most k2|w(R)| elements: for every possible width and every possible
color, the at most k rectangles of this specific width and of smallest height. Also, we have the following
very simple observation.

Lemma 25: Suppose R is a set of rectangles and col : R → [k] is a coloring function such that k′ ≤ k
rectangles from R with pairwise different colors can be packed in a zone Z ⊆ R2. Then one can also
pack in Z a set of k′ rectangles from reducek(R, col) with pairwise different colors.

Proof: Let Q be the assumed packing of k′ ≤ k rectangles from R of pairwise different colors in the
zone Z. Note that if Q contains some rectangle of R ∈ R \ reducek(R, col), then there exists another
rectangle R′ ∈ reducek(R, col) with w(R′) = w(R), col(R′) = col(R) and h(R′) ≤ h(R) such that
R′ was not used in the packing Q. Hence, we can substitute R with R′ in the packing Q, fitting R′
within the area freed by removing R from the packing. By applying such substitutions exhaustively,
we obtain a packing in Z consisting of k′ rectangles from reducek(R, col). �

Next, we use the following definitions to guess the polylines in a bottom to top order. For two
monotone polylines P,P ′ that start at the left side of B and finish at the right side of B, we say that P ′
is below P (denoted by P ′ ≤ P), if for every x, y, y′, (x, y) ∈ P and (x, y′) ∈ P ′ implies y′ ≤ y. We write
P ′ < P if P ′ ≤ P and P ′ 6= P. Given two polylines P ′ < P, we want to be able to solve the problem in
the following sub-region:

Definition 26 (container(P ′,P)): For polylines P ′ < P, container(P ′,P) is the container (c.f. Defini-
tion 3) delimited by the box B, P ′ at the bottom and P at the top.

Notice that if P has complexity m and P ′ has complexity m′ then container(P ′,P) has complexity
m+m′ + 2.

Now we give the algorithm in the case when all rectangles in R have substantial width. This algorithm
is encapsulated in the following lemma.

Lemma 27: There is an algorithm that given ε > 0 and an instance (B,R, k) of 2D Knapsack in
which all items are wide and have width at least N1/α, either returns a packing of size at least (1−ε)k
or correctly concludes that there is no packing of size k. The running time is (k+1/ε)O(k+1/ε) ·αO(k) ·
(|R|‖B‖)O(1/ε2).

Proof: Let ` = N1/(2α); thus every rectangle on input has width at least 2`. For clarity of presen-
tation we allow the algorithm to output a packing of size at least (1− 3ε)k; then the result as stated
in the lemma can be obtained by rescaling ε by factor 3.
We first explain the algorithm. Compute F as given by Proposition 23. Then, guess (by trying all
choices) a coloring col ∈ F . The idea is now to use dynamic programming to compute a maximum-
size structured packing for the colored instance. More precisely, for every monotone polyline P of
complexity at most 4/ε+1 connecting the left and the right side of B, and for every C ⊆ [k], we shall
compute the value dp[P, C] defined as follows: dp[P, C] is a maximum-size packing that contains
only rectangles with colors in C, is colored injectively by col, and is placed entirely below P with the
added constraint that it is a subset of some (ε, `)-structured packing.
To compute the value dp[P, C] for given P and C, we iterate over all polylines P ′ of complexity at
most 4/ε+1 that are below P. Let B′ = container(P ′,P) be the container between P and P ′. Iterate
over all C ′ ⊆ C; this is the set of colors guessed to be used in B′. Let R′ = reducek(round`(R), col) be
the reduced set of rounded rectangles, where colors are naturally inherited from R during rounding.
Compute the following packings:

14

• S1 is the largest packing in B′ consisting of at most 2/ε2 rectangles with pairwise different
colors from C ′. This packing can be computed in time |R|O(1/ε2) · (1/ε)O(1/ε2) by first guessing
the set of rectangles participating in it, and then checking whether the packing can be realized
using the algorithm of Lemma 4.

• S2 is the largest packing in B′ consisting of at most k rectangles from R′ with pairwise different
colors from C ′. Again, this packing can be computed in time |R′|O(k) · (k + 1/ε)O(k) by first
guessing the set of rectangles participating in it, and then checking whether the packing can be
realized using the algorithm of Lemma 4.

Iterate over S ∈ {S1,S2}, and keep as dp[P, C] the set dp[P ′, C \ C ′] ∪ S of maximum size over all
the sets iterated on. Finally, as the solution to the overall problem, return dp[P, [k]] where P is the
top side of B, provided this packing has size at least (1 − 3ε)k. Otherwise, return that there is no
packing of size k.
This concludes the description of the algorithm. We are left with (i) analyzing its running time and
(ii) arguing that in case there is a packing of size at least k, the algorithm will output a packing of
size at least (1− 3ε)k.
Let us start with assertion (ii). For this, suppose there exists a packing S of size k. Since all
rectangles of S have width at least 2`, by Lemma 9 there exists an (ε, `)-structured packing S ′
of size at least (1 − 3ε)k. Further, by the properties of F , there exists col ∈ F such that col is
injective on S ′. Now, let P1,P2, . . . ,Pm be the polylines witnessing the structuredness of S ′, and
let ∅ = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cm ⊆ Cm+1 = [k] be such that Ci is the sets of colors used by
the rectangles of S ′ lying below Pi, where P0 and Pm+1 are the bottom and the top side of B,
respectively. A straightforward inductive argument using the structuredness of S ′ and Lemma 25
shows now that for i = 0, 1, . . . ,m + 1, the cell dp[Pi, Ci] will contain a packing of size at least as
large as the number of rectangles of S ′ lying below Pi. Hence, the algorithm will return a packing of
size at least |S ′| ≥ (1− 3ε)k, as promised.
We are left with analyzing the running time. The number of different colorings col ∈ F is |F| ≤
2O(k) · log |R|. Further, observe that the number of different polylines considered by the algorithm is
bounded by ‖B‖O(1/ε) and there are 2k different subsets of colors. Hence, the total number of cells
dp[P, C] considered by the algorithm is bounded by 2k · ‖B‖O(1/ε). As argued, the time spent on
computing a single value of dp[P, C] is bounded by 2k · ‖B‖O(1/ε) (the number of choices for P ′ and
C ′) times

|R|O(1/ε2) · (1/ε)O(1/ε2) + |R′|O(k) · (k + 1/ε)O(k).
Observe now that the rectangles of round`(R) have at most O(N1/`

′) different widths, where `′ =
`2/N1. Since ` = N1/2α, we conclude that the total number of different widths of the rectangles of
round`(R) is bounded by

O(N1/`
′) = O(N2

1 /`
2) ≤ O(α2).

Therefore,
|R′| = |reducek(round`(R, col))| ≤ O(α2k2).

Putting everything together, we infer that the running time of the algorithm is bounded by
2O(k) · log |R| · 2O(k) · ‖B‖O(1/ε) ·

(
|R|O(1/ε2) · (1/ε)O(1/ε2) + (α2k2)O(k) · (k + 1/ε)O(k)

)
≤(k + 1/ε)O(k+1/ε2) · αO(k) · (|R|‖B‖)O(1/ε2),

as promised. �

5.2 Full algorithm

We now present the complete algorithm, which essentially boils down to making a reduction to the case
when all rectangles on input have width at least 2`, where ` = N1/(δ(B)k2). In the next lemma, we
explain how to perform this reduction at the cost of removing εk rectangles from the packing.

Lemma 28: Let ε > 0. Suppose there is an algorithm A that, given a 2D Knapsack instance
(B = [0, N1]×[0, N2],R, p) in which all items are wide and have width at least N1/(δq2) and the aspect
ratio of B is δ, returns a packing of size at least (1−ε)p or attests that there is no packing of size p in
time f(p, q, ε, δ, ‖B‖, |R|). Then there is an algorithm B that, given a 2D Knapsack instance (B =
[0, N1]×[0, N2],R, k) in which all items are wide and the aspect ratio of B is δ, returns a packing of size

15

(1− 2ε)k or attests that there is no packing of size k in time f(k, k, ε, δ, ‖B‖, |R|) + (1/ε+ |R|)O(1/ε).

Proof: We present the algorithm B. Without loss of generality, we can assume k > 1/ε, as otherwise
the number of rectangles in the sought packing is at most 1/ε and we can solve the problem in time
(1/ε+ |R|)O(1/ε) by applying Lemma 4 to every k-tuple of rectangles in R.
Let W be the set of rectangles of R that have width at most N1/(δk2), and let w = |W|. Note that
since all rectangles are wide, the rectangles ofW also have height bounded byN1/(δk2). If w ≥ k, then
we can immediately construct a packing of size k by stacking any k rectangles ofW vertically: they fit
in the vertical dimension, because k ·N1/(δk2) ≤ N2. Otherwise, let k′ = k−w. Run A on a modified
instance where all rectangles ofW are removed, with parameter k′. If there is no packing of size k′ for
this instance, then clearly there is no packing of size k for the original instance, and this conclusion may
be reported by the algorithm. Otherwise, B returns a packing S ′ of size at least (1− ε)k′ consisting
of rectangles from R \ W. If S ′ consists only of rectangles of height at most N1/(δk), then we can
again immediately obtain a packing of size k by stacking the rectangles of S ′ ∪ W vertically; again
they fit in the vertical dimension, because k ·N1/(δk) ≤ N2. Otherwise, we modify S ′ by removing
any single rectangle R present in S ′ whose height (and therefore also width) is at least N1/(δk), and
putting all the rectangles of W into the space freed by the removal of R, by simply stacking them
horizontally. They fit horizontally because w ·N1/(δk2) ≤ k ·N1/(δk2) = N1/(δk) ≤ w(R), and their
heights are not greater than the height of R. The obtained modified packing S ′ is returned by the
algorithm.
It is clear that the algorithm outputs a packing and that when it concludes that there is no packing
of size k, this conclusion is correct. What remains to show is that the packing eventually output by
the algorithm has always size at least (1 − 2ε)k. And indeed, the algorithm always is able to pack
all rectangles packed in S ′, except for possibly one rectangle removed to accommodate W, and all
rectangles of W. Hence, the packing output by the algorithm has always size at least

(1− ε)k′ − 1 + w = (1− ε)k − (1− ε)w − 1 + w ≥ (1− ε)k − 1 > (1− 2ε)k,
because εk > 1 due to k > 1/ε. �

Now, Theorem 1 follows immediately by combining the algorithm of Lemma 27 with the reduction of
Lemma 28. Observe that the running time is δ(B)O(k) · (k+ 1/ε)O(k+1/ε2) · (|R|‖B‖)O(1/ε2), as promised.

6 Conclusion
The correctness of our entire algorithm heavily relies on the assumption that every input rectangle is
wide. Indeed, this assumption is used in the greedy arguments in the proof of Lemma 28, which allows
us to reduce to the case when every rectangle has a substantial width: at least N1/poly(δ(B), k). This
assumption is again heavily used later on: in the proof of Lemma 9 it ensures that upon removing the
rectangles corresponding to an st-separator in the conflict graph, there is enough space available for verti-
cal shifting. This eventually leads to rounding the rectangles so that there are only poly(δ(B), k) different
possible widths, and thus effectively bounding the number of candidate rectangles to poly(δ(B), k). So
while the original problem — the existence of a parameterized approximation scheme for 2D Knapsack
— remains open, we hope that the new structural techniques proposed in this work might give insight
leading to its resolution.

References

[1] Anna Adamaszek and Andreas Wiese. A quasi-PTAS for the two-dimensional geometric knapsack
problem. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, pages 1491–1505. SIAM, 2015.

16

[2] Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages
1655–1670. SIAM, 2015.

[3] Erik D Demaine and Joseph O’Rourke. Geometric folding algorithms: linkages, origami, polyhedra.
Cambridge university press, 2007.

[4] Manfredo P Do Carmo. Differential geometry of curves and surfaces: revised and updated second
edition. Courier Dover Publications, 2016.

[5] Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, Sandy Heydrich, Arindam Khan, and Andreas
Wiese. Approximating geometric knapsack via L-packings. ACM Trans. Algorithms, 17(4), 2021.

[6] Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas Wiese.
Improved approximation algorithms for 2-Dimensional Knapsack: Packing into multiple L-shapes,
spirals, and more. In 37th International Symposium on Computational Geometry, SoCG 2021,
volume 189 of LIPIcs, pages 39:1–39:17. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2021.

[7] Fabrizio Grandoni, Stefan Kratsch, and Andreas Wiese. Parameterized approximation schemes for
Independent Set of Rectangles and Geometric Knapsack. In 27th Annual European Symposium on
Algorithms, ESA 2019, volume 144 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl — Leibniz-Zentrum
für Informatik, 2019.

[8] Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages 204–213.
SIAM, 2004.

[9] Yoshiyuki Kusakari, Hitoshi Suzuki, and Takao Nishizeki. A shortest pair of paths on the plane with
obstacles and crossing areas. International Journal of Computational Geometry & Applications,
9(02):151–170, 1999.

[10] Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis Y. L. Chin.
Packing squares into a square. J. Parallel Distributed Comput., 10(3):271–275, 1990.

[11] Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal derandomiza-
tion. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 182–191. IEEE,
1995.

17

	Introduction
	Preliminaries
	Exact algorithm
	Giving structure to the packing
	Conflict graph
	Packing rounded rectangles
	Proof of the structural lemma

	The algorithm
	The algorithm for rectangles of substantial width
	Full algorithm

	Conclusion

